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My interests

Circuit complexity, 1984-1990.

Cryptography, 1982-now, maybe less these days.

Complexity theory in general, 1982-now.

Approximation algorithms, 1993-now, main interest today.
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One opinion

One should change topics every now and then, more often than
I have done.

A sizeable investment, but usually pays off.

Life is long and it is fun to know different areas.
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A related opinion

Learn in a broad area while young.

As one gets older, time gets scarcer and ones memory does
not get better.

Maybe some help by better perspective but doubtful.
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Today’s topic

Circuit complexity.

Active area with lots of progress in late 1980’ies. Less now.
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Today’s topic

Circuit complexity.

Active area with lots of progress in late 1980’ies. Less now.

Maybe we solved all doable problems?
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Today’s topic

Circuit complexity.

Active area with lots of progress in late 1980’ies. Less now.

Maybe we solved all doable problems?

Maybe we ran out of ambitious young researchers?

Johan Håstad (KTH) Circuit Complexity



Background
Small-depth circuits

Formula size
Final words

Basic definitions

A circuit is a directed acyclic graph from inputs to one output
with n inputs.

x̄1

x2 x̄3

x̄1

∨

∧

∧

∨

Size: Number of gates.

Depth: Longest path from input to output.
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Basic definitions

A circuit is a directed acyclic graph from inputs to one output
with n inputs.

x̄1

x2 x̄3
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Size: Number of gates. 4

Depth: Longest path from input to output.
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Basic definitions

A circuit is a directed acyclic graph from inputs to one output
with n inputs.

x̄1

x2 x̄3

x̄1

∨

∧

∧

∨

Size: Number of gates. 4

Depth: Longest path from input to output. 3
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Standard Gates

And-gates (∧), or-gates (∨)

Usually negations (not counted in size). If not we have
monotone circuits.

Fanin (number of inputs to a gate) can be bounded by two or
unbounded.
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Non-standard gates

Mod m gates (special case when m is a prime p).
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Non-standard gates

Mod m gates (special case when m is a prime p).

Threshold gates G(x) = sign(
∑t

i=1 wixi − w).

Majority gates, all wi = 1.
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Non-standard gates

Mod m gates (special case when m is a prime p).

Threshold gates G(x) = sign(
∑t

i=1 wixi − w).

Majority gates, all wi = 1.

Interesting in connection with very small depth circuits of great
fanin.
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Restrictions
Polynomials
Top-down
Top-down

The first class

Unbounded fanin circuits with ∧ and ∨-gates (and negations).

AC0, alternating circuits of constant depth and polynomial size.

Naming due to O((log n)0) = O(1).
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The picture to have in mind

x1
x1

∨

∧

∨ ∨ ∨ ∨

∧∧∧∧∧∧

x1 x1 x̄2 x̄6
x1 x2x3 x2 x̄4 x2 x̄3

x̄5 x2
x̄2x̄3

x̄2
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An old result

Theorem [S83, FSS84, Y85, H86] Computing parity of n inputs
by a depth-d circuit requires size

2Ω(n
1

d−1 ).
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Top-down

Three proof approaches

Restrictions. Giving values to most variables, simplifying the
circuit.

Approximations by polynomials. Output of circuit is close to a
polynomial.

Top-down. Analysis starting with the output.
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Restrictions

Idea by Sipser [S83]: Randomly give values to most of the
variables.
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Restrictions

Idea by Sipser [S83]: Randomly give values to most of the
variables.

Formally: ρ ∈ Rp for each variable xi independently:

Keep it is a variable with probability p, otherwise fix to 0 and 1
with equal probability (1 − p)/2.
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What restrictions do

After a restriction parity turns into parity or negation of parity on
the remaining variables.

A restriction simplifies the circuit by substituting the values for
the variables that are fixed.
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Simplifications of circuits

Restrictions greatly affect the bottom two layers of circuits with
only ∧-gates and ∨-gates.

For an ∧-gate of inputs of unbounded fanin. One input set
to 0 makes it 0.

If all inputs are set to one, it determines the value of the
∨-gate in the level above.
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The switching lemma

Lemma [Y85, H86] Any depth two circuit which is a ∨ of ∧’s
each of which is size ≤ t can, when hit with a random ρ ∈ Rp,
with probability at least 1 − (5pt)s, be converted to a depth two
circuit which is a ∧ of ∨’s each of which is of size ≤ s.
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A picture

∧∧ ∧ ∧

≤ t inputs to each ∧-gate

∧ ∧

∨

turns into
∧

∨ ∨ ∨ ∨ ∨ ∨

≤ s inputs to each ∨-gate

with probability 1 − (5pt)s by ρ ∈ Rp.
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Proof of switching lemma, idea

If the circuit is read-once it is a calculation as each ∧ is
independent.
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Proof of switching lemma, idea

If the circuit is read-once it is a calculation as each ∧ is
independent.

Correlation goes the right way. Do one ∧ at the time and prove
a more general, conditioned, statement by induction.
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Switching gives parity lower bound

Induction with p = n−1/(d−1) and s = t = 1
10n1/(d−1).

Each restriction wipes out one level.
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In pictures, I

∧ ∧ ∧

∨ ∨

∧ ∧ ∧

∨

∧

bottom fanin ≤ t

Apply ρ ∈ Rp and use lemma on each depth 2 subcircuit.
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In pictures, I

∧ ∧ ∧

∨ ∨

∧ ∧ ∧

∨

∧

bottom fanin ≤ t

Apply ρ ∈ Rp and use lemma on each depth 2 subcircuit.

∧

∧ ∧ ∧

∨ ∨ ∨ ∨ ∨1

bottom fanin ≤ s
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In pictures, II

After switching we have

∧

∧ ∧ ∧

∨ ∨ ∨ ∨ ∨1

bottom fanin ≤ s

and we make shortcuts
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In pictures, II

After switching we have

∧

∧ ∧ ∧

∨ ∨ ∨ ∨ ∨1

bottom fanin ≤ s

and we make shortcuts
∧

∨ ∨ ∨ ∨ ∨

bottom fanin ≤ s
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Punch line, switching

It is easy to see that a depth two circuit computing parity of m
variables requires bottom fanin m and size 2m−1.

We need to optimize p in Rp-restrictions to balance

Making sure we can simplify circuit.

Keeping many variables.

Johan Håstad (KTH) Circuit Complexity



Background
Small-depth circuits

Formula size
Final words

Restrictions
Polynomials
Top-down
Top-down

Polynomial approach

Large ∧’s (and ∨’s) are not very useful. Let ⊕ be parity.

Compare

∨m
j=1 Fj(x) (1)

and

⊕m
j=1 Fj(x) (2)
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Polynomial approach

Large ∧’s (and ∨’s) are not very useful. Let ⊕ be parity.

Compare

∨m
j=1 Fj(x) (1)

and

⊕m
j=1 Fj(x) (2)

(1) is 0 then so is (2) and if (1) is 1 we have, heuristically
speaking probability 1/2 of getting a 1 also for (2).
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Great idea

If instead of
⊕n

j=1Fj(x)

we take a random subset S ⊆ [m] then

⊕j∈SFj(x) = ∨n
j=1Fj(x)

with probability 1/2 (over S) for any fixed x.
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The key lemma

Lemma: Let Si , 1 ≤ i ≤ t be t independent subsets of [m] then
for any x

∨t
i=1

(⊕j∈Si
Fj(x)

)
= ∨n

j=1Fj(x).

with probability 1 − 2−t .
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The key lemma

Lemma: Let Si , 1 ≤ i ≤ t be t independent subsets of [m] then
for any x

∨t
i=1

(⊕j∈Si
Fj(x)

)
= ∨n

j=1Fj(x).

with probability 1 − 2−t .

The degree increases by only a factor t.
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Consequence

Theorem (Razborov [R87]) If f is computed by a depth d circuit
of size M then there exists a polynomial p mod 2 of degree Sd

such that f (x) = p(x) for all but a fraction M2−S of the inputs.
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Consequence

Theorem (Razborov [R87]) If f is computed by a depth d circuit
of size M then there exists a polynomial p mod 2 of degree Sd

such that f (x) = p(x) for all but a fraction M2−S of the inputs.

Remains true even if the circuit contains parity gates.

True, up to constants, if “mod 2” is replaced by “mod q” for any
constant size prime q.
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Punch line

Need to prove that some simple function is not approximated by
a low degree polynomial.
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Theorem by Razborov

Theorem (Razborov [R87]) Majority requires size

2Ω(n
1

d+1 )

to be computed by depth-d circuits containing ∧, ∨ and
⊕-gates.
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Theorem by Smolensky

Theorem (Smolensky [S87]) Mod m requires size

2Ω(n
1

2d )

to be computed by depth-d circuits containing ∧, ∨ and “mod
p”-gates, as long as m �= pr .
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Top-down approaches

The Karchmer-Wigderson communication game [KW90]. We
are interested in computing f .

A gets an input x such that f (x) = 0 and B gets and input y
such that f (y) = 1. By communicating they should find an i
such that xi �= yi .

Johan Håstad (KTH) Circuit Complexity



Background
Small-depth circuits

Formula size
Final words

Restrictions
Polynomials
Top-down
Top-down

A game for parity

Divide the input into s subsets. A computes the parity of each
subset and sends to B.

B finds a subset where the parity of the two inputs differ.
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A game for parity

Divide the input into s subsets. A computes the parity of each
subset and sends to B.

B finds a subset where the parity of the two inputs differ.

Recurse.

Gives n1/d bits in each of d rounds.
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The key theorem

Theorem: If f is computable by a depth-d circuit of size 2s then
the KW-game can be solved by a d move game where each
player sends s bits in each round.
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The proof

Induction. From output to an input find gates Gi in the circuit
such that Gi(x) = 0 and Gi(y) = 1.

At ∨-gates B points to an input that is one and at ∧-gates A
points to an input that is 0.
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Communication complexity

Even intuitively obvious facts are hard to prove and sometimes
false.

Only proof with this method [HJP95] gives a 2Ω(n1/2) lower
bound for depth three circuits.
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Communication complexity

Even intuitively obvious facts are hard to prove and sometimes
false.

Only proof with this method [HJP95] gives a 2Ω(n1/2) lower
bound for depth three circuits.

Did anybody look at this for the last 15 years?
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Communication complexity

Even intuitively obvious facts are hard to prove and sometimes
false.

Only proof with this method [HJP95] gives a 2Ω(n1/2) lower
bound for depth three circuits.

Did anybody look at this for the last 15 years?

Understanding in communication complexity has advanced,
can it be useful?
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Open problem

Get a better lower bound than 2n1/(d−1)
for any function for depth

d circuits.

Wide open even for d = 3.

Restrictions and approximation by polynomial will not do it.

Need more sophisticated properties of the function.
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Some hope?

Rossman [R08] proved Ω(nk/4−o(1)) lower bound for constant
depth circuits computing clique of size k for any constant depth
circuit.

Exponent independent of depth and does use a more
sophisticated property of the function.

However, far from the exponential bounds I want.
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Other gates

The polynomial approach works with mod p gates for primes p.

One level of majority can be eliminated using correlation
arguments.
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Open problems

Lower bounds for depth 2-3 circuits with more general gates.
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Open problems

Lower bounds for depth 2-3 circuits with more general gates.

Cannot rule out polynomial size circuits of depth 2 with mod 6
gates or threshold gates for any explicit function.
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One Great Optimist

I had a bet with Andrew Yao around 1990 that someone would
prove some explicit function not to be computable by
polynomial size constant-depth circuits with threshold gates
within two years.
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One Great Optimist

I had a bet with Andrew Yao around 1990 that someone would
prove some explicit function not to be computable by
polynomial size constant-depth circuits with threshold gates
within two years.

I won the bet but now I would have been happier to lose.
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Monotone variants

Almost everything is simpler in the monotone variant but one
problem I like.

For ordinary circuits, allowing weights in threshold circuits
changes depth by at most additive one [GHR92].

What happens in the monotone case?
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Changing gears

Formula size. Circuits where each gate has fanout 1.

A circuit that is a tree.

Depth the same as circuits, size much bigger.
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Parity formulas

Easy with two variables.

∧

∨ ∨

x2 x̄1x̄2
x1
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Parity formulas

Easy with two variables.

∧

∨ ∨

x2 x̄1x̄2
x1

Recursive construction gives size n2 when n = 2t .
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Classical counting

A random function on m inputs requires size Ω(2m/ log m).

Seems hard to get good lower bounds for explicit functions.
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Classical lower bound

Khrapchenko proved a general lower bound

|C|2
|A||B| .

A is subset of f (x) = 1, B of f (x) = 0 and C is the set of a ∈ A
and b ∈ B such that a and b only differ in one coordinate.
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Bounds for parity

For parity we can have |A| = |B| = 2n−1 and |C| = n2n−1 giving
n2 lower bound.
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Bounds for parity

For parity we can have |A| = |B| = 2n−1 and |C| = n2n−1 giving
n2 lower bound.

We know exactly the formula size of parity when n is a power of
2.
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Beating n2

Only known method invented by Subbotovskaya [S61] who
designed a suitable function S(x , y).

n bits xi specifies a function fx on m = log n bits.

n bits yi to define log n-bit input z to fx .

zj = ⊕i∈Sj
yi .

Output: fx (z).
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Proof idea

Fix the x to a function that requires formulas of size
2m/ log m = Θ(n/ log log n).

Use a restriction ρ ∈ Rp on y simplifying the formula but
keeping each zj undetermined making the remaining as hard
as fx .
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Proof idea

Fix the x to a function that requires formulas of size
2m/ log m = Θ(n/ log log n).

Use a restriction ρ ∈ Rp on y simplifying the formula but
keeping each zj undetermined making the remaining as hard
as fx .

Fixing x makes formula smaller but unclear how much.

ρ does shrink the formula.
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First shrinking

Subbotovskaya proved that ρ ∈ Rp shrinks a formula by a factor
p3/2.

This gives a lower bound of n5/2−o(1) for the formula size of
S(x , y).
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Better shrinking

Subbotovskaya used local analysis.

More global analysis gives shrinking p2−o(1) [H98].

Up to o(1) this is sharp (as seen from parity).

This gives lower bound n3−o(1) for the Subbotovskaya function.
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Open problems

Get beyond n3 for formula size.
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Open problems

Get beyond n3 for formula size.

Find another method that goes beyond n2, getting bounds for
nicer function.
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A related question

Find an explicit function that cannot be computed by depth
O(log n) and size O(n) fanin-2 circuits.
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The big question

Are circuits too complicated objects to understand?
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The big question

Are circuits too complicated objects to understand?

Well if they are, we should prove this.
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Natural proofs

Razborov and Rudich [RR97] considered natural proofs.

1 Works to give lower bounds for most function.
2 Needs a condition for hardness that is computationally

easy to verify given truth-table of a function.
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Natural proofs

Razborov and Rudich [RR97] considered natural proofs.

1 Works to give lower bounds for most function.
2 Needs a condition for hardness that is computationally

easy to verify given truth-table of a function.

Cannot be used to prove lower bounds for any model which
admits good pseudo-random generators.
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Natural proofs

Razborov and Rudich [RR97] considered natural proofs.

1 Works to give lower bounds for most function.
2 Needs a condition for hardness that is computationally

easy to verify given truth-table of a function.

Cannot be used to prove lower bounds for any model which
admits good pseudo-random generators.

Does not rule out a proof but tells us where to look.
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Final word

Circuit complexity has been mostly dormant for many years.

High risk of getting stuck.

But it is our duty to take another crack.
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Final word

Circuit complexity has been mostly dormant for many years.

High risk of getting stuck.

But it is our duty to take another crack.

Need for young, optimistic researchers with new ideas.
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My personal feelings

In the 1980’ies we thought we soon would know a lot more.

Now I would be extremely happy to see any major progress.
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Thank you!
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