
The Computational Complexity of Coin Flipping

DIVORCED SHE GOT VI

SHE GOT VI

Who gets the car?

000

SHE COT VI

Who gets the car?

Who gets the car?

SHE GOT VI

SHE GOT VAL

000

if the outcome is

SHE GOT VA

00

Who gets the car?

Alice gets the car if the outcome is

Alice gets the car if the outcome is

Bob gets the car if the outcome is

SHE GOT

• Original problem introduced in [BLUM82]

- Original problem introduced in [BLUM82]
- Definition: Alice wants Heads; Bob wants Tails

- Original problem introduced in [BLUM82]
- Definition: Alice wants Heads; Bob wants Tails
 - When Alice and Bob interact honestly the probability of Heads = 1/2

- Original problem introduced in [BLUM82]
- Definition: Alice wants Heads; Bob wants Tails
 - When Alice and Bob interact honestly the probability of Heads = 1/2
 - Probability of a Dishonest player's preferred outcome is not "significantly" higher than 1/2 when the other player plays honestly

- Original problem introduced in [BLUM82]
- Definition: Alice wants Heads; Bob wants Tails
 - When Alice and Bob interact honestly the probability of Heads = 1/2
 - Probability of a Dishonest player's preferred outcome is not "significantly" higher than 1/2 when the other player plays honestly
- Aim: Understand computational intractability required for a weak coin tossing protocol

• Security Parameter: k

- Security Parameter: k
- Corresponding protocol: π(k)

- Security Parameter: k
- Corresponding protocol: π(k)
- Security Guarantee: $\mu(k)$ in the range [0,1]

- Security Parameter: k
- Corresponding protocol: π(k)
- Security Guarantee: $\mu(k)$ in the range [0,1]
 - Neither party can get their preferred outcome with probability more than 1 $\mu(k)/2$

- Security Parameter: k
- Corresponding protocol: π(k)
- Security Guarantee: $\mu(k)$ in the range [0,1]
 - Neither party can get their preferred outcome with probability more than 1 $\mu(k)/2$
 - 1 secure protocol: Fully secure

- Security Parameter: k
- Corresponding protocol: π(k)
- Security Guarantee: $\mu(k)$ in the range [0,1]
 - Neither party can get their preferred outcome with probability more than 1 $\mu(k)/2$
 - 1 secure protocol: Fully secure
 - 0 secure protocol: No security Guarantee

• General $\pi(k)$:

- General $\pi(k)$:
 - k-round protocols

- General $\pi(k)$:
 - k-round protocols
 - Alice and Bob send bits alternately

- General $\pi(k)$:
 - k-round protocols
 - Alice and Bob send bits alternately
- Constant Alternation π(k):

- General $\pi(k)$:
 - k-round protocols
 - Alice and Bob send bits alternately
- Constant Alternation π(k):
 - Constant number of rounds

- General $\pi(k)$:
 - k-round protocols
 - Alice and Bob send bits alternately
- Constant Alternation π(k):
 - Constant number of rounds
 - Alice and Bob send k-bit messages alternately

+ OWF implies 1 - v secure Constant Alternation protocol, for some negligible v [BLUM82, GL89, NAOR89, HILL99]

+ OWF implies 1 - v secure Constant Alternation protocol, for some negligible v [BLUM82, GL89, NAOR89, HILL99]

•Alice commits to a

- + OWF implies 1 v secure Constant Alternation protocol, for some negligible v [BLUM82, GL89, NAOR89, HILL99]
- •Alice commits to a
- •Bob sends b

- + OWF implies 1 v secure Constant Alternation protocol, for some negligible v [BLUM82, GL89, NAOR89, HILL99]
- •Alice commits to a
- •Bob sends b
- •Alice de-commits a and outcome is a \oplus b

- + OWF implies 1 v secure Constant Alternation protocol, for some negligible v [BLUM82, GL89, NAOR89, HILL99]
- •Alice commits to a
- •Bob sends b
- •Alice de-commits a and outcome is a \oplus b
- •If a party aborts, then the outcome is opposite to his/her preferred outcome

+ OWF implies 1 - v secure Constant Alternation protocol, for some negligible v [BLUM82, GL89, NAOR89, HILL99]

- + OWF implies 1 v secure Constant Alternation protocol, for some negligible v [BLUM82, GL89, NAOR89, HILL99]
- General Protocols:

- + OWF implies 1 v secure Constant Alternation protocol, for some negligible v [BLUM82, GL89, NAOR89, HILL99]
- General Protocols:
 - $1/2^{k}$ secure protocols implies PSPACE \nsubseteq BPP

- + OWF implies 1 v secure Constant Alternation protocol, for some negligible v [BLUM82, GL89, NAOR89, HILL99]
- General Protocols:
- Brute Force ¹/₂^k secure protocols implies PSPACE ⊈ BPP

- + OWF implies 1 v secure Constant Alternation protocol, for some negligible v [BLUM82, GL89, NAOR89, HILL99]
- General Protocols:
 - Brute Force ¹/₂^k secure protocols implies PSPACE ⊈ BPP
 - 1 $\theta(1/\sqrt{k})$ secure protocols implies OWF [CI93]

- + OWF implies 1 v secure Constant Alternation protocol, for some negligible v [BLUM82, GL89, NAOR89, HILL99]
- **General Protocols:**
- Brute Force - $\eta_{2^{n}}$ secure protocols implies PSPACE \nsubseteq BPP $\eta_{2^{n}}^{eo}$ 1 - $\theta(1/\sqrt{k})$ secure protocols implies OWF [CI93] $\eta_{2^{n}}^{eo}$ $\eta_{2^{n}}^{eo}$ $\eta_{2^{n}}^{eo}$

- + OWF implies 1 v secure Constant Alternation protocol, for some negligible v [BLUM82, GL89, NAOR89, HILL99]
- **General Protocols:**
- Brute Force - $\theta_{2^{\circ}}$ secure protocols implies PSPACE $\not\subseteq$ BPP - $\theta_{1^{\circ}}$ + $\theta_{1^{\circ}}$ +

Constant Alternation Protocols:

- + OWF implies 1 v secure Constant Alternation protocol, for some negligible v [BLUM82, GL89, NAOR89, HILL99]
- **General Protocols:**
- Brute Force - $\eta_{2^{\circ}}$ secure protocols implies PSPACE $\not\subseteq$ BPP $\eta_{2^{\circ}}$ secure protocols implies OWF [CI93] $\eta_{2^{\circ}}$ η_{2°

 - **Constant Alternation Protocols:**
 - $1/2^{k}$ secure protocols implies PH \nsubseteq BPP, which implies NP ⊈ BPP [ZACHOS88]

- + OWF implies 1 v secure Constant Alternation protocol, for some negligible v [BLUM82, GL89, NAOR89, HILL99]
- General Protocols:
- Brute Force 72° secure protocols implies PSPACE ⊈ BPP $1 - \theta(1/\sqrt{k})$ secure protocols implies OWF [CI93] Narpesult

 - **Constant Alternation Protocols:**
 - Brute Force • $1/2^k$ secure protocols implies PH \nsubseteq BPP, which implies NP ⊈ BPP [ZACHOS88]

• Proposed by [IMPAGLIAZZ009]

- Proposed by [IMPAGLIAZZ009]
- Is it necessary that $P \neq NP$ for existence of a $\frac{49}{50}$ secure weak coin tossing protocol?

- Proposed by [IMPAGLIAZZ009]
- Is it necessary that $P \neq NP$ for existence of a $\frac{49}{50}$ secure weak coin tossing protocol?
 - Is $P \neq NP$ necessary, if we want to restrict the probability of each party's preferred outcome to at most 1/2 + 1/100?

- Proposed by [IMPAGLIAZZ009]
- Is it necessary that $P \neq NP$ for existence of a $\frac{49}{50}$ secure weak coin tossing protocol?
 - Is $P \neq NP$ necessary, if we want to restrict the probability of each party's preferred outcome to at most 1/2 + 1/100?
- Alternately, if P = NP is there a constant bias attack against General protocols?

• General protocols:

- General protocols:
 - $1/_2 + 1/_{poly}$ secure protocol implies NP \nsubseteq BPP

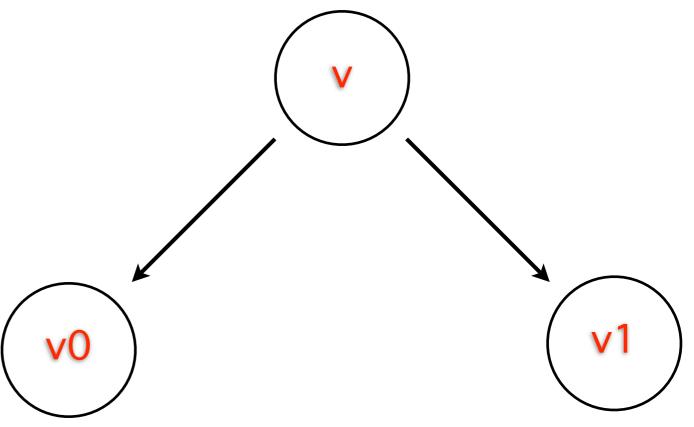
• General protocols:

- $1/_2 + 1/_{poly}$ secure protocol implies NP \nsubseteq BPP
- Reworded: NP ⊆ BPP implies some party can force his/her preferred outcome with probability at least ³/₄ - ¹/_{poly}

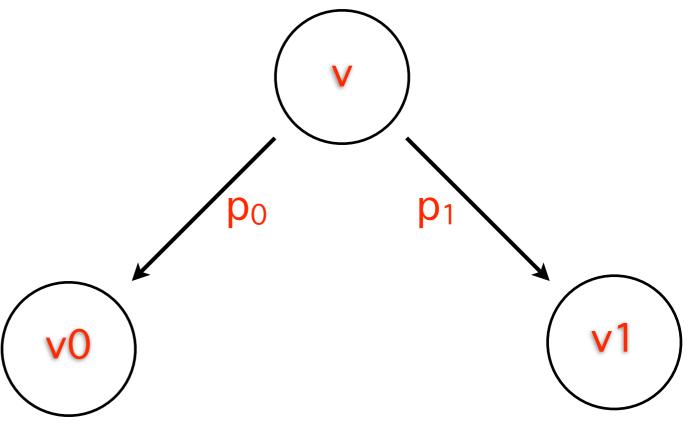
- General protocols:
 - $1/_2$ + $1/_{poly}$ secure protocol implies NP \nsubseteq BPP
 - Reworded: NP ⊆ BPP implies some party can force his/her preferred outcome with probability at least ³/₄ - ¹/_{poly}
- Constant Alternation protocols:

- General protocols:
 - $1/_2$ + $1/_{poly}$ secure protocol implies NP \nsubseteq BPP
 - Reworded: NP ⊆ BPP implies some party can force his/her preferred outcome with probability at least ³/₄ ¹/_{poly}
- Constant Alternation protocols:
 - ¹/_{poly} secure protocol implies OWF

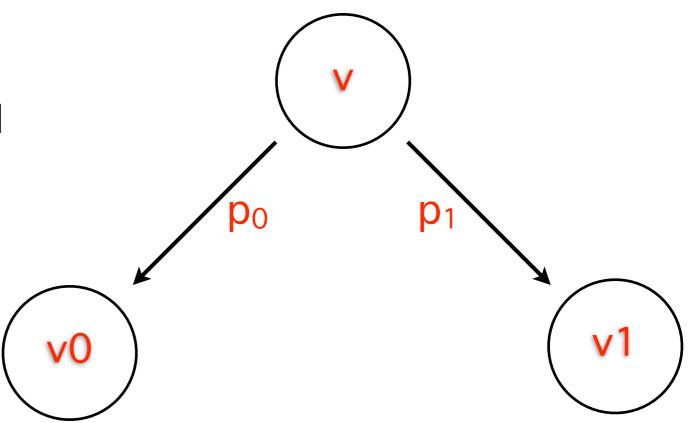
• General protocols:

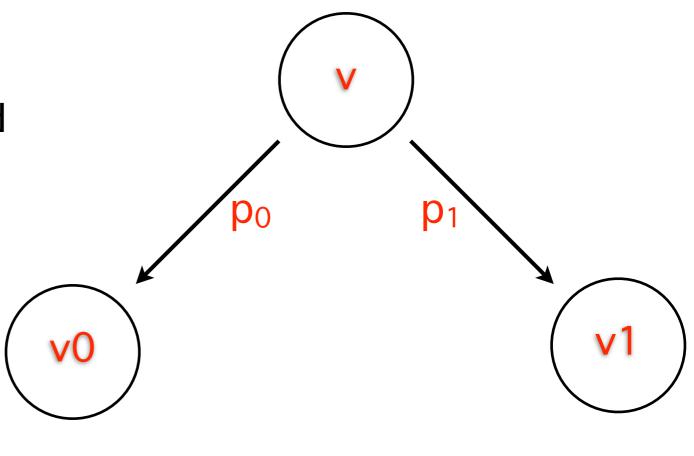

- $1/_2$ + $1/_{poly}$ secure protocol implies NP \nsubseteq BPP
- Reworded: NP ⊆ BPP implies some party can force his/her preferred outcome with probability at least ³/₄ ¹/_{poly}
- Constant Alternation protocols:
 - ¹/_{poly} secure protocol implies OWF
 - Reworded: ¬OWF implies some party can force his/her preferred outcome with probability at least 1 - ¹/_{poly}

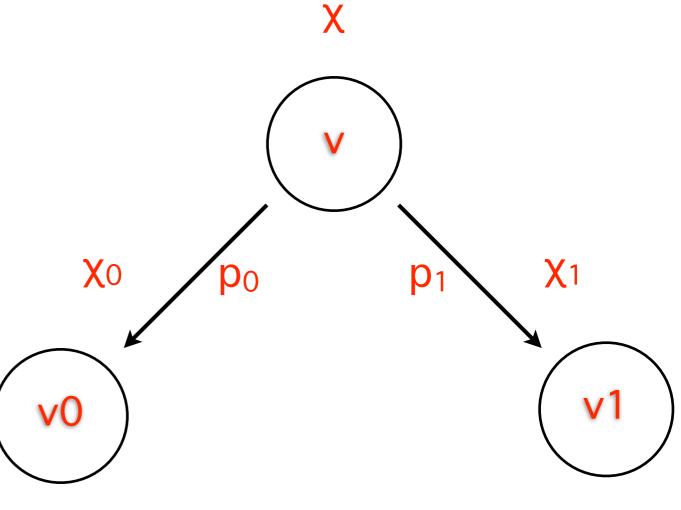
General protocols:

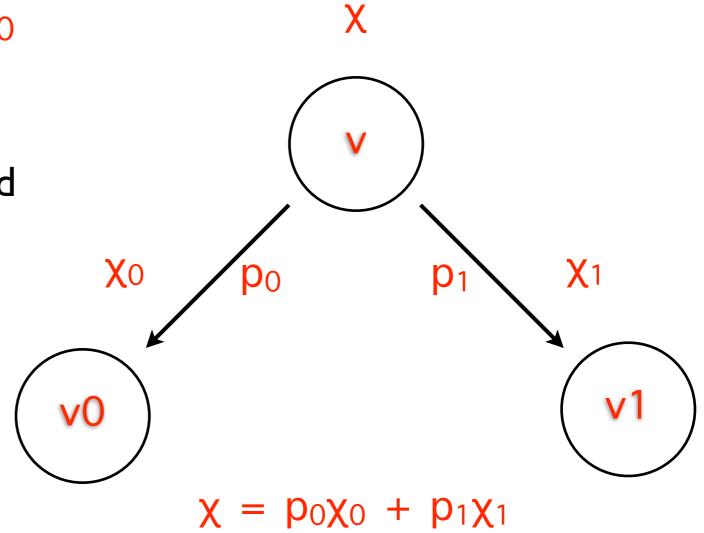

- $1/_2$ + $1/_{poly}$ secure protocol implies NP \nsubseteq BPP
- Reworded: NP ⊆ BPP implies some party can force his/her preferred outcome with probability at least ³/₄ ¹/_{poly}
- Constant Alternation protocols:
 - 1/poly secure protocol implies OWF
 - Reworded: ¬OWF implies some party can force his/her preferred outcome with probability at least 1 - ¹/_{poly}

 Partial transcripts are vertices; v is parent of v0 and v1


 Partial transcripts are vertices; v is parent of v0 and v1


 Partial transcripts are vertices; v is parent of v0 and v1


- Partial transcripts are vertices; v is parent of v0 and v1
- Interpret Heads as 1 and Tails as 0


- Partial transcripts are vertices; v is parent of v0 and v1
- Interpret Heads as 1 and Tails as 0
- Color of a node v (x): Expectation of the outcome when both parties behave honestly conditioned on v being the transcript prefix

- Partial transcripts are vertices; v is parent of v0 and v1
- Interpret Heads as 1 and Tails as 0
- Color of a node v (x): Expectation of the outcome when both parties behave honestly conditioned on v being the transcript prefix

- Partial transcripts are vertices; v is parent of v0 and v1
- Interpret Heads as 1 and Tails as 0
- Color of a node v (x): Expectation of the outcome when both parties behave honestly conditioned on v being the transcript prefix

• For NP relations [JVV86]:

- For NP relations [JVV86]:
 - Uniformly sample from $R^{-1}(x) = \{w \mid R(x; w) = 1\}$

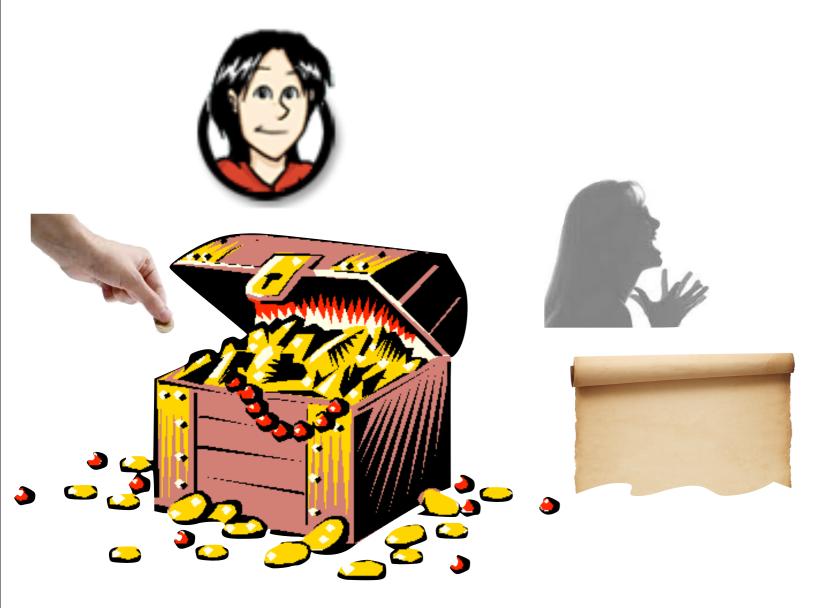
- For NP relations [JVV86]:
 - Uniformly sample from $R^{-1}(x) = \{w \mid R(x; w) = 1\}$
 - Efficient algorithm using NP Oracle [BGP00]

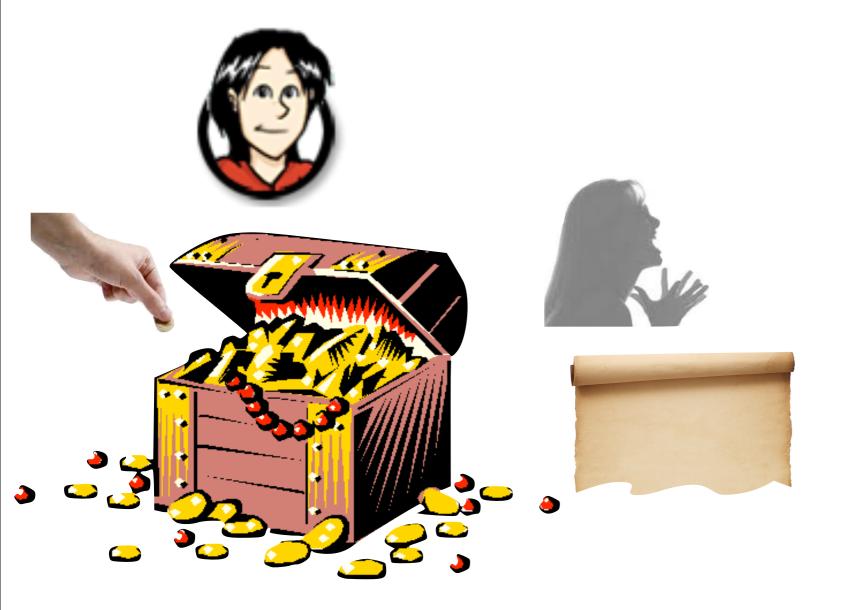
- For NP relations [JVV86]:
 - Uniformly sample from $R^{-1}(x) = \{w \mid R(x; w) = 1\}$
 - Efficient algorithm using NP Oracle [BGP00]
- NP ⊆ BPP implies efficient algorithm

- For NP relations [JVV86]:
 - Uniformly sample from $R^{-1}(x) = \{w \mid R(x; w) = 1\}$
 - Efficient algorithm using NP Oracle [BGP00]
- NP ⊆ BPP implies efficient algorithm
 - ¬OWF gives "similar" power on "average" [IL89, 0W93]

- For NP relations [JVV86]:
 - Uniformly sample from $R^{-1}(x) = \{w \mid R(x; w) = 1\}$
 - Efficient algorithm using NP Oracle [BGP00]
- NP ⊆ BPP implies efficient algorithm
 - ¬OWF gives "similar" power on "average" [IL89, 0W93]
- Used in computation of local randomness consistent with any partial transcript







• Sample Next bit

- Sample Next bit
- Sample Transcript extension

- Sample Next bit
- Sample Transcript extension
- Determine Color

• Need to attack at $\omega(1)$ rounds for more than 1/poly bias

- Need to attack at $\omega(1)$ rounds for more than 1/poly bias
- Greedy does not work

- Need to attack at $\omega(1)$ rounds for more than 1/poly bias
- Greedy does not work
 - Greedy strategy for Alice and Bob

- Need to attack at $\omega(1)$ rounds for more than 1/poly bias
- Greedy does not work
 - Greedy strategy for Alice and Bob
 - Malicious Alice outputs b such that $\chi_b \ge \chi$

- Need to attack at $\omega(1)$ rounds for more than 1/poly bias
- Greedy does not work
 - Greedy strategy for Alice and Bob
 - Malicious Alice outputs b such that $\chi_b \ge \chi$
 - Malicious Bob outputs b such that $\chi_b \leq \chi$

- Need to attack at $\omega(1)$ rounds for more than 1/poly bias
- Greedy does not work
 - Greedy strategy for Alice and Bob
 - Malicious Alice outputs b such that $\chi_b \ge \chi$
 - Malicious Bob outputs b such that $\chi_b \leq \chi$
 - There exists a protocol, where neither party can increase the probability of their preferred outcome beyond 1/2 + v using Greedy strategy, for negligible v

- Need to attack at $\omega(1)$ rounds for more than 1/poly bias
- Greedy does not work
 - Greedy strategy for Alice and Bob
 - Malicious Alice outputs b such that $\chi_b \ge \chi$
 - Malicious Bob outputs b such that $\chi_b \leq \chi$
 - There exists a protocol, where neither party can increase the probability of their preferred outcome beyond 1/2 + v using Greedy strategy, for negligible v

• Hedged Greedy works

- Hedged Greedy works
 - Probabilistic scheme instead of sharp threshold (Hedging the Bets)

- Hedged Greedy works
 - Probabilistic scheme instead of sharp threshold (Hedging the Bets)
 - Intuition of Alice Strategy: Output b with probability proportional to $p_b\chi_b/(1-\chi_b)$

- Hedged Greedy works
 - Probabilistic scheme instead of sharp threshold (Hedging the Bets)
 - Intuition of Alice Strategy: Output b with probability proportional to $p_b\chi_b/(1-\chi_b)$
- Remaining Problem: Estimating x

- Hedged Greedy works
 - Probabilistic scheme instead of sharp threshold (Hedging the Bets)
 - Intuition of Alice Strategy: Output b with probability proportional to $p_b\chi_b/(1-\chi_b)$
- Remaining Problem: Estimating x
 - Reduce to "stateless" protocols

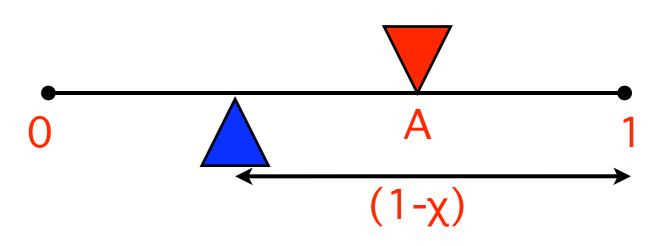
- Hedged Greedy works
 - Probabilistic scheme instead of sharp threshold (Hedging the Bets)
 - Intuition of Alice Strategy: Output b with probability proportional to $p_b\chi_b/(1-\chi_b)$
- Remaining Problem: Estimating x
 - Reduce to "stateless" protocols
 - Handle Additive error in estimating x

- Hedged Greedy works
 - Probabilistic scheme instead of sharp threshold (Hedging the Bets)
 - Intuition of Alice Strategy: Output b with probability proportional to $p_b\chi_b/(1-\chi_b)$
- Remaining Problem: Estimating x
 - Reduce to "stateless" protocols
 - Handle Additive error in estimating x
- Tight for a class of algorithms

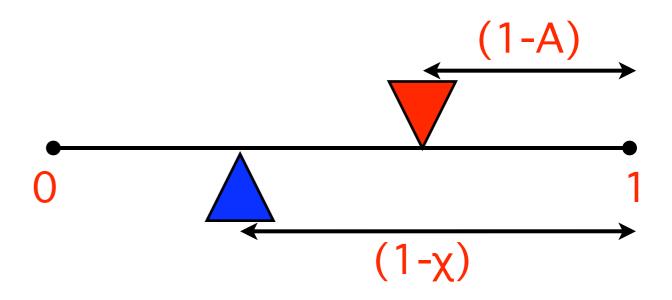
 A : Expectation of the outcome when Alice is malicious and Bob is honest

- A : Expectation of the outcome when Alice is malicious and Bob is honest
 - $F_A = (1-A) / (1-\chi)$: Failure of Alice's attack

 \mathbf{O}


- A : Expectation of the outcome when Alice is malicious and Bob is honest
 - $F_A = (1-A) / (1-\chi)$: Failure of Alice's attack

- A : Expectation of the outcome when Alice is malicious and Bob is honest
 - $F_A = (1-A) / (1-\chi)$: Failure of Alice's attack 0


- A : Expectation of the outcome when Alice is malicious and Bob is honest
 - $F_A = (1-A) / (1-\chi)$: Failure of Alice's attack

- A : Expectation of the outcome when Alice is malicious and Bob is honest
 - $F_A = (1-A) / (1-\chi)$: Failure of Alice's attack 0 A

- A : Expectation of the outcome when Alice is malicious and Bob is honest
 - $F_A = (1-A) / (1-\chi)$: Failure of Alice's attack

- A : Expectation of the outcome when Alice is malicious and Bob is honest
 - $F_A = (1-A) / (1-\chi)$: Failure of Alice's attack

- A : Expectation of the outcome when Alice is malicious and Bob is honest
 - $F_A = (1-A) / (1-\chi)$: Failure of Alice's attack

- A : Expectation of the outcome when Alice is malicious and Bob is honest
 - $F_A = (1-A) / (1-\chi)$: Failure of Alice's attack
- B : Expectation of the outcome when Bob is malicious and Alice is honest

- A : Expectation of the outcome when Alice is malicious and Bob is honest
 - $F_A = (1-A) / (1-\chi)$: Failure of Alice's attack
- B : Expectation of the outcome when Bob is malicious and Alice is honest
 - $F_B = B / \chi$: Failure of Bob's attack

 A : Expectation of the outcome when Alice is malicious and Bob is honest

 $F_A + F_B \leq 1$

- $F_A = (1-A) / (1-\chi)$: Failure of Alice's attack
- B : Expectation of the outcome when Bob is malicious and Alice is honest
 - $F_B = B / \chi$: Failure of Bob's attack

 A : Expectation of the outcome when Alice is malicious and Bob is honest

 $F_A + F_B \leq 1$

- $F_A = (1-A) / (1-\chi)$: Failure of Alice's attack
- B : Expectation of the outcome when Bob is malicious and Alice is honest
 - $F_B = B / \chi$: Failure of Bob's attack

min { F_A , F_B } $\leq 1/_2$

 A : Expectation of the outcome when Alice is malicious and Bob is honest

 $F_A + F_B \leq 1$

- $F_A = (1-A) / (1-\chi)$: Failure of Alice's attack
- B : Expectation of the outcome when Bob is malicious and Alice is honest
 - $F_B = B / \chi$: Failure of Bob's attack

min { F_A , F_B } $\leq 1/2$

Meta Theorem: Alice or Bob succeeds by half

 $\chi = \frac{1}{2}$ means $A \ge \frac{3}{4}$ or $B \le \frac{1}{4}$

• Sample a subtree of the Protocol Tree

- Sample a subtree of the Protocol Tree
 - Every node has suitable poly degree

- Sample a subtree of the Protocol Tree
 - Every node has suitable poly degree
 - Find the optimal message for the subtree by solving the corresponding "max-average" problem

- Sample a subtree of the Protocol Tree
 - Every node has suitable poly degree
 - Find the optimal message for the subtree by solving the corresponding "max-average" problem
- Issues

- Sample a subtree of the Protocol Tree
 - Every node has suitable poly degree
 - Find the optimal message for the subtree by solving the corresponding "max-average" problem
- Issues
 - Sampling a subtree can miss the max

- Sample a subtree of the Protocol Tree
 - Every node has suitable poly degree
 - Find the optimal message for the subtree by solving the corresponding "max-average" problem
- Issues
 - Sampling a subtree can miss the max
 - As attack progresses, sampling gets "harder"

- Sample a subtree of the Protocol Tree
 - Every node has suitable poly degree
 - Find the optimal message for the subtree by solving the corresponding "max-average" problem
- Issues
 - Sampling a subtree can miss the max
 - As attack progresses, sampling gets "harder"
 - But works for Constant Alternation protocols

+ OWF implies 1 secure Constant Alternation protocol [BLUM82, GL89, NAOR89, HILL99]

- + OWF implies 1 secure Constant Alternation protocol [BLUM82, GL89, NAOR89, HILL99]
- General protocols

- + OWF implies 1 secure Constant Alternation protocol [BLUM82, GL89, NAOR89, HILL99]
- General protocols
 - ε secure protocols imply PSPACE \nsubseteq BPP

- + OWF implies 1 secure Constant Alternation protocol [BLUM82, GL89, NAOR89, HILL99]
- General protocols
 - ε secure protocols imply PSPACE \nsubseteq BPP
 - ¹/₂ secure protocols imply NP ⊈ BPP [MPS10]

- + OWF implies 1 secure Constant Alternation protocol [BLUM82, GL89, NAOR89, HILL99]
- General protocols
 - ε secure protocols imply PSPACE \nsubseteq BPP
 - ¹/₂ secure protocols imply NP ⊈ BPP [MPS10]
 - 1 $\theta(1/\sqrt{k})$ secure protocols implies OWF [CI93]

- + OWF implies 1 secure Constant Alternation protocol [BLUM82, GL89, NAOR89, HILL99]
- General protocols
 - ε secure protocols imply PSPACE \nsubseteq BPP
 - ¹/₂ secure protocols imply NP ⊈ BPP [MPS10]
 - 1 $\theta(1/\sqrt{k})$ secure protocols implies OWF [CI93]
- Constant Alternation protocols

- + OWF implies 1 secure Constant Alternation protocol [BLUM82, GL89, NAOR89, HILL99]
- General protocols
 - ε secure protocols imply PSPACE \nsubseteq BPP
 - ¹/₂ secure protocols imply NP ⊈ BPP [MPS10]
 - 1 $\theta(1/\sqrt{k})$ secure protocols implies OWF [CI93]
- Constant Alternation protocols
 - ε secure protocols imply OWF [MPS10]

 Does there exist a constant c such that, c secure General protocols imply OWF?

- Does there exist a constant c such that, c secure
 General protocols imply OWF?
 - Reworded: Does ¬OWF imply that some party can obtain his/her preferred outcome with probability at least 1 ^c/₂?

- Does there exist a constant c such that, c secure
 General protocols imply OWF?
 - Reworded: Does ¬OWF imply that some party can obtain his/her preferred outcome with probability at least 1 ^c/₂?
- Do ¹/_{poly} secure General protocols imply NP ⊈ BPP?

- Does there exist a constant c such that, c secure
 General protocols imply OWF?
 - Reworded: Does ¬OWF imply that some party can obtain his/her preferred outcome with probability at least 1 ^c/₂?
- Do ¹/_{poly} secure General protocols imply NP ⊈ BPP?
 - Reworded: Does NP ⊆ BPP imply that some party can obtain his/her preferred outcome with probability at least 1 - ¹/_{poly}?

Thank You