Time space tradeoffs for attacks against one-way functions and PRGs

Anindya De

University of California, Berkeley

Joint work with
Luca Trevisan - UC Berkeley and Stanford University
Madhur Tulsiani - Princeton University

What is this talk about?

- Can "brute-force" attacks on cryptographic primitives be improved upon?

What is this talk about?

- Can "brute-force" attacks on cryptographic primitives be improved upon?
- Recover a key of length k in time less than 2^{k}.

What is this talk about?

- Can "brute-force" attacks on cryptographic primitives be improved upon?
- Recover a key of length k in time less than 2^{k}.
- In time t, recover key with probability better than $t / 2^{k}$.

What is this talk about?

- Can "brute-force" attacks on cryptographic primitives be improved upon?
- Recover a key of length k in time less than 2^{k}.
- In time t, recover key with probability better than $t / 2^{k}$.
- Brute force : optimal when restricted to uniform algorithms

What is this talk about?

- Can "brute-force" attacks on cryptographic primitives be improved upon?
- Recover a key of length k in time less than 2^{k}.
- In time t, recover key with probability better than $t / 2^{k}$.
- Brute force : optimal when restricted to uniform algorithms
- Are better (non-uniform) attacks possible against:
- one-way functions?
- pseudo-random generators?

Definitions of primitives

- $N=2^{n}, \quad[N] \cong\{0,1\}^{n}$.

Definitions of primitives

- $N=2^{n}, \quad[N] \cong\{0,1\}^{n}$.
- One-way function: $f:[N] \rightarrow[N]$ is (t, ϵ)-one way if for every algorithm A of complexity $\leq t$

$$
\operatorname{Pr}_{x \sim\{0,1\}^{n}}\left[A^{f}(f(x))=x^{\prime} \mid f\left(x^{\prime}\right)=f(x)\right] \leq \epsilon
$$

Definitions of primitives

- $N=2^{n}, \quad[N] \cong\{0,1\}^{n}$.
- One-way function: $f:[N] \rightarrow[N]$ is (t, ϵ)-one way if for every algorithm A of complexity $\leq t$

$$
\operatorname{Pr}_{x \sim\{0,1\}^{n}}\left[A^{f}(f(x))=x^{\prime} \mid f\left(x^{\prime}\right)=f(x)\right] \leq \epsilon
$$

- PRG: $G:[N] \rightarrow[2 N]$ is a (t, ϵ)-secure PRG if for every algorithm A of complexity $\leq t$

$$
\left|\operatorname{Pr}_{x \sim[N]}\left[A^{G}(G(x))=1\right]-\operatorname{Pr}_{y \sim[2 N]}\left[A^{G}(y)=1\right]\right| \leq \epsilon
$$

Measure of Complexity

- complexity \neq time, as A may compute f^{-1} in $O(\log N)$ time by storing all inverses.

Measure of Complexity

- complexity \neq time, as A may compute f^{-1} in $O(\log N)$ time by storing all inverses.
- complexity $=$ pre-computed advice + running time.

Measure of Complexity

- complexity \neq time, as A may compute f^{-1} in $O(\log N)$ time by storing all inverses.
- complexity $=$ pre-computed advice + running time.
- Can be implemented on a RAM machine with time and space t.
- Similar to circuit complexity.

Upper bounds

	Primitive	Complexity
$[$ Hellman 80]	Permutation f	$\tilde{O}(\sqrt{N})$

Upper bounds

	Primitive	Complexity
[Hellman 80]	Permutation f	$\tilde{O}(\sqrt{N})$
[Hellman 80]	Random function f (heuristic)	$\tilde{O}\left(N^{2 / 3}\right)$

Upper bounds

	Primitive	Complexity
[Hellman 80]	Permutation f	$\tilde{O}(\sqrt{N})$
[Hellman 80]	Random function f (heuristic)	$\tilde{O}\left(N^{2 / 3}\right)$
[Fiat-Naor 99]	Any f, all inputs	$\tilde{O}\left(N^{3 / 4}\right)$

Upper bounds

	Primitive	Complexity	
[Hellman 80]	Permutation f	$\tilde{O}(\sqrt{N})$	
[Hellman 80]	Random function f (heuristic)	$\tilde{O}\left(N^{2 / 3}\right)$	
[Fiat-Naor 99]	Any f, all inputs	$\tilde{O}\left(N^{3 / 4}\right)$	
		$\tilde{O}(\sqrt{\epsilon N})$	$\epsilon \leq N^{-1 / 3}$
[DTT 10]	Any f, ϵ-fraction of inputs	$\tilde{O}\left(\epsilon^{5 / 4} N^{3 / 4}\right) \epsilon \geq N^{-1 / 3}$	

Upper bounds

	Primitive	Complexity	
[Hellman 80]	Permutation f	$\tilde{O}(\sqrt{N})$	
[Hellman 80]	Random function f (heuristic)	$\tilde{O}\left(N^{2 / 3}\right)$	
[Fiat-Naor 99]	Any f, all inputs	$\tilde{O}\left(N^{3 / 4}\right)$	
		$\tilde{O}(\sqrt{\epsilon N})$	$\epsilon \leq N^{-1 / 3}$
[DTT 10]	Any f, ϵ-fraction of inputs	$\tilde{O}\left(\epsilon^{5 / 4} N^{3 / 4}\right)$	$\epsilon \geq N^{-1 / 3}$

[ACR 97] $\quad \operatorname{PRG} G(x) \stackrel{\text { def }}{=}(f(x), P(x)) \quad \tilde{O}\left(\epsilon^{2} N\right)$

Upper bounds

	Primitive	Complexity	
[Hellman 80]	Permutation f	$\tilde{O}(\sqrt{N})$	
[Hellman 80]	Random function f (heuristic)	$\tilde{O}\left(N^{2 / 3}\right)$	
[Fiat-Naor 99]	Any f, all inputs	$\tilde{O}\left(N^{3 / 4}\right)$	
[DTT 10]	Any f, ϵ-fraction of inputs	$\tilde{O}(\sqrt{\epsilon N})$	$\tilde{O}\left(\epsilon^{5 / 4} N^{3 / 4}\right)$
		$\epsilon \geq N^{-1 / 3}$	
[ACR 97]	PRG $G(x) \stackrel{\text { def }}{=}(f(x), P(x))$	$\tilde{O}\left(\epsilon^{2} N\right)$	
[DTT 10]	Any PRG	$\tilde{O}\left(\epsilon^{2} N\right)$	

Upper bounds

	Primitive	Complexity	
[Hellman 80]	Permutation f	$\tilde{O}(\sqrt{N})$	
[Hellman 80]	Random function f (heuristic)	$\tilde{O}\left(N^{2 / 3}\right)$	
[Fiat-Naor 99]	Any f, all inputs	$\tilde{O}\left(N^{3 / 4}\right)$	
[DTT 10]	Any f, ϵ-fraction of inputs	$\tilde{O}(\sqrt{\epsilon N})$	$\tilde{O}\left(\epsilon^{5 / 4} N^{3 / 4}\right)$
		$\epsilon \geq N^{-1 / 3}$	
[ACR 97]	PRG $G(x) \stackrel{\text { def }}{=}(f(x), P(x))$	$\tilde{O}\left(\epsilon^{2} N\right)$	
[DTT 10]	Any PRG	$\tilde{O}\left(\epsilon^{2} N\right)$	

All above results are actually stated as time-space tradeoffs. Complexity is optimized when $T=S$.

Lower bounds

Better stated in terms of a tradeoff between T and S.

Lower bounds

Better stated in terms of a tradeoff between T and S.

	Primitive	Tradeoff
[Yao 90]	Permutation f, ϵ-fraction	$T \cdot S=\tilde{\Omega}(\epsilon N)$
[Gennaro-Trevisan 00]	of inputs	for $T=O(\sqrt{\epsilon N})$
[Wee 05]		

Lower bounds

Better stated in terms of a tradeoff between T and S.

	Primitive	Tradeoff
[Yao 90] [Gennaro-Trevisan 00] [Wee 05]	Permutation f, ϵ-fraction of inputs	$T \cdot S=\tilde{\Omega}(\epsilon N)$
[DTT 10]	Permutation t, ϵ-fraction of inputs	$T \cdot S=O(\sqrt{\epsilon N})$
for any T		

Lower bounds

Better stated in terms of a tradeoff between T and S.

Primitive
 Tradeoff

Permutation f, ϵ-fraction $\quad T \cdot S=\tilde{\Omega}(\epsilon N)$
of inputs
for $T=O(\sqrt{\epsilon N})$
[Wee 05]
[DTT 10]
Permutation f, ϵ-fraction $\quad T \cdot S=\tilde{\Omega}(\epsilon N)$
of inputs
for any T
[DTT 10]
[Yao 90]
[Gennaro-Trevisan 00]

PRG $G \xlongequal{\text { def }}(f(x), P(x)) \quad T \cdot S=\Omega\left(\epsilon^{2} N\right)$

Hellman's approach for permutations

$\stackrel{f(x)}{ }$

Hellman's approach for permutations

In small cycles of size less than \sqrt{N}, compute $f(x), f(f(x)), \ldots$

Hellman's approach for permutations

In small cycles of size less than \sqrt{N}, compute $f(x), f(f(x)), \ldots$
At some point, you hit $x \cdot f^{-1}(x)$ is the penultimate point in the sequence.

Hellman's approach for permutations

In small cycles of size less than \sqrt{N}, compute $f(x), f(f(x)), \ldots$
At some point, you hit $x \cdot f^{-1}(x)$ is the penultimate point in the sequence.
Time complexity of computation is $\tilde{O}(\sqrt{N})$.

What happens to large cycles?

In large cycles, store back-links at a distance of \sqrt{N}

What happens to large cycles?

In large cycles, store back-links at a distance of \sqrt{N}
For e.g., store $(a, b),(b, c),(c, d)$ and (d, a) in a data-structure

What happens to large cycles?

Compute $f(x), f(f(x)), \ldots$ till you hit a point in the data structure, say a

What happens to large cycles?

Compute $f(x), f(f(x)), \ldots$ till you hit a point in the data structure, say a When you hit a, use back-link to go back to b

What happens to large cycles?

Now, compute $f(a), f(f(a)), \ldots$ until you hit x

What happens to large cycles?

Now, compute $f(a), f(f(a)), \ldots$ until you hit x
The penultimate point in the sequence is $f^{-1}(x)$

What happens to large cycles?

Note that all the cycles can be covered by $O(\sqrt{N})$ back-links (each back-link covering a distance of \sqrt{N})

What happens to large cycles?

Note that all the cycles can be covered by $O(\sqrt{N})$ back-links (each back-link covering a distance of \sqrt{N})
Also, the total time complexity is \sqrt{N} as you hit a "back-link" in that time

Time and space complexity for inverting permutations

- Total time $T=\tilde{O}(\sqrt{N})$ and space $S=\tilde{O}(\sqrt{N})$.

Time and space complexity for inverting permutations

- Total time $T=\tilde{O}(\sqrt{N})$ and space $S=\tilde{O}(\sqrt{N})$.
- Can be used to invert ϵ fraction of the elements in time $T=\tilde{O}(\sqrt{\epsilon N})$ and space $S=\tilde{O}(\sqrt{\epsilon N})$
- In fact, we can achieve any time (T) space (S) tradeoff such that $T \cdot S=\epsilon N$.

Abstracting the approach for permutations

- Cover the graph $(x \rightarrow f(x))$ of f by m disjoint paths of length ℓ.

Abstracting the approach for permutations

- Cover the graph $(x \rightarrow f(x))$ of f by m disjoint paths of length ℓ.
- Gives algo with $T=\tilde{O}(\ell)$ and $S=\tilde{O}(m)$ (one back-link per path).

Abstracting the approach for permutations

- Cover the graph $(x \rightarrow f(x))$ of f by m disjoint paths of length ℓ.
- Gives algo with $T=\tilde{O}(\ell)$ and $S=\tilde{O}(m)$ (one back-link per path).
- Problem: m may have to be very large because the graph $(x \rightarrow f(x))$ may not have many long and disjoint paths.

Approach for random functions [Hellman, Fiat-Naor]

- Collision probability: $\lambda=\operatorname{Pr}_{x, x^{\prime} \sim[N}\left[f(x)=f\left(x^{\prime}\right)\right]$.

Approach for random functions [Hellman, Fiat-Naor]

- Collision probability: $\lambda=\operatorname{Pr}_{x, x^{\prime} \sim[N]}\left[f(x)=f\left(x^{\prime}\right)\right]$.
- If h is a (known) permutation, then inverting $h \circ f$ suffices. If h is random and f has low collision probability, then $h \circ f$ has many long paths which are pairwise disjoint.

Approach for random functions [Hellman, Fiat-Naor]

- Collision probability: $\lambda=\operatorname{Pr}_{x, x^{\prime} \sim[N]}\left[f(x)=f\left(x^{\prime}\right)\right]$.
- If h is a (known) permutation, then inverting $h \circ f$ suffices. If h is random and f has low collision probability, then $h \circ f$ has many long paths which are pairwise disjoint.

Inverting random functions $(\lambda \approx 1 / N)$

- For independent random permutations h_{1}, \ldots, h_{r}, let $g_{i}=h_{i} \circ f$.

Inverting random functions $(\lambda \approx 1 / N)$

- For independent random permutations h_{1}, \ldots, h_{r}, let $g_{i}=h_{i} \circ f$.
- For each g_{i}, can find m disjoint paths of length ℓ as long as $m \cdot \ell^{2} \cdot \lambda \ll 1$. (each g_{i} inverts $m \cdot \ell$ elements).

Inverting random functions $(\lambda \approx 1 / N)$

- For independent random permutations h_{1}, \ldots, h_{r}, let $g_{i}=h_{i} \circ f$.
- For each g_{i}, can find m disjoint paths of length ℓ as long as $m \cdot \ell^{2} \cdot \lambda \ll 1$. (each g_{i} inverts $m \cdot \ell$ elements).
- If $g_{i}^{\prime} s$ behave independently, elements inverted by each of them are independent. Overall $O(m \cdot \ell \cdot r)$ elements inverted.

Inverting random functions $(\lambda \approx 1 / N)$

- For independent random permutations h_{1}, \ldots, h_{r}, let $g_{i}=h_{i} \circ f$.
- For each g_{i}, can find m disjoint paths of length ℓ as long as $m \cdot \ell^{2} \cdot \lambda \ll 1$. (each g_{i} inverts $m \cdot \ell$ elements).
- If $g_{i}^{\prime} s$ behave independently, elements inverted by each of them are independent. Overall $O(m \cdot \ell \cdot r)$ elements inverted.
- Choose $m, \ell, r=\tilde{O}\left(N^{1 / 3}\right)$.

$$
\begin{aligned}
& T=O(\ell \cdot r)=\tilde{O}\left(N^{2 / 3}\right) \\
& S=O(m \cdot r)=\tilde{O}\left(N^{2 / 3}\right)
\end{aligned}
$$

Inverting random functions $(\lambda \approx 1 / N)$

- For independent random permutations h_{1}, \ldots, h_{r}, let $g_{i}=h_{i} \circ f$.
- For each g_{i}, can find m disjoint paths of length ℓ as long as $m \cdot \ell^{2} \cdot \lambda \ll 1$. (each g_{i} inverts $m \cdot \ell$ elements).
- If $g_{i}^{\prime} s$ behave independently, elements inverted by each of them are independent. Overall $O(m \cdot \ell \cdot r)$ elements inverted.
- Choose $m, \ell, r=\tilde{O}\left(N^{1 / 3}\right)$.

$$
\begin{aligned}
& T=O(\ell \cdot r)=\tilde{O}\left(N^{2 / 3}\right) \\
& S=O(m \cdot r)=\tilde{O}\left(N^{2 / 3}\right)
\end{aligned}
$$

- Problems: Computing h_{1}, \ldots, h_{r} is hard. Heuristic works only for random f.

Inverting arbitrary functions [Fiat-Naor]

- Store a table of K elements with many pre-images. Collision probability restricted to the remaining inputs is $\approx 1 / K$.

Inverting arbitrary functions

[Fiat-Naor]

- Store a table of K elements with many pre-images. Collision probability restricted to the remaining inputs is $\approx 1 / K$.
- Each h_{i} only needs to be an ℓ-wise independent hash function. Also, h_{1}, \ldots, h_{r} only need to be pairwise independent.

Inverting arbitrary functions

[Fiat-Naor]

- Store a table of K elements with many pre-images. Collision probability restricted to the remaining inputs is $\approx 1 / K$.
- Each h_{i} only needs to be an ℓ-wise independent hash function. Also, h_{1}, \ldots, h_{r} only need to be pairwise independent.
- Amortize time for one evauation each of h_{1}, \ldots, h_{r} to $\tilde{O}(\ell+r)$.

$$
\begin{aligned}
& T=\left(\text { time to compute } h_{1}, \ldots, h_{r}\right) \cdot \ell=\tilde{O}\left(\ell^{2}+\ell \cdot r\right) \\
& S=\tilde{O}(K+m \cdot r)
\end{aligned}
$$

Inverting arbitrary functions
 [Fiat-Naor]

- Store a table of K elements with many pre-images. Collision probability restricted to the remaining inputs is $\approx 1 / K$.
- Each h_{i} only needs to be an ℓ-wise independent hash function. Also, h_{1}, \ldots, h_{r} only need to be pairwise independent.
- Amortize time for one evauation each of h_{1}, \ldots, h_{r} to $\tilde{O}(\ell+r)$.

$$
\begin{aligned}
& T=\left(\text { time to compute } h_{1}, \ldots, h_{r}\right) \cdot \ell=\tilde{O}\left(\ell^{2}+\ell \cdot r\right) \\
& S=\tilde{O}(K+m \cdot r)
\end{aligned}
$$

- Can again choose m, I such that $m \ell^{2} \lambda \approx m \ell^{2} / K \ll 1$. Can get

$$
T, S=\tilde{O}\left(N^{3 / 4}\right)
$$

by taking $K=\tilde{O}\left(N^{3 / 4}\right), r=\tilde{O}\left(N^{1 / 2}\right)$ and $m, \ell=\tilde{O}\left(N^{1 / 4}\right)$.

Inverting f on ϵ-fraction of inputs

- Directly scaling the Fiat-Naor result would give complexity $(\epsilon N)^{3 / 4}$ (we claimed $\epsilon^{5 / 4} N^{3 / 4}$). Improved analysis using two simple ideas.

Inverting f on ϵ-fraction of inputs

- Directly scaling the Fiat-Naor result would give complexity $(\epsilon N)^{3 / 4}$ (we claimed $\epsilon^{5 / 4} N^{3 / 4}$). Improved analysis using two simple ideas.
- First observation: If a table of size K does not invert f with probability ϵ, then the collision probability for the rest is ϵ / K.

Inverting f on ϵ-fraction of inputs

- Directly scaling the Fiat-Naor result would give complexity $(\epsilon N)^{3 / 4}$ (we claimed $\epsilon^{5 / 4} N^{3 / 4}$). Improved analysis using two simple ideas.
- First observation: If a table of size K does not invert f with probability ϵ, then the collision probability for the rest is ϵ / K.
- Second Observation: The number of elements inverted by a path is not just the path length, but the the sum of indegrees of elements in the path.

Issues in analysis

- Problem: Probablities for inversion of moderately high indegree elements do not add up (with our parameters) in the graphs for g_{1}, \ldots, g_{r}. Also, these may not be in the table.

Issues in analysis

- Problem: Probablities for inversion of moderately high indegree elements do not add up (with our parameters) in the graphs for g_{1}, \ldots, g_{r}. Also, these may not be in the table.
- Analyze these separately using a weaker bound.
- Either weaker bound suffices or get better control on collision probability.

Issues in analysis

- Problem: Probablities for inversion of moderately high indegree elements do not add up (with our parameters) in the graphs for g_{1}, \ldots, g_{r}. Also, these may not be in the table.
- Analyze these separately using a weaker bound.
- Either weaker bound suffices or get better control on collision probability.
- Problem: Value of r is $O(1)$ for some ranges of ϵ and amortization over evaluations of h_{1}, \ldots, h_{r} is not possible.

Issues in analysis

- Problem: Probablities for inversion of moderately high indegree elements do not add up (with our parameters) in the graphs for g_{1}, \ldots, g_{r}. Also, these may not be in the table.
- Analyze these separately using a weaker bound.
- Either weaker bound suffices or get better control on collision probability.
- Problem: Value of r is $O(1)$ for some ranges of ϵ and amortization over evaluations of h_{1}, \ldots, h_{r} is not possible.
- Use better construction based on lossless expanders of Capalbo et al. [CRVW02] and an observation of Seigel [Seigel89].
- Take $\ell^{o(1)}$ time per evaluation.

Issues in analysis

- Problem: Probablities for inversion of moderately high indegree elements do not add up (with our parameters) in the graphs for g_{1}, \ldots, g_{r}. Also, these may not be in the table.
- Analyze these separately using a weaker bound.
- Either weaker bound suffices or get better control on collision probability.
- Problem: Value of r is $O(1)$ for some ranges of ϵ and amortization over evaluations of h_{1}, \ldots, h_{r} is not possible.
- Use better construction based on lossless expanders of Capalbo et al. [CRVW02] and an observation of Seigel [Seigel89].
- Take $\ell^{o(1)}$ time per evaluation.
- Final complexity: $T, S=\begin{array}{ll}\tilde{O}(\sqrt{\epsilon N}) & \epsilon \leq N^{-1 / 3} \\ \tilde{O}\left(\epsilon^{5 / 4} N^{3 / 4}\right) & \epsilon \geq N^{-1 / 3}\end{array}$

Lower bound for inverting permutations

- Given A inverting f on ϵ fraction of inputs in time T and space S, want to show $T \cdot S=\Omega(\epsilon N)$.

Lower bound for inverting permutations

- Given A inverting f on ϵ fraction of inputs in time T and space S, want to show $T \cdot S=\Omega(\epsilon N)$.
- Showed by [Ya090] for $\epsilon=1$ and [GT00], [Wee05] when $T=O(\sqrt{\epsilon N})$.

Lower bound for inverting permutations

- Given A inverting f on ϵ fraction of inputs in time T and space S, want to show $T \cdot S=\Omega(\epsilon N)$.
- Showed by [Ya090] for $\epsilon=1$ and [GT00], [Wee05] when $T=O(\sqrt{\epsilon N})$.
- Give a simpler, "randomized" proof that works for all T. Also extends to lower bounds for PRGs.

Lower bound for inverting permutations

- Given A inverting f on ϵ fraction of inputs in time T and space S, want to show $T \cdot S=\Omega(\epsilon N)$.
- Showed by [Yao90] for $\epsilon=1$ and [GT00], [Wee05] when $T=O(\sqrt{\epsilon N})$.
- Give a simpler, "randomized" proof that works for all T. Also extends to lower bounds for PRGs.
- As in [GT00], show that using A, can encode f with $\approx \log (N!)-\phi(N, T)+S$ bits for some ϕ. Thus, $S>\phi(N, T)$ giving the tradeoff between T and S.

Lower bound for inverting permutations

- Given A inverting f on ϵ fraction of inputs in time T and space S, want to show $T \cdot S=\Omega(\epsilon N)$.
- Showed by [Ya090] for $\epsilon=1$ and [GT00], [Wee05] when $T=O(\sqrt{\epsilon N})$.
- Give a simpler, "randomized" proof that works for all T. Also extends to lower bounds for PRGs.
- As in [GT00], show that using A, can encode f with $\approx \log (N!)-\phi(N, T)+S$ bits for some ϕ. Thus, $S>\phi(N, T)$ giving the tradeoff between T and S.
- We show that using A, one can encode f using $\approx \log (N!)-\frac{\epsilon N}{100 T}+S$ bits giving us the desired tradeoff.

Intuition for the encoding

[N]

Intuition for the encoding

- A inverts G correctly.
- For all $x \in G, A$ does not query any element in G.

Intuition for the encoding

- A inverts G correctly.
- For all $x \in G, A$ does not query any element in G.

Intuition for the encoding

Intuition for the encoding

- Complexity of encoding :=
- Size of G
- Specify set $f(G)$
- Specify the map f^{-1} on $[N]-f(G)$

Intuition for the encoding

- Complexity of encoding :=
- Size of G
- Specify set $f(G)$
- Specify the map f^{-1} on $[N]-f(G)$
- This information along with A suffices to specify f entirely

Intuition for the encoding

Intuition for the encoding

- Total complexity of encoding : $2 \log \binom{N}{|G|}+\log (N-|G|)$!
- Putting $|G|=\frac{\epsilon N}{100 T}$, we get that $S+\frac{\epsilon N}{T} \log \left(T^{2} / \epsilon^{2} N\right) \geq 0$

Upshot of the analysis

- Provided $T \leq \epsilon \sqrt{N}, T S=\tilde{\Omega}(\epsilon N)$

Upshot of the analysis

- Provided $T \leq \epsilon \sqrt{N}, T S=\tilde{\Omega}(\epsilon N)$
- This was the analysis by Gennaro and Trevisan [GT00]

Upshot of the analysis

- Provided $T \leq \epsilon \sqrt{N}, T S=\tilde{\Omega}(\epsilon N)$
- This was the analysis by Gennaro and Trevisan [GT00]
- The analysis was improved by Wee [Wee05] who showed $T S=\tilde{\Omega}(\epsilon N)$ provided $T \leq \sqrt{\epsilon N}$

Upshot of the analysis

- Provided $T \leq \epsilon \sqrt{N}, T S=\tilde{\Omega}(\epsilon N)$
- This was the analysis by Gennaro and Trevisan [GT00]
- The analysis was improved by Wee [Wee05] who showed $T S=\tilde{\Omega}(\epsilon N)$ provided $T \leq \sqrt{\epsilon N}$
- There is still a gap because "deterministically" deciding on G is very expensive.

Randomized encoding

Randomized encoding

- Choose R to be a set of size $N / 10 T$ uniformly at random.

Randomized encoding

- Choose R to be a set of size $N / 10 T$ uniformly at random.
- With high probability, this contains a set G of size $\frac{\epsilon N}{100 T}$ such that
- A inverts G correctly.
- For all $x \in G, A$ does not query any element in R

Randomized encoding

Randomized encoding

- Some savings in the analysis as the identity of R is already known
- Once we know f outside R, we need to know " G in R " as opposed to " G in $[\mathrm{N}]$ " - main source of saving

Randomized encoding

- Some savings in the analysis as the identity of R is already known
- Once we know f outside R, we need to know " G in R " as opposed to "G in [N]" - main source of saving
- In all, we can describe the permutation in $\log (N!)-\epsilon N / 100 T+S$ bits which gives us the result.

Conclusions

- Non-uniform attacks can do better than uniform attacks on one-way functions and PRGs

Conclusions

- Non-uniform attacks can do better than uniform attacks on one-way functions and PRGs
- The best provable upper bound for one-way functions on all inputs remains $N^{3 / 4}$ and $N^{2 / 3}$ is the best for "Hellman"-style arguments (Barkan, Biham and Shamir)

Conclusions

- Non-uniform attacks can do better than uniform attacks on one-way functions and PRGs
- The best provable upper bound for one-way functions on all inputs remains $N^{3 / 4}$ and $N^{2 / 3}$ is the best for "Hellman"-style arguments (Barkan, Biham and Shamir)
- Techniques for proving lower bounds do not seem to do any better for one-way functions than permutations i.e. $\Omega\left(N^{1 / 2}\right)$.

Thank You

Questions?

