Time space tradeoffs for attacks against one-way functions and PRGs

Anindya De

University of California, Berkeley

Joint work with Luca Trevisan - UC Berkeley and Stanford University Madhur Tulsiani - Princeton University

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Can "brute-force" attacks on cryptographic primitives be improved upon?

- Can "brute-force" attacks on cryptographic primitives be improved upon?
 - Recover a key of length k in time less than 2^k .

- Can "brute-force" attacks on cryptographic primitives be improved upon?
 - Recover a key of length k in time less than 2^k .
 - In time t, recover key with probability better than $t/2^k$.

- Can "brute-force" attacks on cryptographic primitives be improved upon?
 - Recover a key of length k in time less than 2^k .
 - In time *t*, recover key with probability better than $t/2^k$.
- Brute force : optimal when restricted to uniform algorithms

- Can "brute-force" attacks on cryptographic primitives be improved upon?
 - Recover a key of length k in time less than 2^k .
 - In time t, recover key with probability better than $t/2^k$.
- Brute force : optimal when restricted to uniform algorithms
- Are better (non-uniform) attacks possible against:
 - one-way functions?
 - pseudo-random generators?

Definitions of primitives

• $N = 2^n$, $[N] \cong \{0, 1\}^n$.

Definitions of primitives

- $N = 2^n$, $[N] \cong \{0, 1\}^n$.
- One-way function: *f* : [*N*] → [*N*] is (*t*, *ε*)-one way if for every algorithm *A* of complexity ≤ *t*

$$\Pr_{x \sim \{0,1\}^n} \left[A^f(f(x)) = x' \mid f(x') = f(x) \right] \le \epsilon$$

Definitions of primitives

- $N = 2^n$, $[N] \cong \{0, 1\}^n$.
- One-way function: *f* : [*N*] → [*N*] is (*t*, *ε*)-one way if for every algorithm *A* of complexity ≤ *t*

$$\Pr_{x \sim \{0,1\}^n} \left[A^f(f(x)) = x' \mid f(x') = f(x) \right] \le \epsilon$$

PRG: G : [N] → [2N] is a (t, ε)-secure PRG if for every algorithm A of complexity ≤ t

$$\left| \Pr_{x \sim [N]} [A^G(G(x)) = 1] - \Pr_{y \sim [2N]} [A^G(y) = 1] \right| \le \epsilon$$

Measure of Complexity

 complexity ≠ time, as A may compute f⁻¹ in O(log N) time by storing all inverses.

Measure of Complexity

- complexity ≠ time, as A may compute f⁻¹ in O(log N) time by storing all inverses.
- complexity = pre-computed advice + running time.

Measure of Complexity

- complexity ≠ time, as A may compute f⁻¹ in O(log N) time by storing all inverses.
- complexity = pre-computed advice + running time.
- Can be implemented on a RAM machine with time and space *t*.
- Similar to circuit complexity.

	Primitive	Complexity
[Hellman 80]	Permutation f	$ ilde{O}(\sqrt{N})$

	Primitive	Complexity
[Hellman 80]	Permutation f	$\tilde{O}(\sqrt{N})$
[Hellman 80]	Random function f (heuristic)	$\tilde{O}(N^{2/3})$

	Primitive	Complexity
[Hellman 80]	Permutation f	$\tilde{O}(\sqrt{N})$
[Hellman 80]	Random function <i>f</i> (heuristic)	$ ilde{O}(N^{2/3})$
[Fiat-Naor 99]	Any f, all inputs	$\tilde{O}(N^{3/4})$

	Primitive	Complexity
[Hellman 80]	Permutation f	$\tilde{O}(\sqrt{N})$
[Hellman 80]	Random function f (heuristic)	$\tilde{O}(N^{2/3})$
[Fiat-Naor 99]	Any f, all inputs	$ ilde{O}(N^{3/4})$
[DTT 10]	Any f , ϵ -fraction of inputs	$egin{array}{ll} ilde{\mathcal{O}}(\sqrt{\epsilon \mathcal{N}}) & \epsilon \leq \mathcal{N}^{-1/3} \ ilde{\mathcal{O}}(\epsilon^{5/4}\mathcal{N}^{3/4}) & \epsilon \geq \mathcal{N}^{-1/3} \end{array}$

	Primitive	Complexity
[Hellman 80]	Permutation f	$\tilde{O}(\sqrt{N})$
[Hellman 80]	Random function <i>f</i> (heuristic)	$\tilde{O}(N^{2/3})$
[Fiat-Naor 99]	Any f, all inputs	$\tilde{O}(N^{3/4})$
[DTT 10]	Any f , ϵ -fraction of inputs	$egin{array}{ll} ilde{\mathcal{O}}(\sqrt{\epsilon \mathcal{N}}) & \epsilon \leq \mathcal{N}^{-1/3} \ ilde{\mathcal{O}}(\epsilon^{5/4}\mathcal{N}^{3/4}) & \epsilon \geq \mathcal{N}^{-1/3} \end{array}$
[ACR 97]	$PRG\ G(x) \stackrel{\text{def}}{=} (f(x), P(x))$	$ ilde{O}(\epsilon^2 N)$

	Primitive	Complexity
[Hellman 80]	Permutation f	$\tilde{O}(\sqrt{N})$
[Hellman 80]	Random function f (heuristic)	$\tilde{O}(N^{2/3})$
[Fiat-Naor 99]	Any f, all inputs	$\tilde{O}(N^{3/4})$
[DTT 10]	Any f , ϵ -fraction of inputs	$egin{array}{lll} ilde{\mathcal{O}}(\sqrt{\epsilon \mathcal{N}}) & \epsilon \leq \mathcal{N}^{-1/3} \ ilde{\mathcal{O}}(\epsilon^{5/4}\mathcal{N}^{3/4}) & \epsilon \geq \mathcal{N}^{-1/3} \end{array}$
[ACR 97]	$PRG\ G(x) \stackrel{\text{def}}{=} (f(x), P(x))$	$\tilde{O}(\epsilon^2 N)$
[DTT 10]	Any PRG	$\tilde{O}(\epsilon^2 N)$

	Primitive	Complexity
[Hellman 80]	Permutation f	$\tilde{O}(\sqrt{N})$
[Hellman 80]	Random function f (heuristic)	$\tilde{O}(N^{2/3})$
[Fiat-Naor 99]	Any f, all inputs	$\tilde{O}(N^{3/4})$
[DTT 10]	Any f , ϵ -fraction of inputs	$egin{array}{ll} ilde{O}(\sqrt{\epsilon N}) & \epsilon \leq N^{-1/3} \ ilde{O}(\epsilon^{5/4}N^{3/4}) & \epsilon \geq N^{-1/3} \end{array}$
[ACR 97]	$PRG\ G(x) \stackrel{\text{def}}{=} (f(x), P(x))$	$\tilde{O}(\epsilon^2 N)$
[DTT 10]	Any PRG	$ ilde{O}(\epsilon^2 N)$

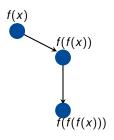
All above results are actually stated as time-space tradeoffs. Complexity is optimized when T = S.

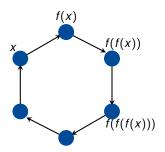
	Primitive	Tradeoff
[Yao 90]	Permutation f , ϵ -fraction	$T \cdot S = \tilde{\Omega}(\epsilon N)$
[Gennaro-Trevisan 00]	of inputs	for $T = O(\sqrt{\epsilon N})$
[Wee 05]	01 11/2010	O(V C V)

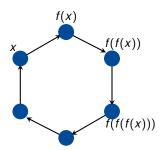
	Primitive	Tradeoff
[Yao 90] [Gennaro-Trevisan 00] [Wee 05]	Permutation f , ϵ -fraction of inputs	$T \cdot S = \tilde{\Omega}(\epsilon N)$ for $T = O(\sqrt{\epsilon N})$
[DTT 10]	Permutation f , ϵ -fraction of inputs	$m{T}\cdotm{S}= ilde{\Omega}(\epsilonm{N})$ for any $m{T}$

	Primitive	Tradeoff
[Yao 90] [Gennaro-Trevisan 00] [Wee 05]	Permutation f , ϵ -fraction of inputs	$T \cdot S = \tilde{\Omega}(\epsilon N)$ for $T = O(\sqrt{\epsilon N})$
[DTT 10]	Permutation f , ϵ -fraction of inputs	$T \cdot S = ilde{\Omega}(\epsilon N)$ for any T
[DTT 10]	$PRG \ G \stackrel{\text{def}}{=} (f(x), P(x))$	$T \cdot S = \Omega(\epsilon^2 N)$

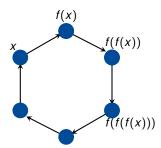
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡





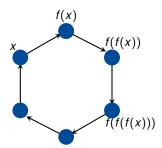


In small cycles of size less than \sqrt{N} , compute f(x), f(f(x)), ...



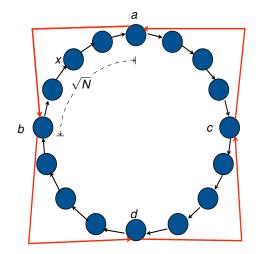
In small cycles of size less than \sqrt{N} , compute f(x), f(f(x)), ...

At some point, you hit x. $f^{-1}(x)$ is the penultimate point in the sequence.

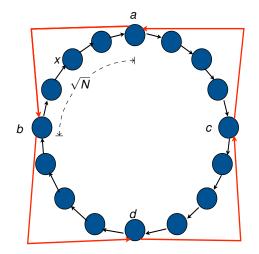


In small cycles of size less than \sqrt{N} , compute f(x), f(f(x)), ...

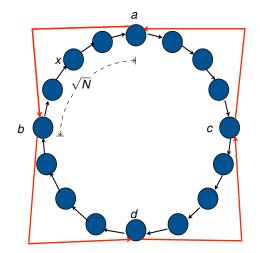
At some point, you hit *x*. $f^{-1}(x)$ is the penultimate point in the sequence. Time complexity of computation is $\tilde{O}(\sqrt{N})$.



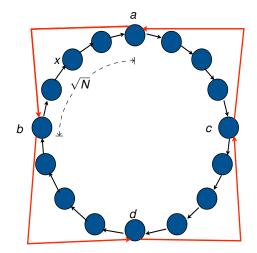
In large cycles, store back-links at a distance of \sqrt{N}



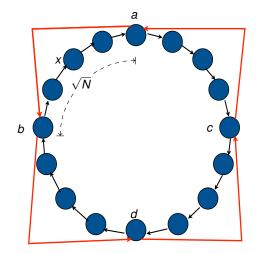
In large cycles, store back-links at a distance of \sqrt{N} For e.g., store (a, b), (b, c), (c, d) and (d, a) in a data-structure



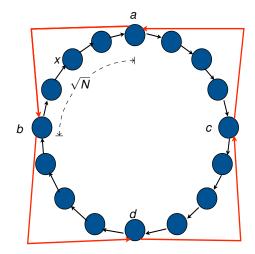
Compute f(x), f(f(x)), ... till you hit a point in the data structure, say a



Compute f(x), f(f(x)), ... till you hit a point in the data structure, say *a* When you hit *a*, use back-link to go back to *b*

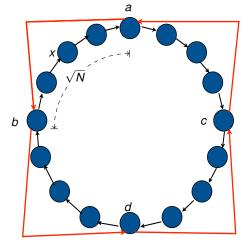


Now, compute f(a), f(f(a)), ... until you hit x



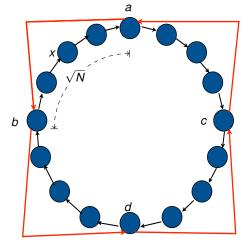
Now, compute f(a), f(f(a)), ... until you hit *x* The penultimate point in the sequence is $f^{-1}(x)$

What happens to large cycles?



Note that all the cycles can be covered by $O(\sqrt{N})$ back-links (each back-link covering a distance of \sqrt{N})

What happens to large cycles?



Note that all the cycles can be covered by $O(\sqrt{N})$ back-links (each back-link covering a distance of \sqrt{N}) Also, the total time complexity is \sqrt{N} as you hit a "back-link" in that time

10/26

Time and space complexity for inverting permutations

• Total time $T = \tilde{O}(\sqrt{N})$ and space $S = \tilde{O}(\sqrt{N})$.

Time and space complexity for inverting permutations

- Total time $T = \tilde{O}(\sqrt{N})$ and space $S = \tilde{O}(\sqrt{N})$.
- Can be used to invert ϵ fraction of the elements in time $T = \tilde{O}(\sqrt{\epsilon N})$ and space $S = \tilde{O}(\sqrt{\epsilon N})$
- In fact, we can achieve any time (*T*) space (*S*) tradeoff such that *T* · *S* = *ϵN*.

Abstracting the approach for permutations

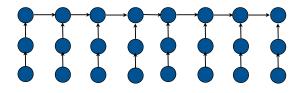
 Cover the graph (x → f(x)) of f by m disjoint paths of length ℓ.

Abstracting the approach for permutations

- Cover the graph (x → f(x)) of f by m disjoint paths of length ℓ.
- Gives algo with $T = \tilde{O}(\ell)$ and $S = \tilde{O}(m)$ (one back-link per path).

Abstracting the approach for permutations

- Cover the graph (x → f(x)) of f by m disjoint paths of length ℓ.
- Gives algo with $T = \tilde{O}(\ell)$ and $S = \tilde{O}(m)$ (one back-link per path).
- Problem: *m* may have to be very large because the graph (x → f(x)) may not have many long and disjoint paths.



Approach for random functions [Hellman, Fiat-Naor]

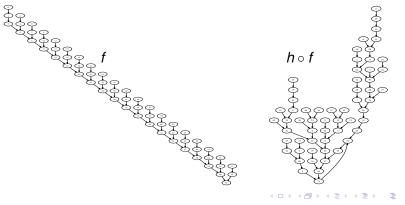
• Collision probability: $\lambda = \Pr_{x,x' \sim [N]} [f(x) = f(x')].$

Approach for random functions [Hellman, Fiat-Naor]

- Collision probability: $\lambda = \Pr_{x,x' \sim [N]} [f(x) = f(x')].$
- If *h* is a (known) permutation, then inverting *h* ∘ *f* suffices. If *h* is random and *f* has low collision probability, then *h* ∘ *f* has many long paths which are pairwise disjoint.

Approach for random functions [Hellman, Fiat-Naor]

- Collision probability: $\lambda = \Pr_{x,x' \sim [N]} [f(x) = f(x')].$
- If *h* is a (known) permutation, then inverting *h* ∘ *f* suffices. If *h* is random and *f* has low collision probability, then *h* ∘ *f* has many long paths which are pairwise disjoint.



• For independent random permutations h_1, \ldots, h_r , let $g_i = h_i \circ f$.

- For independent random permutations h_1, \ldots, h_r , let $g_i = h_i \circ f$.
- For each g_i, can find m disjoint paths of length ℓ as long as m · ℓ² · λ ≪ 1. (each g_i inverts m · ℓ elements).

- For independent random permutations h_1, \ldots, h_r , let $g_i = h_i \circ f$.
- For each g_i, can find m disjoint paths of length ℓ as long as m · ℓ² · λ ≪ 1. (each g_i inverts m · ℓ elements).
- If g'_is behave independently, elements inverted by each of them are independent. Overall O(m · ℓ · r) elements inverted.

- For independent random permutations h_1, \ldots, h_r , let $g_i = h_i \circ f$.
- For each g_i, can find m disjoint paths of length ℓ as long as m · ℓ² · λ ≪ 1. (each g_i inverts m · ℓ elements).
- If g'_is behave independently, elements inverted by each of them are independent. Overall O(m · ℓ · r) elements inverted.

• Choose
$$m, \ell, r = \tilde{O}(N^{1/3})$$
.

$$T = O(\ell \cdot r) = \tilde{O}(N^{2/3})$$

$$S = O(m \cdot r) = \tilde{O}(N^{2/3})$$

イロン 不良 とくほど 不良 とうほう

14/26

- For independent random permutations h_1, \ldots, h_r , let $g_i = h_i \circ f$.
- For each g_i, can find m disjoint paths of length ℓ as long as m · ℓ² · λ ≪ 1. (each g_i inverts m · ℓ elements).
- If g'_is behave independently, elements inverted by each of them are independent. Overall O(m · ℓ · r) elements inverted.

• Choose
$$m, \ell, r = \tilde{O}(N^{1/3})$$
.
 $T = O(\ell \cdot r) = \tilde{O}(N^{2/3})$
 $S = O(m \cdot r) = \tilde{O}(N^{2/3})$

Problems: Computing h₁,..., h_r is hard. Heuristic works only for random f.

• Store a table of *K* elements with many pre-images. Collision probability restricted to the remaining inputs is $\approx 1/K$.

- Store a table of *K* elements with many pre-images. Collision probability restricted to the remaining inputs is $\approx 1/K$.
- Each *h_i* only needs to be an *ℓ*-wise independent hash function.
 Also, *h*₁,..., *h_r* only need to be pairwise independent.

- Store a table of *K* elements with many pre-images. Collision probability restricted to the remaining inputs is $\approx 1/K$.
- Each *h_i* only needs to be an *ℓ*-wise independent hash function.
 Also, *h*₁,..., *h_r* only need to be pairwise independent.
- Amortize time for one evaluation each of h_1, \ldots, h_r to $\tilde{O}(\ell + r)$.

 $T = (\text{time to compute } h_1, \dots, h_r) \cdot \ell = \tilde{O}(\ell^2 + \ell \cdot r)$ $S = \tilde{O}(K + m \cdot r)$

- Store a table of *K* elements with many pre-images. Collision probability restricted to the remaining inputs is $\approx 1/K$.
- Each *h_i* only needs to be an *ℓ*-wise independent hash function.
 Also, *h*₁,..., *h_r* only need to be pairwise independent.
- Amortize time for one evaluation each of h_1, \ldots, h_r to $\tilde{O}(\ell + r)$.

 $T = (\text{time to compute } h_1, \dots, h_r) \cdot \ell = \tilde{O}(\ell^2 + \ell \cdot r)$ $S = \tilde{O}(K + m \cdot r)$

• Can again choose m, I such that $m\ell^2 \lambda \approx m\ell^2/K \ll 1$. Can get

 $T, S = \tilde{O}(N^{3/4})$

by taking $K = \tilde{O}(N^{3/4}), r = \tilde{O}(N^{1/2})$ and $m, \ell = \tilde{O}(N^{1/4}).$

Inverting f on ϵ -fraction of inputs

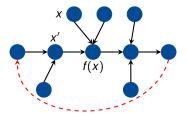
• Directly scaling the Fiat-Naor result would give complexity $(\epsilon N)^{3/4}$ (we claimed $\epsilon^{5/4} N^{3/4}$). Improved analysis using two simple ideas.

Inverting f on ϵ -fraction of inputs

- Directly scaling the Fiat-Naor result would give complexity $(\epsilon N)^{3/4}$ (we claimed $\epsilon^{5/4} N^{3/4}$). Improved analysis using two simple ideas.
- First observation: If a table of size K does not invert f with probability ε, then the collision probability for the rest is ε/K.

Inverting f on ϵ -fraction of inputs

- Directly scaling the Fiat-Naor result would give complexity $(\epsilon N)^{3/4}$ (we claimed $\epsilon^{5/4} N^{3/4}$). Improved analysis using two simple ideas.
- First observation: If a table of size K does not invert f with probability ε, then the collision probability for the rest is ε/K.
- Second Observation: The number of elements inverted by a path is not just the path length, but the the sum of indegrees of elements in the path.



 Problem: Probabilities for inversion of moderately high indegree elements do not add up (with our parameters) in the graphs for g₁,..., g_r. Also, these may not be in the table.

- Problem: Probablities for inversion of moderately high indegree elements do not add up (with our parameters) in the graphs for
 - g_1, \ldots, g_r . Also, these may not be in the table.
 - Analyze these separately using a weaker bound.
 - Either weaker bound suffices or get better control on collision probability.

- Problem: Probablities for inversion of moderately high indegree elements do not add up (with our parameters) in the graphs for
 - g_1, \ldots, g_r . Also, these may not be in the table.
 - Analyze these separately using a weaker bound.
 - Either weaker bound suffices or get better control on collision probability.
- Problem: Value of r is O(1) for some ranges of
 e and amortization over evaluations of *h*₁,..., *h*_r is not possible.

- Problem: Probablities for inversion of moderately high indegree elements do not add up (with our parameters) in the graphs for
 - g_1, \ldots, g_r . Also, these may not be in the table.
 - Analyze these separately using a weaker bound.
 - Either weaker bound suffices or get better control on collision probability.
- Problem: Value of *r* is *O*(1) for some ranges of *e* and amortization over evaluations of *h*₁,..., *h*_{*r*} is not possible.
 - Use better construction based on lossless expanders of Capalbo et al. [CRVW02] and an observation of Seigel [Seigel89].
 - Take $\ell^{o(1)}$ time per evaluation.

- Problem: Probablities for inversion of moderately high indegree elements do not add up (with our parameters) in the graphs for
 - g_1, \ldots, g_r . Also, these may not be in the table.
 - Analyze these separately using a weaker bound.
 - Either weaker bound suffices or get better control on collision probability.
- Problem: Value of *r* is *O*(1) for some ranges of *e* and amortization over evaluations of *h*₁,..., *h*_{*r*} is not possible.
 - Use better construction based on lossless expanders of Capalbo et al. [CRVW02] and an observation of Seigel [Seigel89].
 - Take $\ell^{o(1)}$ time per evaluation.
- Final complexity: $T, S = \begin{array}{cc} \tilde{O}(\sqrt{\epsilon N}) & \epsilon \leq N^{-1/3} \\ \tilde{O}(\epsilon^{5/4}N^{3/4}) & \epsilon \geq N^{-1/3} \end{array}$

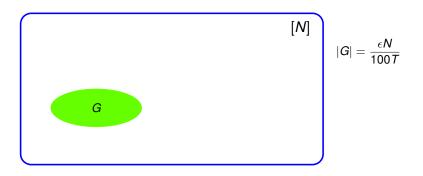
 Given A inverting f on ε fraction of inputs in time T and space S, want to show T · S = Ω(εN).

- Given A inverting f on ε fraction of inputs in time T and space S, want to show T · S = Ω(εN).
- Showed by [Yao90] for $\epsilon = 1$ and [GT00], [Wee05] when $T = O(\sqrt{\epsilon N})$.

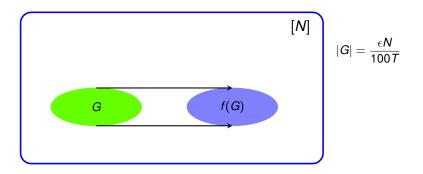
- Given A inverting f on ε fraction of inputs in time T and space S, want to show T · S = Ω(εN).
- Showed by [Yao90] for $\epsilon = 1$ and [GT00], [Wee05] when $T = O(\sqrt{\epsilon N})$.
- Give a simpler, "randomized" proof that works for all *T*. Also extends to lower bounds for PRGs.

- Given A inverting f on ε fraction of inputs in time T and space S, want to show T · S = Ω(εN).
- Showed by [Yao90] for $\epsilon = 1$ and [GT00], [Wee05] when $T = O(\sqrt{\epsilon N})$.
- Give a simpler, "randomized" proof that works for all *T*. Also extends to lower bounds for PRGs.
- As in [GT00], show that using *A*, can encode *f* with
 ≈ log(*N*!) φ(*N*, *T*) + *S* bits for some φ. Thus, *S* > φ(*N*, *T*)
 giving the tradeoff between *T* and *S*.

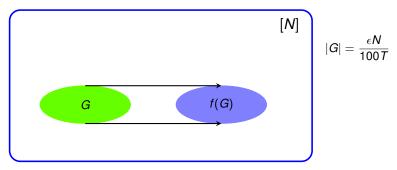
- Given A inverting f on ε fraction of inputs in time T and space S, want to show T · S = Ω(εN).
- Showed by [Yao90] for $\epsilon = 1$ and [GT00], [Wee05] when $T = O(\sqrt{\epsilon N})$.
- Give a simpler, "randomized" proof that works for all *T*. Also extends to lower bounds for PRGs.
- As in [GT00], show that using *A*, can encode *f* with
 ≈ log(*N*!) φ(*N*, *T*) + *S* bits for some φ. Thus, *S* > φ(*N*, *T*)
 giving the tradeoff between *T* and *S*.
- We show that using *A*, one can encode *f* using $\approx \log(N!) \frac{\epsilon N}{1007} + S$ bits giving us the desired tradeoff.

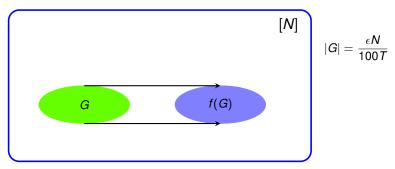


- A inverts G correctly.
- For all $x \in G$, A does not query any element in G.

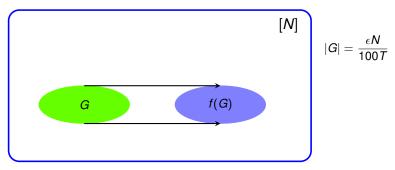


- A inverts G correctly.
- For all $x \in G$, A does not query any element in G.

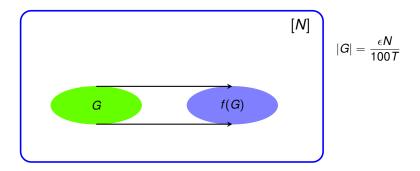


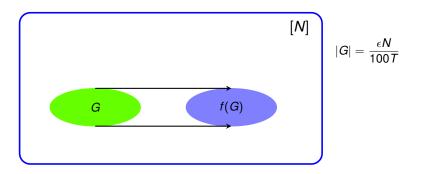


- Complexity of encoding :=
 - Size of G
 - Specify set f(G)
 - Specify the map f^{-1} on [N] f(G)



- Complexity of encoding :=
 - Size of G
 - Specify set f(G)
 - Specify the map f^{-1} on [N] f(G)
- This information along with A suffices to specify f entirely





- Total complexity of encoding : 2 log (^N_{|G|}) + log(N |G|)!
- Putting $|G| = \frac{\epsilon N}{1007}$, we get that $S + \frac{\epsilon N}{T} \log(T^2/\epsilon^2 N) \ge 0$

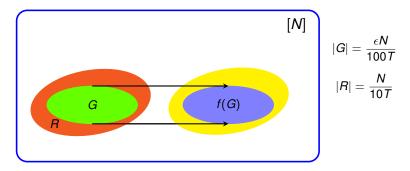
• Provided $T \leq \epsilon \sqrt{N}$, $TS = \tilde{\Omega}(\epsilon N)$

- Provided $T \leq \epsilon \sqrt{N}$, $TS = \tilde{\Omega}(\epsilon N)$
- This was the analysis by Gennaro and Trevisan [GT00]

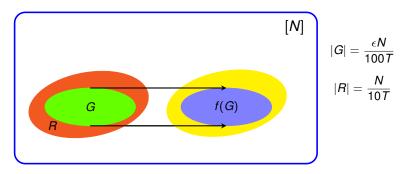
- Provided $T \leq \epsilon \sqrt{N}$, $TS = \tilde{\Omega}(\epsilon N)$
- This was the analysis by Gennaro and Trevisan [GT00]
- The analysis was improved by Wee [Wee05] who showed $TS = \tilde{\Omega}(\epsilon N)$ provided $T \leq \sqrt{\epsilon N}$

- Provided $T \leq \epsilon \sqrt{N}$, $TS = \tilde{\Omega}(\epsilon N)$
- This was the analysis by Gennaro and Trevisan [GT00]
- The analysis was improved by Wee [Wee05] who showed $TS = \tilde{\Omega}(\epsilon N)$ provided $T \leq \sqrt{\epsilon N}$
- There is still a gap because "deterministically" deciding on *G* is very expensive.

Randomized encoding

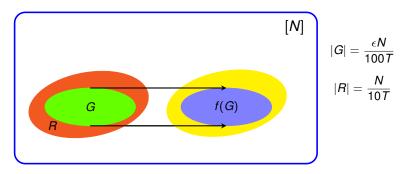


Randomized encoding

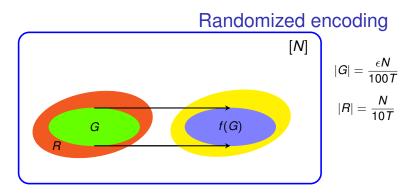


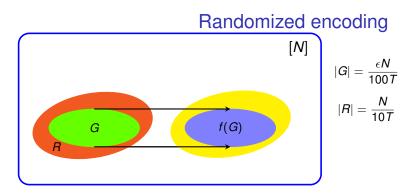
• Choose *R* to be a set of size N/10T uniformly at random.

Randomized encoding

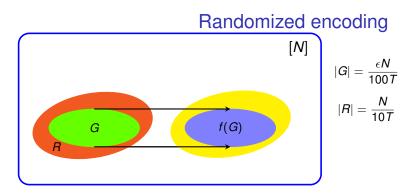


- Choose *R* to be a set of size *N*/10*T* uniformly at random.
- With high probability, this contains a set G of size $\frac{\epsilon N}{1007}$ such that
 - A inverts G correctly.
 - For all $x \in G$, A does not query any element in R





- Some savings in the analysis as the identity of *R* is already known
- Once we know f outside R, we need to know "G in R" as opposed to "G in [N]" - main source of saving



- Some savings in the analysis as the identity of *R* is already known
- Once we know *f* outside *R*, we need to know "G in R" as opposed to "G in [N]" main source of saving
- In all, we can describe the permutation in $log(N!) \epsilon N/100T + S$ bits which gives us the result.

 Non-uniform attacks can do better than uniform attacks on one-way functions and PRGs

Conclusions

- Non-uniform attacks can do better than uniform attacks on one-way functions and PRGs
- The best provable upper bound for one-way functions on all inputs remains $N^{3/4}$ and $N^{2/3}$ is the best for "Hellman"-style arguments (Barkan, Biham and Shamir)

Conclusions

- Non-uniform attacks can do better than uniform attacks on one-way functions and PRGs
- The best provable upper bound for one-way functions on all inputs remains $N^{3/4}$ and $N^{2/3}$ is the best for "Hellman"-style arguments (Barkan, Biham and Shamir)
- Techniques for proving lower bounds do not seem to do any better for one-way functions than permutations i.e. Ω(N^{1/2}).

Thank You

Questions?