
Time space tradeoffs for attacks against
one-way functions and PRGs

Anindya De

University of California, Berkeley

Joint work with
Luca Trevisan - UC Berkeley and Stanford University

Madhur Tulsiani - Princeton University

0 / 26

What is this talk about?

• Can “brute-force” attacks on cryptographic primitives be
improved upon?

• Recover a key of length k in time less than 2k .
• In time t , recover key with probability better than t/2k .

• Brute force : optimal when restricted to uniform algorithms

• Are better (non-uniform) attacks possible against:
• one-way functions?
• pseudo-random generators?

1 / 26

What is this talk about?

• Can “brute-force” attacks on cryptographic primitives be
improved upon?
• Recover a key of length k in time less than 2k .

• In time t , recover key with probability better than t/2k .

• Brute force : optimal when restricted to uniform algorithms

• Are better (non-uniform) attacks possible against:
• one-way functions?
• pseudo-random generators?

1 / 26

What is this talk about?

• Can “brute-force” attacks on cryptographic primitives be
improved upon?
• Recover a key of length k in time less than 2k .
• In time t , recover key with probability better than t/2k .

• Brute force : optimal when restricted to uniform algorithms

• Are better (non-uniform) attacks possible against:
• one-way functions?
• pseudo-random generators?

1 / 26

What is this talk about?

• Can “brute-force” attacks on cryptographic primitives be
improved upon?
• Recover a key of length k in time less than 2k .
• In time t , recover key with probability better than t/2k .

• Brute force : optimal when restricted to uniform algorithms

• Are better (non-uniform) attacks possible against:
• one-way functions?
• pseudo-random generators?

1 / 26

What is this talk about?

• Can “brute-force” attacks on cryptographic primitives be
improved upon?
• Recover a key of length k in time less than 2k .
• In time t , recover key with probability better than t/2k .

• Brute force : optimal when restricted to uniform algorithms

• Are better (non-uniform) attacks possible against:
• one-way functions?
• pseudo-random generators?

1 / 26

Definitions of primitives

• N = 2n, [N] ∼= {0,1}n.

• One-way function: f : [N]→ [N] is (t , ε)-one way if for every
algorithm A of complexity ≤ t

Pr
x∼{0,1}n

[
Af (f (x)) = x ′ | f (x ′) = f (x)

]
≤ ε

• PRG: G : [N]→ [2N] is a (t , ε)-secure PRG if for every
algorithm A of complexity ≤ t∣∣∣∣ Pr

x∼[N]
[AG(G(x)) = 1]− Pr

y∼[2N]
[AG(y) = 1]

∣∣∣∣ ≤ ε

2 / 26

Definitions of primitives

• N = 2n, [N] ∼= {0,1}n.

• One-way function: f : [N]→ [N] is (t , ε)-one way if for every
algorithm A of complexity ≤ t

Pr
x∼{0,1}n

[
Af (f (x)) = x ′ | f (x ′) = f (x)

]
≤ ε

• PRG: G : [N]→ [2N] is a (t , ε)-secure PRG if for every
algorithm A of complexity ≤ t∣∣∣∣ Pr

x∼[N]
[AG(G(x)) = 1]− Pr

y∼[2N]
[AG(y) = 1]

∣∣∣∣ ≤ ε

2 / 26

Definitions of primitives

• N = 2n, [N] ∼= {0,1}n.

• One-way function: f : [N]→ [N] is (t , ε)-one way if for every
algorithm A of complexity ≤ t

Pr
x∼{0,1}n

[
Af (f (x)) = x ′ | f (x ′) = f (x)

]
≤ ε

• PRG: G : [N]→ [2N] is a (t , ε)-secure PRG if for every
algorithm A of complexity ≤ t∣∣∣∣ Pr

x∼[N]
[AG(G(x)) = 1]− Pr

y∼[2N]
[AG(y) = 1]

∣∣∣∣ ≤ ε

2 / 26

Measure of Complexity

• complexity 6= time, as A may compute f−1 in O(log N) time
by storing all inverses.

• complexity = pre-computed advice + running time.

• Can be implemented on a RAM machine with time and
space t .

• Similar to circuit complexity.

3 / 26

Measure of Complexity

• complexity 6= time, as A may compute f−1 in O(log N) time
by storing all inverses.

• complexity = pre-computed advice + running time.

• Can be implemented on a RAM machine with time and
space t .

• Similar to circuit complexity.

3 / 26

Measure of Complexity

• complexity 6= time, as A may compute f−1 in O(log N) time
by storing all inverses.

• complexity = pre-computed advice + running time.

• Can be implemented on a RAM machine with time and
space t .

• Similar to circuit complexity.

3 / 26

Upper bounds
Primitive Complexity

[Hellman 80] Permutation f Õ(
√

N)

[Hellman 80] Random function f (heuristic) Õ(N2/3)

[Fiat-Naor 99] Any f , all inputs Õ(N3/4)

[DTT 10] Any f , ε-fraction of inputs Õ(
√
εN) ε ≤ N−1/3

Õ(ε5/4N3/4) ε ≥ N−1/3

[ACR 97] PRG G(x)
def
= (f (x),P(x)) Õ(ε2N)

[DTT 10] Any PRG Õ(ε2N)

All above results are actually stated as time-space tradeoffs. Complexity is
optimized when T = S.

4 / 26

Upper bounds
Primitive Complexity

[Hellman 80] Permutation f Õ(
√

N)

[Hellman 80] Random function f (heuristic) Õ(N2/3)

[Fiat-Naor 99] Any f , all inputs Õ(N3/4)

[DTT 10] Any f , ε-fraction of inputs Õ(
√
εN) ε ≤ N−1/3

Õ(ε5/4N3/4) ε ≥ N−1/3

[ACR 97] PRG G(x)
def
= (f (x),P(x)) Õ(ε2N)

[DTT 10] Any PRG Õ(ε2N)

All above results are actually stated as time-space tradeoffs. Complexity is
optimized when T = S.

4 / 26

Upper bounds
Primitive Complexity

[Hellman 80] Permutation f Õ(
√

N)

[Hellman 80] Random function f (heuristic) Õ(N2/3)

[Fiat-Naor 99] Any f , all inputs Õ(N3/4)

[DTT 10] Any f , ε-fraction of inputs Õ(
√
εN) ε ≤ N−1/3

Õ(ε5/4N3/4) ε ≥ N−1/3

[ACR 97] PRG G(x)
def
= (f (x),P(x)) Õ(ε2N)

[DTT 10] Any PRG Õ(ε2N)

All above results are actually stated as time-space tradeoffs. Complexity is
optimized when T = S.

4 / 26

Upper bounds
Primitive Complexity

[Hellman 80] Permutation f Õ(
√

N)

[Hellman 80] Random function f (heuristic) Õ(N2/3)

[Fiat-Naor 99] Any f , all inputs Õ(N3/4)

[DTT 10] Any f , ε-fraction of inputs Õ(
√
εN) ε ≤ N−1/3

Õ(ε5/4N3/4) ε ≥ N−1/3

[ACR 97] PRG G(x)
def
= (f (x),P(x)) Õ(ε2N)

[DTT 10] Any PRG Õ(ε2N)

All above results are actually stated as time-space tradeoffs. Complexity is
optimized when T = S.

4 / 26

Upper bounds
Primitive Complexity

[Hellman 80] Permutation f Õ(
√

N)

[Hellman 80] Random function f (heuristic) Õ(N2/3)

[Fiat-Naor 99] Any f , all inputs Õ(N3/4)

[DTT 10] Any f , ε-fraction of inputs Õ(
√
εN) ε ≤ N−1/3

Õ(ε5/4N3/4) ε ≥ N−1/3

[ACR 97] PRG G(x)
def
= (f (x),P(x)) Õ(ε2N)

[DTT 10] Any PRG Õ(ε2N)

All above results are actually stated as time-space tradeoffs. Complexity is
optimized when T = S.

4 / 26

Upper bounds
Primitive Complexity

[Hellman 80] Permutation f Õ(
√

N)

[Hellman 80] Random function f (heuristic) Õ(N2/3)

[Fiat-Naor 99] Any f , all inputs Õ(N3/4)

[DTT 10] Any f , ε-fraction of inputs Õ(
√
εN) ε ≤ N−1/3

Õ(ε5/4N3/4) ε ≥ N−1/3

[ACR 97] PRG G(x)
def
= (f (x),P(x)) Õ(ε2N)

[DTT 10] Any PRG Õ(ε2N)

All above results are actually stated as time-space tradeoffs. Complexity is
optimized when T = S.

4 / 26

Upper bounds
Primitive Complexity

[Hellman 80] Permutation f Õ(
√

N)

[Hellman 80] Random function f (heuristic) Õ(N2/3)

[Fiat-Naor 99] Any f , all inputs Õ(N3/4)

[DTT 10] Any f , ε-fraction of inputs Õ(
√
εN) ε ≤ N−1/3

Õ(ε5/4N3/4) ε ≥ N−1/3

[ACR 97] PRG G(x)
def
= (f (x),P(x)) Õ(ε2N)

[DTT 10] Any PRG Õ(ε2N)

All above results are actually stated as time-space tradeoffs. Complexity is
optimized when T = S.

4 / 26

Lower bounds

Better stated in terms of a tradeoff between T and S.

Primitive Tradeoff

[Yao 90]
[Gennaro-Trevisan 00]
[Wee 05]

Permutation f , ε-fraction
of inputs

T · S = Ω̃(εN)

for T = O(
√
εN)

[DTT 10]
Permutation f , ε-fraction
of inputs

T · S = Ω̃(εN)

for any T

[DTT 10] PRG G def
= (f (x),P(x)) T · S = Ω(ε2N)

5 / 26

Lower bounds

Better stated in terms of a tradeoff between T and S.

Primitive Tradeoff

[Yao 90]
[Gennaro-Trevisan 00]
[Wee 05]

Permutation f , ε-fraction
of inputs

T · S = Ω̃(εN)

for T = O(
√
εN)

[DTT 10]
Permutation f , ε-fraction
of inputs

T · S = Ω̃(εN)

for any T

[DTT 10] PRG G def
= (f (x),P(x)) T · S = Ω(ε2N)

5 / 26

Lower bounds

Better stated in terms of a tradeoff between T and S.

Primitive Tradeoff

[Yao 90]
[Gennaro-Trevisan 00]
[Wee 05]

Permutation f , ε-fraction
of inputs

T · S = Ω̃(εN)

for T = O(
√
εN)

[DTT 10]
Permutation f , ε-fraction
of inputs

T · S = Ω̃(εN)

for any T

[DTT 10] PRG G def
= (f (x),P(x)) T · S = Ω(ε2N)

5 / 26

Lower bounds

Better stated in terms of a tradeoff between T and S.

Primitive Tradeoff

[Yao 90]
[Gennaro-Trevisan 00]
[Wee 05]

Permutation f , ε-fraction
of inputs

T · S = Ω̃(εN)

for T = O(
√
εN)

[DTT 10]
Permutation f , ε-fraction
of inputs

T · S = Ω̃(εN)

for any T

[DTT 10] PRG G def
= (f (x),P(x)) T · S = Ω(ε2N)

5 / 26

Hellman’s approach for permutations

f (x)

f (f (x))

f (f (f (x)))

x

In small cycles of size less than
√

N, compute f (x), f (f (x)), . . .
At some point, you hit x . f−1(x) is the penultimate point in the sequence.
Time complexity of computation is Õ(

√
N).

6 / 26

Hellman’s approach for permutations

f (x)

f (f (x))

f (f (f (x)))

x

In small cycles of size less than
√

N, compute f (x), f (f (x)), . . .
At some point, you hit x . f−1(x) is the penultimate point in the sequence.
Time complexity of computation is Õ(

√
N).

6 / 26

Hellman’s approach for permutations

f (x)

f (f (x))

f (f (f (x)))

x

In small cycles of size less than
√

N, compute f (x), f (f (x)), . . .
At some point, you hit x . f−1(x) is the penultimate point in the sequence.
Time complexity of computation is Õ(

√
N).

6 / 26

Hellman’s approach for permutations

f (x)

f (f (x))

f (f (f (x)))

x

In small cycles of size less than
√

N, compute f (x), f (f (x)), . . .
At some point, you hit x . f−1(x) is the penultimate point in the sequence.
Time complexity of computation is Õ(

√
N).

6 / 26

Hellman’s approach for permutations

f (x)

f (f (x))

f (f (f (x)))

x

In small cycles of size less than
√

N, compute f (x), f (f (x)), . . .

At some point, you hit x . f−1(x) is the penultimate point in the sequence.
Time complexity of computation is Õ(

√
N).

6 / 26

Hellman’s approach for permutations

f (x)

f (f (x))

f (f (f (x)))

x

In small cycles of size less than
√

N, compute f (x), f (f (x)), . . .
At some point, you hit x . f−1(x) is the penultimate point in the sequence.

Time complexity of computation is Õ(
√

N).

6 / 26

Hellman’s approach for permutations

f (x)

f (f (x))

f (f (f (x)))

x

In small cycles of size less than
√

N, compute f (x), f (f (x)), . . .
At some point, you hit x . f−1(x) is the penultimate point in the sequence.
Time complexity of computation is Õ(

√
N).

6 / 26

What happens to large cycles?

√
N

a

b

x

c

d

In large cycles, store back-links at a distance of
√

N

For e.g., store (a, b), (b, c), (c, d) and (d , a) in a data-structure

7 / 26

What happens to large cycles?

√
N

a

b

x

c

d

In large cycles, store back-links at a distance of
√

N
For e.g., store (a, b), (b, c), (c, d) and (d , a) in a data-structure

7 / 26

What happens to large cycles?

√
N

a

b

x

c

d

Compute f (x), f (f (x)), . . . till you hit a point in the data structure, say a

When you hit a, use back-link to go back to b

8 / 26

What happens to large cycles?

√
N

a

b

x

c

d

Compute f (x), f (f (x)), . . . till you hit a point in the data structure, say a
When you hit a, use back-link to go back to b

8 / 26

What happens to large cycles?

√
N

a

b

x

c

d

Now, compute f (a), f (f (a)), . . . until you hit x

The penultimate point in the sequence is f−1(x)

9 / 26

What happens to large cycles?

√
N

a

b

x

c

d

Now, compute f (a), f (f (a)), . . . until you hit x
The penultimate point in the sequence is f−1(x)

9 / 26

What happens to large cycles?

√
N

a

b

x

c

d

Note that all the cycles can be covered by O(
√

N) back-links (each back-link
covering a distance of

√
N)

Also, the total time complexity is
√

N as you hit a “back-link” in that time

10 / 26

What happens to large cycles?

√
N

a

b

x

c

d

Note that all the cycles can be covered by O(
√

N) back-links (each back-link
covering a distance of

√
N)

Also, the total time complexity is
√

N as you hit a “back-link” in that time
10 / 26

Time and space complexity for
inverting permutations

• Total time T = Õ(
√

N) and space S = Õ(
√

N).

• Can be used to invert ε fraction of the elements in time
T = Õ(

√
εN) and space S = Õ(

√
εN)

• In fact, we can achieve any time (T) space (S) tradeoff
such that T · S = εN.

11 / 26

Time and space complexity for
inverting permutations

• Total time T = Õ(
√

N) and space S = Õ(
√

N).

• Can be used to invert ε fraction of the elements in time
T = Õ(

√
εN) and space S = Õ(

√
εN)

• In fact, we can achieve any time (T) space (S) tradeoff
such that T · S = εN.

11 / 26

Abstracting the approach for
permutations

• Cover the graph (x → f (x)) of f by m disjoint paths of
length `.

• Gives algo with T = Õ(`) and S = Õ(m)
(one back-link per path).

• Problem: m may have to be very large because the graph
(x → f (x)) may not have many long and disjoint paths.

12 / 26

Abstracting the approach for
permutations

• Cover the graph (x → f (x)) of f by m disjoint paths of
length `.

• Gives algo with T = Õ(`) and S = Õ(m)
(one back-link per path).

• Problem: m may have to be very large because the graph
(x → f (x)) may not have many long and disjoint paths.

12 / 26

Abstracting the approach for
permutations

• Cover the graph (x → f (x)) of f by m disjoint paths of
length `.

• Gives algo with T = Õ(`) and S = Õ(m)
(one back-link per path).

• Problem: m may have to be very large because the graph
(x → f (x)) may not have many long and disjoint paths.

12 / 26

Approach for random functions
[Hellman, Fiat-Naor]

• Collision probability: λ = Prx,x′∼[N] [f (x) = f (x ′)].

• If h is a (known) permutation, then inverting h ◦ f suffices. If h is random
and f has low collision probability, then h ◦ f has many long paths which
are pairwise disjoint.

0

1

2

5

8

3

4

11

6

7

14

9

10

17

12

13

20

15

16

23

18

19

26

21

22

29

24

25

32

27

28

35

30

31

38

33

34

41

36

37

44

39

40

47

42

43

50

45

46

53

48

49

56

51

52

59

54

55 57

58

0

20

131

44

59

2

29

4

3

28

53

14

5

11

26

6

40

52

7

56

31

8

41

9

58

10

17

50

12

15

22

16

18

19

43

37

21

34

23

24

46 27

38

30

49

32

33

35

47

36

39

55

42

45

4851 5457

f h ◦ f

13 / 26

Approach for random functions
[Hellman, Fiat-Naor]

• Collision probability: λ = Prx,x′∼[N] [f (x) = f (x ′)].

• If h is a (known) permutation, then inverting h ◦ f suffices. If h is random
and f has low collision probability, then h ◦ f has many long paths which
are pairwise disjoint.

0

1

2

5

8

3

4

11

6

7

14

9

10

17

12

13

20

15

16

23

18

19

26

21

22

29

24

25

32

27

28

35

30

31

38

33

34

41

36

37

44

39

40

47

42

43

50

45

46

53

48

49

56

51

52

59

54

55 57

58

0

20

131

44

59

2

29

4

3

28

53

14

5

11

26

6

40

52

7

56

31

8

41

9

58

10

17

50

12

15

22

16

18

19

43

37

21

34

23

24

46 27

38

30

49

32

33

35

47

36

39

55

42

45

4851 5457

f h ◦ f

13 / 26

Approach for random functions
[Hellman, Fiat-Naor]

• Collision probability: λ = Prx,x′∼[N] [f (x) = f (x ′)].

• If h is a (known) permutation, then inverting h ◦ f suffices. If h is random
and f has low collision probability, then h ◦ f has many long paths which
are pairwise disjoint.

0

1

2

5

8

3

4

11

6

7

14

9

10

17

12

13

20

15

16

23

18

19

26

21

22

29

24

25

32

27

28

35

30

31

38

33

34

41

36

37

44

39

40

47

42

43

50

45

46

53

48

49

56

51

52

59

54

55 57

58

0

20

131

44

59

2

29

4

3

28

53

14

5

11

26

6

40

52

7

56

31

8

41

9

58

10

17

50

12

15

22

16

18

19

43

37

21

34

23

24

46 27

38

30

49

32

33

35

47

36

39

55

42

45

4851 5457

f h ◦ f

13 / 26

Inverting random functions (λ ≈ 1/N)

• For independent random permutations h1, . . . ,hr , let gi = hi ◦ f .

• For each gi , can find m disjoint paths of length ` as long as
m · `2 · λ� 1. (each gi inverts m · ` elements).

• If g′i s behave independently, elements inverted by each of them
are independent. Overall O(m · ` · r) elements inverted.

• Choose m, `, r = Õ(N1/3).

T = O(` · r) = Õ(N2/3)

S = O(m · r) = Õ(N2/3)

• Problems: Computing h1, . . . ,hr is hard. Heuristic works only for
random f .

14 / 26

Inverting random functions (λ ≈ 1/N)

• For independent random permutations h1, . . . ,hr , let gi = hi ◦ f .

• For each gi , can find m disjoint paths of length ` as long as
m · `2 · λ� 1. (each gi inverts m · ` elements).

• If g′i s behave independently, elements inverted by each of them
are independent. Overall O(m · ` · r) elements inverted.

• Choose m, `, r = Õ(N1/3).

T = O(` · r) = Õ(N2/3)

S = O(m · r) = Õ(N2/3)

• Problems: Computing h1, . . . ,hr is hard. Heuristic works only for
random f .

14 / 26

Inverting random functions (λ ≈ 1/N)

• For independent random permutations h1, . . . ,hr , let gi = hi ◦ f .

• For each gi , can find m disjoint paths of length ` as long as
m · `2 · λ� 1. (each gi inverts m · ` elements).

• If g′i s behave independently, elements inverted by each of them
are independent. Overall O(m · ` · r) elements inverted.

• Choose m, `, r = Õ(N1/3).

T = O(` · r) = Õ(N2/3)

S = O(m · r) = Õ(N2/3)

• Problems: Computing h1, . . . ,hr is hard. Heuristic works only for
random f .

14 / 26

Inverting random functions (λ ≈ 1/N)

• For independent random permutations h1, . . . ,hr , let gi = hi ◦ f .

• For each gi , can find m disjoint paths of length ` as long as
m · `2 · λ� 1. (each gi inverts m · ` elements).

• If g′i s behave independently, elements inverted by each of them
are independent. Overall O(m · ` · r) elements inverted.

• Choose m, `, r = Õ(N1/3).

T = O(` · r) = Õ(N2/3)

S = O(m · r) = Õ(N2/3)

• Problems: Computing h1, . . . ,hr is hard. Heuristic works only for
random f .

14 / 26

Inverting random functions (λ ≈ 1/N)

• For independent random permutations h1, . . . ,hr , let gi = hi ◦ f .

• For each gi , can find m disjoint paths of length ` as long as
m · `2 · λ� 1. (each gi inverts m · ` elements).

• If g′i s behave independently, elements inverted by each of them
are independent. Overall O(m · ` · r) elements inverted.

• Choose m, `, r = Õ(N1/3).

T = O(` · r) = Õ(N2/3)

S = O(m · r) = Õ(N2/3)

• Problems: Computing h1, . . . ,hr is hard. Heuristic works only for
random f .

14 / 26

Inverting arbitrary functions
[Fiat-Naor]

• Store a table of K elements with many pre-images. Collision
probability restricted to the remaining inputs is ≈ 1/K .

• Each hi only needs to be an `-wise independent hash function.
Also, h1, . . . ,hr only need to be pairwise independent.

• Amortize time for one evauation each of h1, . . . ,hr to Õ(`+ r).

T = (time to compute h1, . . . ,hr) · ` = Õ(`2 + ` · r)

S = Õ(K + m · r)

• Can again choose m, l such that m`2λ ≈ m`2/K � 1. Can get

T ,S = Õ(N3/4)

by taking K = Õ(N3/4), r = Õ(N1/2) and m, ` = Õ(N1/4).

15 / 26

Inverting arbitrary functions
[Fiat-Naor]

• Store a table of K elements with many pre-images. Collision
probability restricted to the remaining inputs is ≈ 1/K .

• Each hi only needs to be an `-wise independent hash function.
Also, h1, . . . ,hr only need to be pairwise independent.

• Amortize time for one evauation each of h1, . . . ,hr to Õ(`+ r).

T = (time to compute h1, . . . ,hr) · ` = Õ(`2 + ` · r)

S = Õ(K + m · r)

• Can again choose m, l such that m`2λ ≈ m`2/K � 1. Can get

T ,S = Õ(N3/4)

by taking K = Õ(N3/4), r = Õ(N1/2) and m, ` = Õ(N1/4).

15 / 26

Inverting arbitrary functions
[Fiat-Naor]

• Store a table of K elements with many pre-images. Collision
probability restricted to the remaining inputs is ≈ 1/K .

• Each hi only needs to be an `-wise independent hash function.
Also, h1, . . . ,hr only need to be pairwise independent.

• Amortize time for one evauation each of h1, . . . ,hr to Õ(`+ r).

T = (time to compute h1, . . . ,hr) · ` = Õ(`2 + ` · r)

S = Õ(K + m · r)

• Can again choose m, l such that m`2λ ≈ m`2/K � 1. Can get

T ,S = Õ(N3/4)

by taking K = Õ(N3/4), r = Õ(N1/2) and m, ` = Õ(N1/4).

15 / 26

Inverting arbitrary functions
[Fiat-Naor]

• Store a table of K elements with many pre-images. Collision
probability restricted to the remaining inputs is ≈ 1/K .

• Each hi only needs to be an `-wise independent hash function.
Also, h1, . . . ,hr only need to be pairwise independent.

• Amortize time for one evauation each of h1, . . . ,hr to Õ(`+ r).

T = (time to compute h1, . . . ,hr) · ` = Õ(`2 + ` · r)

S = Õ(K + m · r)

• Can again choose m, l such that m`2λ ≈ m`2/K � 1. Can get

T ,S = Õ(N3/4)

by taking K = Õ(N3/4), r = Õ(N1/2) and m, ` = Õ(N1/4).

15 / 26

Inverting f on ε-fraction of inputs
• Directly scaling the Fiat-Naor result would give complexity

(εN)3/4 (we claimed ε5/4N3/4). Improved analysis using two
simple ideas.

• First observation: If a table of size K does not invert f with
probability ε, then the collision probability for the rest is ε/K .

• Second Observation: The number of elements inverted by a
path is not just the path length, but the the sum of indegrees of
elements in the path.

f (x)

x

x ′

16 / 26

Inverting f on ε-fraction of inputs
• Directly scaling the Fiat-Naor result would give complexity

(εN)3/4 (we claimed ε5/4N3/4). Improved analysis using two
simple ideas.

• First observation: If a table of size K does not invert f with
probability ε, then the collision probability for the rest is ε/K .

• Second Observation: The number of elements inverted by a
path is not just the path length, but the the sum of indegrees of
elements in the path.

f (x)

x

x ′

16 / 26

Inverting f on ε-fraction of inputs
• Directly scaling the Fiat-Naor result would give complexity

(εN)3/4 (we claimed ε5/4N3/4). Improved analysis using two
simple ideas.

• First observation: If a table of size K does not invert f with
probability ε, then the collision probability for the rest is ε/K .

• Second Observation: The number of elements inverted by a
path is not just the path length, but the the sum of indegrees of
elements in the path.

f (x)

x

x ′

16 / 26

Issues in analysis
• Problem: Probablities for inversion of moderately high indegree

elements do not add up (with our parameters) in the graphs for
g1, . . . , gr . Also, these may not be in the table.

• Analyze these separately using a weaker bound.
• Either weaker bound suffices or get better control on collision

probability.

• Problem: Value of r is O(1) for some ranges of ε and amortization over
evaluations of h1, . . . , hr is not possible.
• Use better construction based on lossless expanders of Capalbo

et al. [CRVW02] and an observation of Seigel [Seigel89].
• Take `o(1) time per evaluation.

• Final complexity: T ,S =
Õ(
√
εN) ε ≤ N−1/3

Õ(ε5/4N3/4) ε ≥ N−1/3

17 / 26

Issues in analysis
• Problem: Probablities for inversion of moderately high indegree

elements do not add up (with our parameters) in the graphs for
g1, . . . , gr . Also, these may not be in the table.
• Analyze these separately using a weaker bound.
• Either weaker bound suffices or get better control on collision

probability.

• Problem: Value of r is O(1) for some ranges of ε and amortization over
evaluations of h1, . . . , hr is not possible.
• Use better construction based on lossless expanders of Capalbo

et al. [CRVW02] and an observation of Seigel [Seigel89].
• Take `o(1) time per evaluation.

• Final complexity: T ,S =
Õ(
√
εN) ε ≤ N−1/3

Õ(ε5/4N3/4) ε ≥ N−1/3

17 / 26

Issues in analysis
• Problem: Probablities for inversion of moderately high indegree

elements do not add up (with our parameters) in the graphs for
g1, . . . , gr . Also, these may not be in the table.
• Analyze these separately using a weaker bound.
• Either weaker bound suffices or get better control on collision

probability.

• Problem: Value of r is O(1) for some ranges of ε and amortization over
evaluations of h1, . . . , hr is not possible.

• Use better construction based on lossless expanders of Capalbo
et al. [CRVW02] and an observation of Seigel [Seigel89].

• Take `o(1) time per evaluation.

• Final complexity: T ,S =
Õ(
√
εN) ε ≤ N−1/3

Õ(ε5/4N3/4) ε ≥ N−1/3

17 / 26

Issues in analysis
• Problem: Probablities for inversion of moderately high indegree

elements do not add up (with our parameters) in the graphs for
g1, . . . , gr . Also, these may not be in the table.
• Analyze these separately using a weaker bound.
• Either weaker bound suffices or get better control on collision

probability.

• Problem: Value of r is O(1) for some ranges of ε and amortization over
evaluations of h1, . . . , hr is not possible.
• Use better construction based on lossless expanders of Capalbo

et al. [CRVW02] and an observation of Seigel [Seigel89].
• Take `o(1) time per evaluation.

• Final complexity: T ,S =
Õ(
√
εN) ε ≤ N−1/3

Õ(ε5/4N3/4) ε ≥ N−1/3

17 / 26

Issues in analysis
• Problem: Probablities for inversion of moderately high indegree

elements do not add up (with our parameters) in the graphs for
g1, . . . , gr . Also, these may not be in the table.
• Analyze these separately using a weaker bound.
• Either weaker bound suffices or get better control on collision

probability.

• Problem: Value of r is O(1) for some ranges of ε and amortization over
evaluations of h1, . . . , hr is not possible.
• Use better construction based on lossless expanders of Capalbo

et al. [CRVW02] and an observation of Seigel [Seigel89].
• Take `o(1) time per evaluation.

• Final complexity: T ,S =
Õ(
√
εN) ε ≤ N−1/3

Õ(ε5/4N3/4) ε ≥ N−1/3

17 / 26

Lower bound for inverting permutations

• Given A inverting f on ε fraction of inputs in time T and space S,
want to show T · S = Ω(εN).

• Showed by [Yao90] for ε = 1 and [GT00], [Wee05] when
T = O(

√
εN).

• Give a simpler, “randomized” proof that works for all T . Also
extends to lower bounds for PRGs.

• As in [GT00], show that using A, can encode f with
≈ log(N!)− φ(N,T) + S bits for some φ. Thus, S > φ(N,T)

giving the tradeoff between T and S.

• We show that using A, one can encode f using
≈ log(N!)− εN

100T + S bits giving us the desired tradeoff.

18 / 26

Lower bound for inverting permutations

• Given A inverting f on ε fraction of inputs in time T and space S,
want to show T · S = Ω(εN).

• Showed by [Yao90] for ε = 1 and [GT00], [Wee05] when
T = O(

√
εN).

• Give a simpler, “randomized” proof that works for all T . Also
extends to lower bounds for PRGs.

• As in [GT00], show that using A, can encode f with
≈ log(N!)− φ(N,T) + S bits for some φ. Thus, S > φ(N,T)

giving the tradeoff between T and S.

• We show that using A, one can encode f using
≈ log(N!)− εN

100T + S bits giving us the desired tradeoff.

18 / 26

Lower bound for inverting permutations

• Given A inverting f on ε fraction of inputs in time T and space S,
want to show T · S = Ω(εN).

• Showed by [Yao90] for ε = 1 and [GT00], [Wee05] when
T = O(

√
εN).

• Give a simpler, “randomized” proof that works for all T . Also
extends to lower bounds for PRGs.

• As in [GT00], show that using A, can encode f with
≈ log(N!)− φ(N,T) + S bits for some φ. Thus, S > φ(N,T)

giving the tradeoff between T and S.

• We show that using A, one can encode f using
≈ log(N!)− εN

100T + S bits giving us the desired tradeoff.

18 / 26

Lower bound for inverting permutations

• Given A inverting f on ε fraction of inputs in time T and space S,
want to show T · S = Ω(εN).

• Showed by [Yao90] for ε = 1 and [GT00], [Wee05] when
T = O(

√
εN).

• Give a simpler, “randomized” proof that works for all T . Also
extends to lower bounds for PRGs.

• As in [GT00], show that using A, can encode f with
≈ log(N!)− φ(N,T) + S bits for some φ. Thus, S > φ(N,T)

giving the tradeoff between T and S.

• We show that using A, one can encode f using
≈ log(N!)− εN

100T + S bits giving us the desired tradeoff.

18 / 26

Lower bound for inverting permutations

• Given A inverting f on ε fraction of inputs in time T and space S,
want to show T · S = Ω(εN).

• Showed by [Yao90] for ε = 1 and [GT00], [Wee05] when
T = O(

√
εN).

• Give a simpler, “randomized” proof that works for all T . Also
extends to lower bounds for PRGs.

• As in [GT00], show that using A, can encode f with
≈ log(N!)− φ(N,T) + S bits for some φ. Thus, S > φ(N,T)

giving the tradeoff between T and S.

• We show that using A, one can encode f using
≈ log(N!)− εN

100T + S bits giving us the desired tradeoff.

18 / 26

Intuition for the encoding

[N]

G

|G| =
εN

100T

f (G)

• A inverts G correctly.

• For all x ∈ G, A does not query any element in G.

19 / 26

Intuition for the encoding

[N]

G

|G| =
εN

100T

f (G)

• A inverts G correctly.

• For all x ∈ G, A does not query any element in G.

19 / 26

Intuition for the encoding

[N]

G

|G| =
εN

100T

f (G)

• A inverts G correctly.

• For all x ∈ G, A does not query any element in G.

19 / 26

Intuition for the encoding

[N]

G

|G| =
εN

100T

f (G)

• Complexity of encoding :=
• Size of G
• Specify set f (G)
• Specify the map f−1 on [N]− f (G)

• This information along with A suffices to specify f entirely

20 / 26

Intuition for the encoding

[N]

G

|G| =
εN

100T

f (G)

• Complexity of encoding :=
• Size of G
• Specify set f (G)
• Specify the map f−1 on [N]− f (G)

• This information along with A suffices to specify f entirely

20 / 26

Intuition for the encoding

[N]

G

|G| =
εN

100T

f (G)

• Complexity of encoding :=
• Size of G
• Specify set f (G)
• Specify the map f−1 on [N]− f (G)

• This information along with A suffices to specify f entirely

20 / 26

Intuition for the encoding

[N]

G

|G| =
εN

100T

f (G)

• Total complexity of encoding : 2 log
(N
|G|
)

+ log(N − |G|)!

• Putting |G| = εN
100T , we get that S + εN

T log(T 2/ε2N) ≥ 0

21 / 26

Intuition for the encoding

[N]

G

|G| =
εN

100T

f (G)

• Total complexity of encoding : 2 log
(N
|G|
)

+ log(N − |G|)!

• Putting |G| = εN
100T , we get that S + εN

T log(T 2/ε2N) ≥ 0

21 / 26

Upshot of the analysis

• Provided T ≤ ε
√

N, TS = Ω̃(εN)

• This was the analysis by Gennaro and Trevisan [GT00]

• The analysis was improved by Wee [Wee05] who showed
TS = Ω̃(εN) provided T ≤

√
εN

• There is still a gap because “deterministically” deciding on
G is very expensive.

22 / 26

Upshot of the analysis

• Provided T ≤ ε
√

N, TS = Ω̃(εN)

• This was the analysis by Gennaro and Trevisan [GT00]

• The analysis was improved by Wee [Wee05] who showed
TS = Ω̃(εN) provided T ≤

√
εN

• There is still a gap because “deterministically” deciding on
G is very expensive.

22 / 26

Upshot of the analysis

• Provided T ≤ ε
√

N, TS = Ω̃(εN)

• This was the analysis by Gennaro and Trevisan [GT00]

• The analysis was improved by Wee [Wee05] who showed
TS = Ω̃(εN) provided T ≤

√
εN

• There is still a gap because “deterministically” deciding on
G is very expensive.

22 / 26

Upshot of the analysis

• Provided T ≤ ε
√

N, TS = Ω̃(εN)

• This was the analysis by Gennaro and Trevisan [GT00]

• The analysis was improved by Wee [Wee05] who showed
TS = Ω̃(εN) provided T ≤

√
εN

• There is still a gap because “deterministically” deciding on
G is very expensive.

22 / 26

Randomized encoding

[N]

G

|G| =
εN

100T

f (G)G

R

f (G)

|R| =
N

10T

• Choose R to be a set of size N/10T uniformly at random.
• With high probability, this contains a set G of size εN

100T such that
• A inverts G correctly.
• For all x ∈ G, A does not query any element in R

23 / 26

Randomized encoding

[N]

G

|G| =
εN

100T

f (G)G

R

f (G)

|R| =
N

10T

• Choose R to be a set of size N/10T uniformly at random.

• With high probability, this contains a set G of size εN
100T such that

• A inverts G correctly.
• For all x ∈ G, A does not query any element in R

23 / 26

Randomized encoding

[N]

G

|G| =
εN

100T

f (G)G

R

f (G)

|R| =
N

10T

• Choose R to be a set of size N/10T uniformly at random.
• With high probability, this contains a set G of size εN

100T such that
• A inverts G correctly.
• For all x ∈ G, A does not query any element in R

23 / 26

Randomized encoding
[N]

G

|G| =
εN

100T

f (G)G

R

f (G)

|R| =
N

10T

• Some savings in the analysis as the identity of R is already
known

• Once we know f outside R, we need to know “G in R” as
opposed to “G in [N]” - main source of saving

• In all, we can describe the permutation in
log(N!)− εN/100T + S bits which gives us the result.

24 / 26

Randomized encoding
[N]

G

|G| =
εN

100T

f (G)G

R

f (G)

|R| =
N

10T

• Some savings in the analysis as the identity of R is already
known

• Once we know f outside R, we need to know “G in R” as
opposed to “G in [N]” - main source of saving

• In all, we can describe the permutation in
log(N!)− εN/100T + S bits which gives us the result.

24 / 26

Randomized encoding
[N]

G

|G| =
εN

100T

f (G)G

R

f (G)

|R| =
N

10T

• Some savings in the analysis as the identity of R is already
known

• Once we know f outside R, we need to know “G in R” as
opposed to “G in [N]” - main source of saving

• In all, we can describe the permutation in
log(N!)− εN/100T + S bits which gives us the result.

24 / 26

Conclusions

• Non-uniform attacks can do better than uniform attacks on
one-way functions and PRGs

• The best provable upper bound for one-way functions on
all inputs remains N3/4 and N2/3 is the best for
“Hellman”-style arguments (Barkan, Biham and Shamir)

• Techniques for proving lower bounds do not seem to do
any better for one-way functions than permutations i.e.
Ω(N1/2).

25 / 26

Conclusions

• Non-uniform attacks can do better than uniform attacks on
one-way functions and PRGs

• The best provable upper bound for one-way functions on
all inputs remains N3/4 and N2/3 is the best for
“Hellman”-style arguments (Barkan, Biham and Shamir)

• Techniques for proving lower bounds do not seem to do
any better for one-way functions than permutations i.e.
Ω(N1/2).

25 / 26

Conclusions

• Non-uniform attacks can do better than uniform attacks on
one-way functions and PRGs

• The best provable upper bound for one-way functions on
all inputs remains N3/4 and N2/3 is the best for
“Hellman”-style arguments (Barkan, Biham and Shamir)

• Techniques for proving lower bounds do not seem to do
any better for one-way functions than permutations i.e.
Ω(N1/2).

25 / 26

Thank You

Questions?

26 / 26

	Introduction

