Rumor Spreading and Conductance

Flavio Chierichetti

<u>Silvio Lattanzi</u>

Alessandro Panconesi

Sapienza University of Rome Why is rumor spreading fast in social networks?

• How to answer this question?

• How to define rumor spreading?

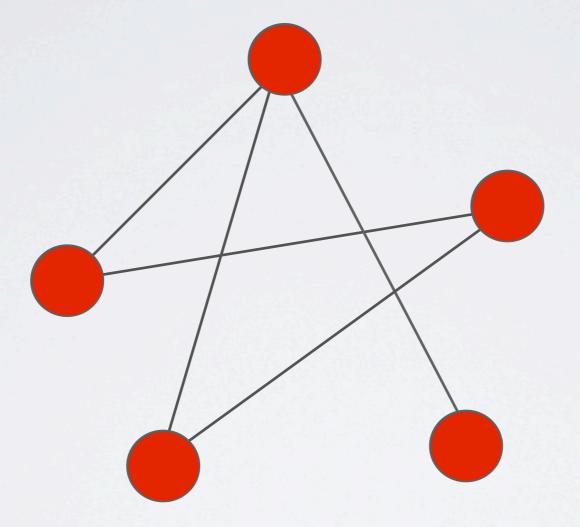
• What are social networks?

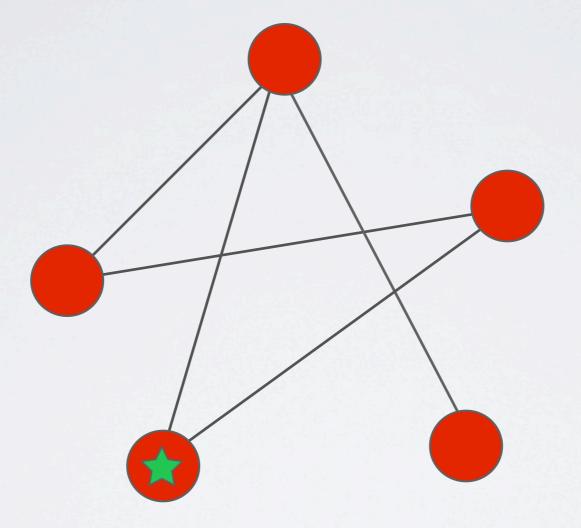
Rumor spreading

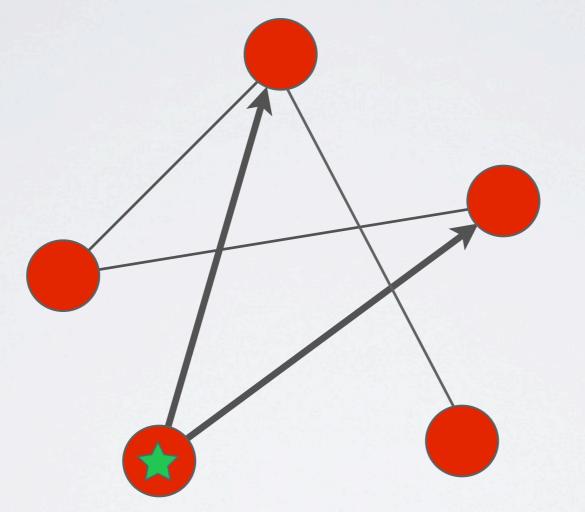
Rumor spreading

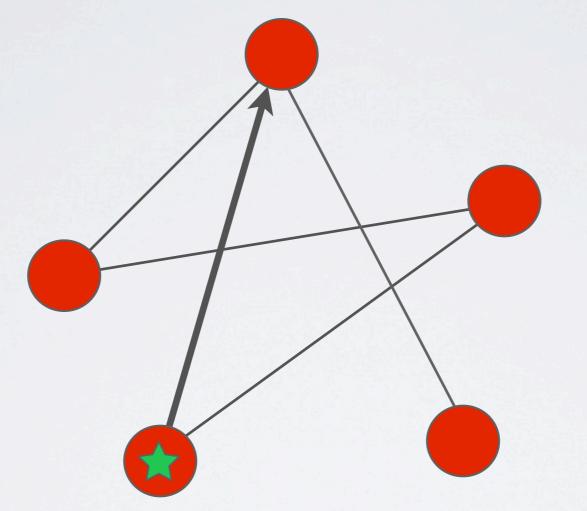
• Push, Pull and Push-Pull Introduced in the contest of distributed database. Demers, Greene, Hauser, Irish, Larson, Shenker, Sturgis, Swinehart, Terry, PODC 1987

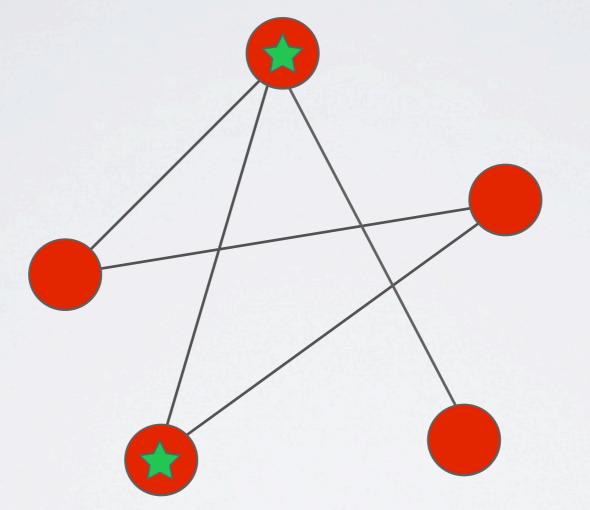
• Basic mechanisms for information dissemination in networks.

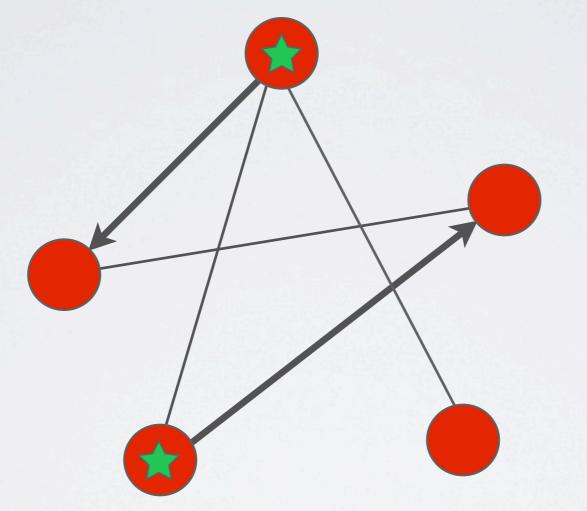


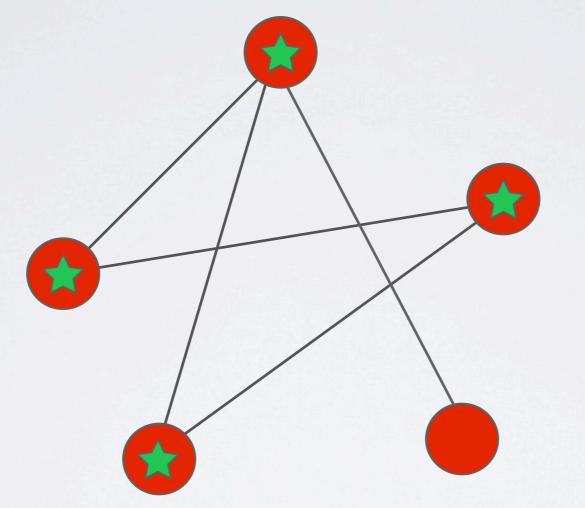


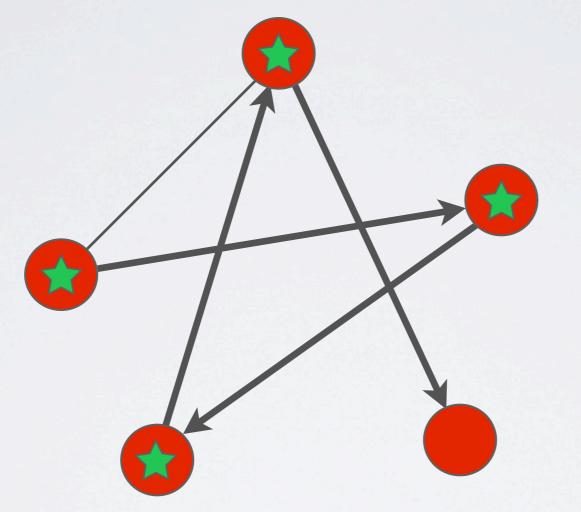


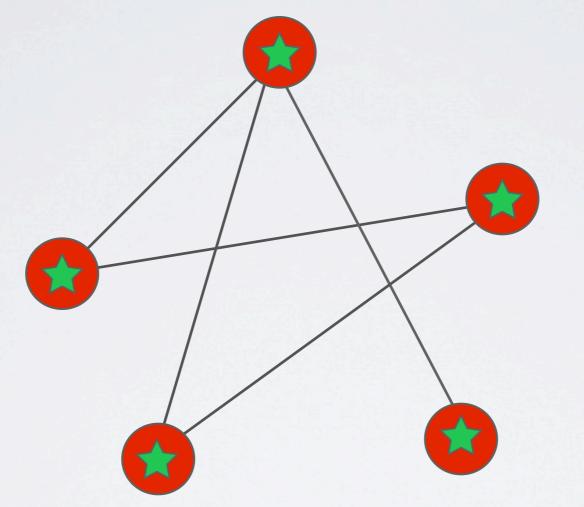


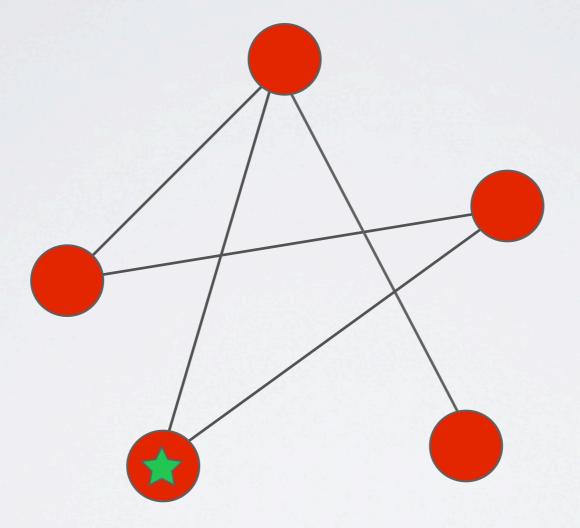


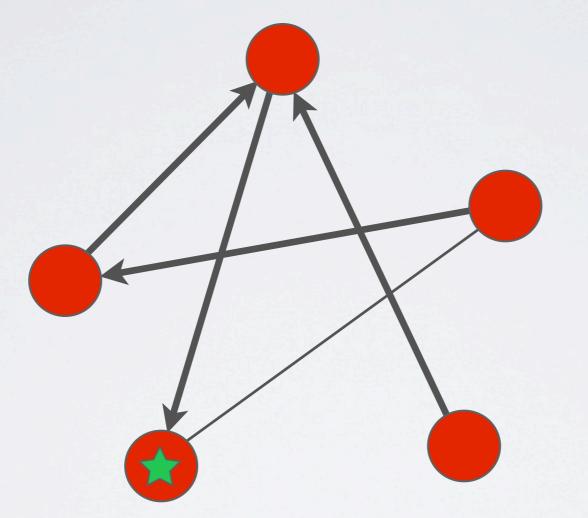


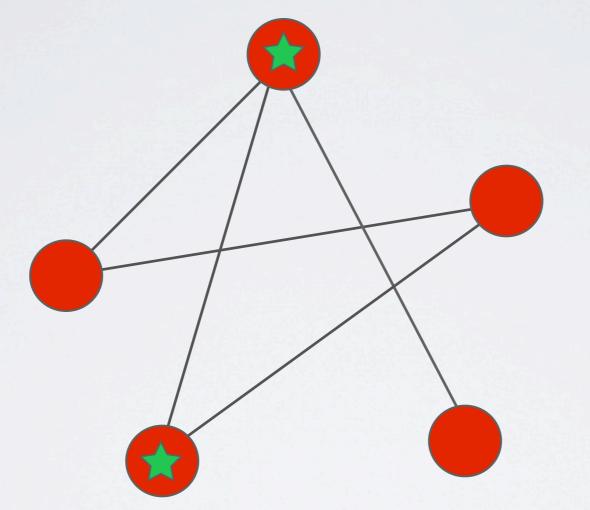


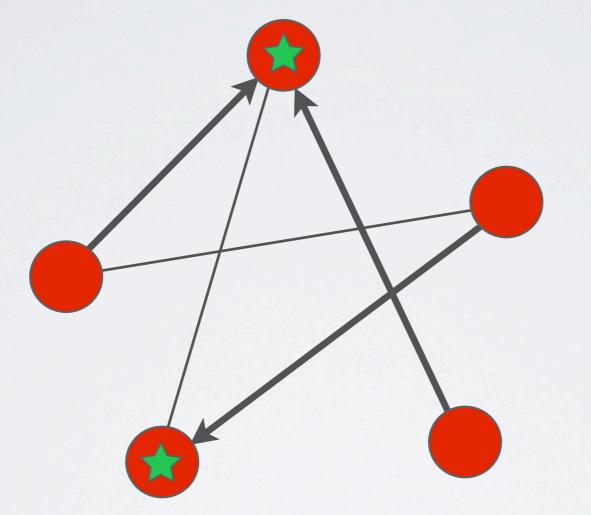


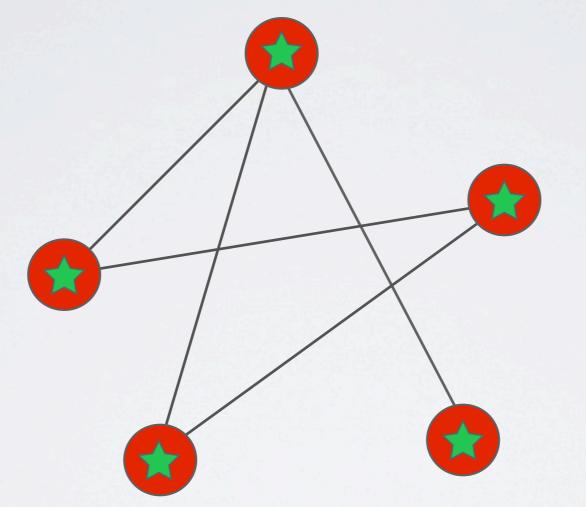


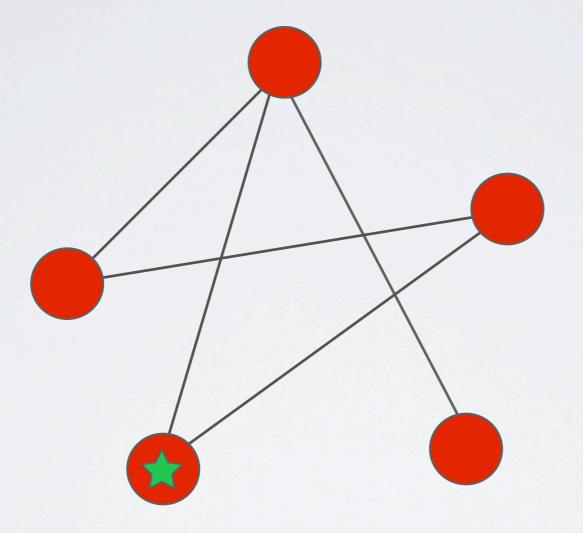


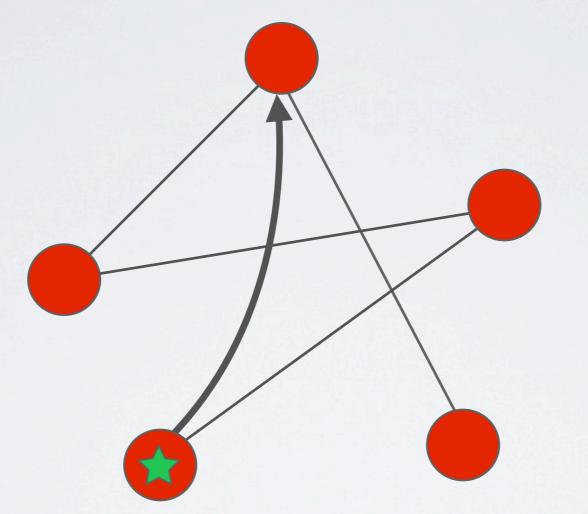


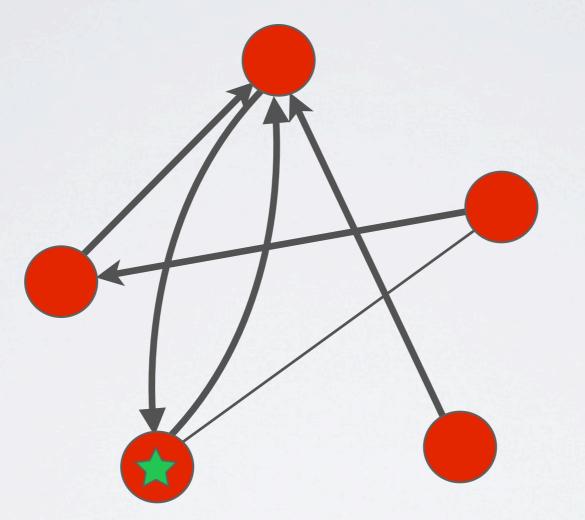


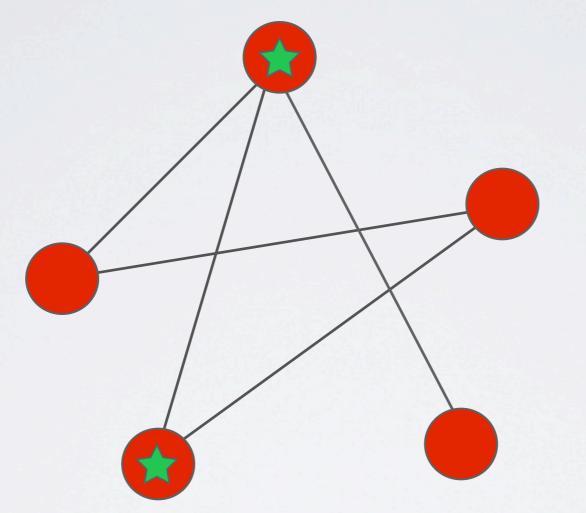


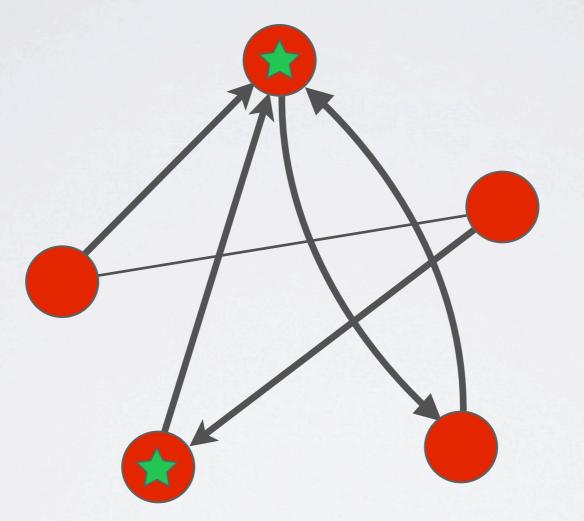


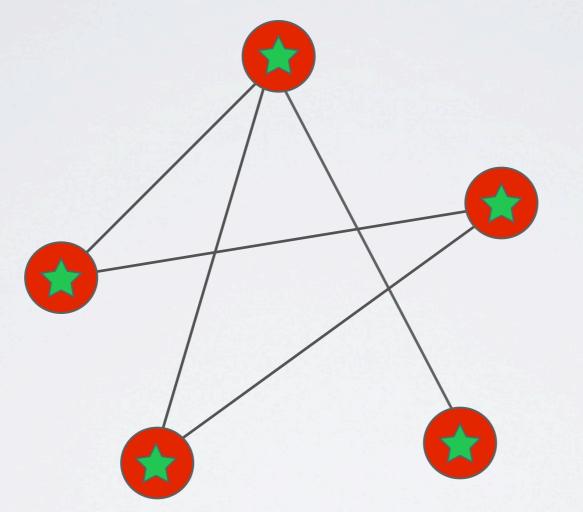


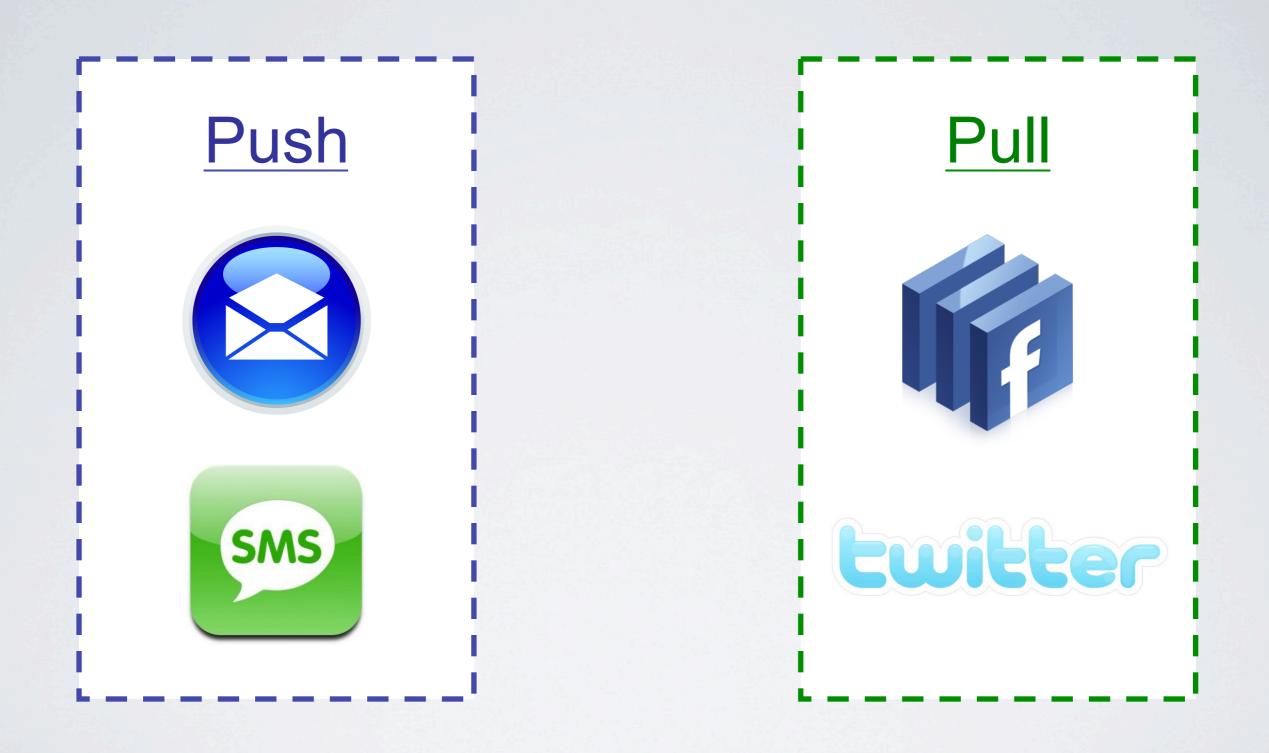












Performance

• What are the completion times T_{PUSH} , T_{PULL} , $T_{PUSH-PULL}$?

 How many rounds will it take for each node to know the information with probability 1 – o(1), assuming a *worst-case* source?

• T_{PUSH} , $T_{PULL} = \Theta(\log n)$ if $G = K_n$ Frieze, Grimmet, Algorithms 1985

• T_{PUSH} , $T_{PULL} = \Theta(\log n)$ if $G = K_n$ Frieze, Grimmet, Algorithms 1985

• $T_{PUSH} \leq O(n \log n)$ $T_{PUSH} \leq O(\Delta(G) (\operatorname{diam}(G) + \log n))$ $T_{PUSH} \leq O(\log n)$ in Hypercubes and G(n,p) Graphs Feige, Peleg, Raghavan, Upfal, Algorithms 1990

• T_{PUSH} , $T_{PULL} = \Theta(\log n)$ if $G = K_n$ Frieze, Grimmet, Algorithms 1985

Huge in Social Networks!

- $T_{PUSH} \le O(n \log n)$ $T_{PUSH} \le O(\Delta(G))(diam(G) + \log n))$
 - $T_{PUSH} \le O(\log n)$ in Hypercubes and G(n,p) Graphs

Feige, Peleg, Raghavan, Upfal, Algorithms 1990

• T_{PUSH} O(log n) in "quasi-regular" expanders

Berenbrink, Elsässer, Friedetzky, *PODC* 2008 Doerr, Friedrich, Sauerwald, *ICALP* 2009 Sauerwald, *ISAAC* 2007

• $T_{PUSH-PULL}$ O(log²n) in PA graphs $T_{PUSH-PULL}$ O(poly($\Phi^{-1} \log n$)) if conductance = Φ Chierichetti, Lattanzi, Panconesi, *ICALP* 2009, *SODA* 2010

• Non uniform rumor spreading and conductance Boyd, Ghosh, Prabhakar, Shah, *IEEE Transaction on Information Theory* 2006 Mosk-Aoyama, Shah, *IEEE Transaction on Information Theory* 2008

• T_{PUSH} O(log n) in "quasi-regular") expanders

Berenbrink, Elsässer, Friedetzky, *PODC* 2008 Doerr, Friedrich, Sauerwald, *ICALP* 2009 Sauerwald, *ISAAC* 2007

Social Networks are highly irregular!

• $T_{PUSH-PULL}$ O(log²n) in PA graphs $T_{PUSH-PULL}$ O(poly($\Phi^{-1} \log n$)) if conductance = Φ Chierichetti, Lattanzi, Panconesi, *ICALP* 2009, *SODA* 2010

• Non uniform rumor spreading and conductance Boyd, Ghosh, Prabhakar, Shah, *IEEE Transaction on Information Theory* 2006 Mosk-Aoyama, Shah, *IEEE Transaction on Information Theory* 2008

• T_{PUSH} O(log n) in "quasi-regular" expanders

Berenbrink, Elsässer, Friedetzky, *PODC* 2008 Doerr, Friedrich, Sauerwald, *ICALP* 2009 Sauerwald, *ISAAC* 2007

Connections to Spielman-Teng sparsification theory

• $T_{PUSH-PULL}$ O(log²n) in PA graphs $T_{PUSH-PULL}$ O(poly($\Phi^{-1} \log n$)) if conductance = Φ Chierichetti, Lattanzi, Panconesi, *ICALP* 2009, *SODA* 2010

• Non uniform rumor spreading and conductance Boyd, Ghosh, Prabhakar, Shah, *IEEE Transaction on Information Theory* 2006 Mosk-Aoyama, Shah, *IEEE Transaction on Information Theory* 2008

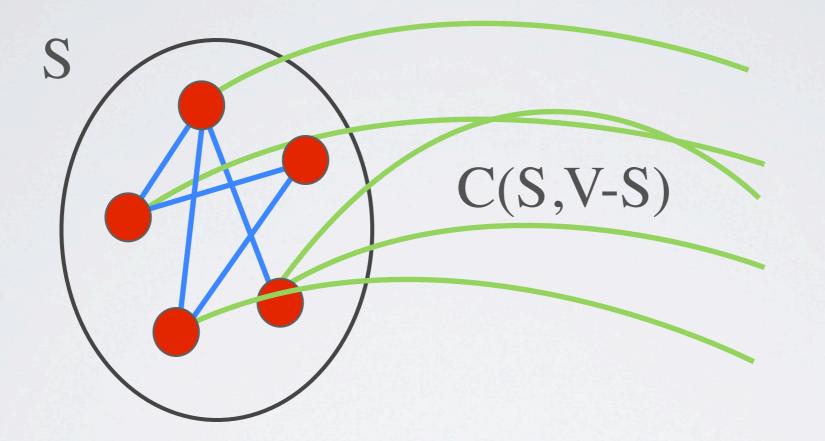
Social networks

Empirical evidence

• Leskovec, Lang, Dasgupta and Mahoney give empirical evidence that social networks have conductance $\Omega\left(\frac{1}{\log n}\right)$

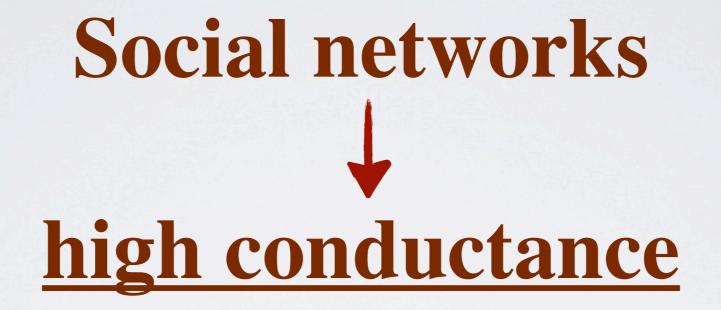
• Can we relate the performance of rumor spreading algorithms with the conductance of the graph?

Conductance

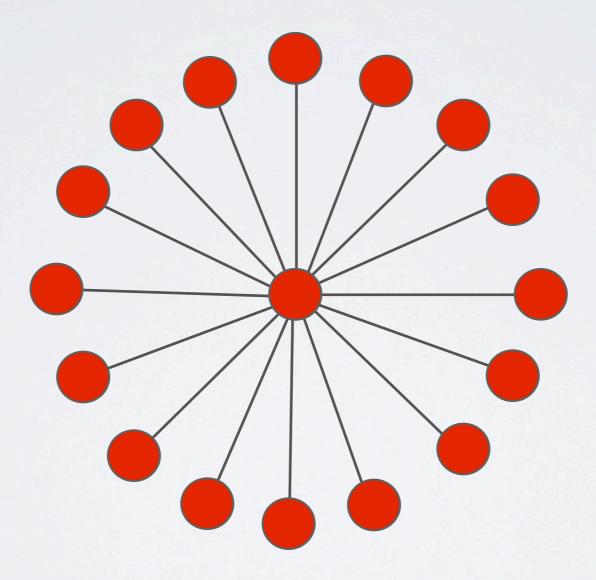


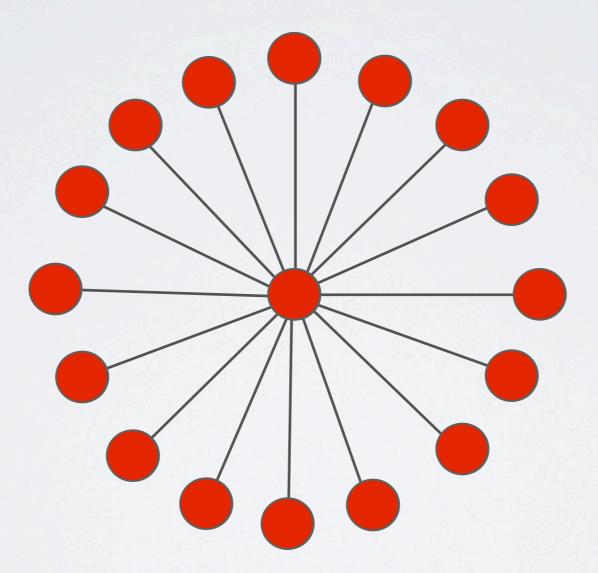
 $\phi(G) = \min_{\substack{S \subseteq V \\ \operatorname{vol}(S) \leq |E|}} \frac{|C(S, V - S)|}{\min(\operatorname{vol}(S), \operatorname{vol}(V - S))}$

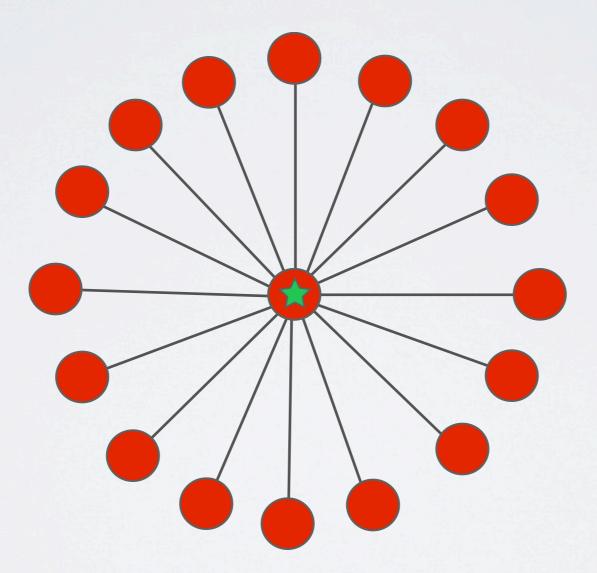
Social networks

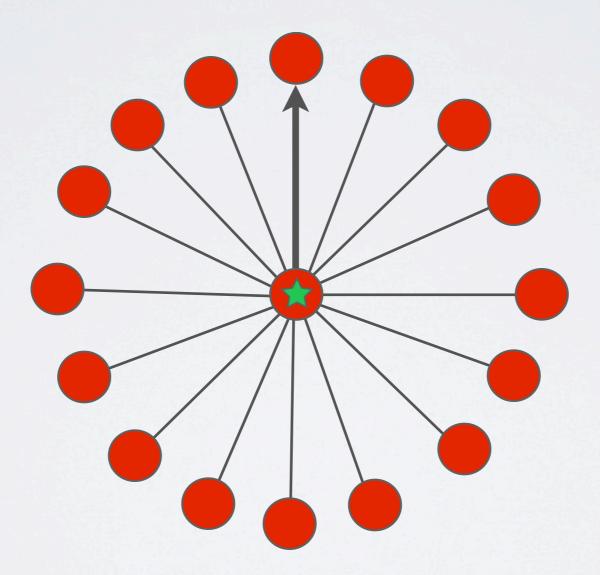


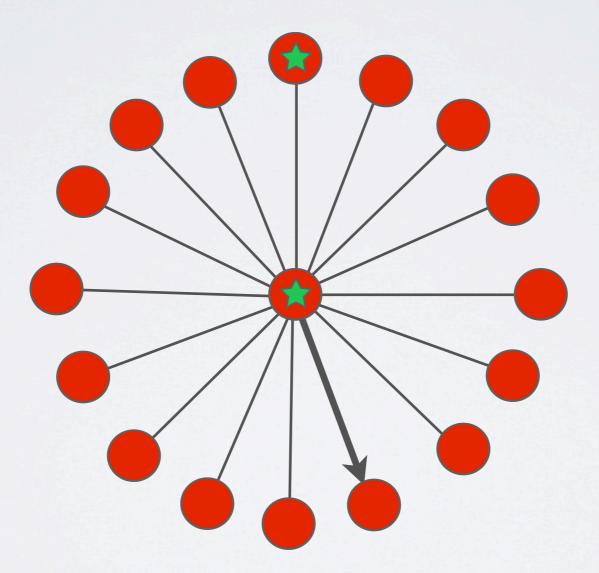
Is rumor spreading fast on high conductance graphs?

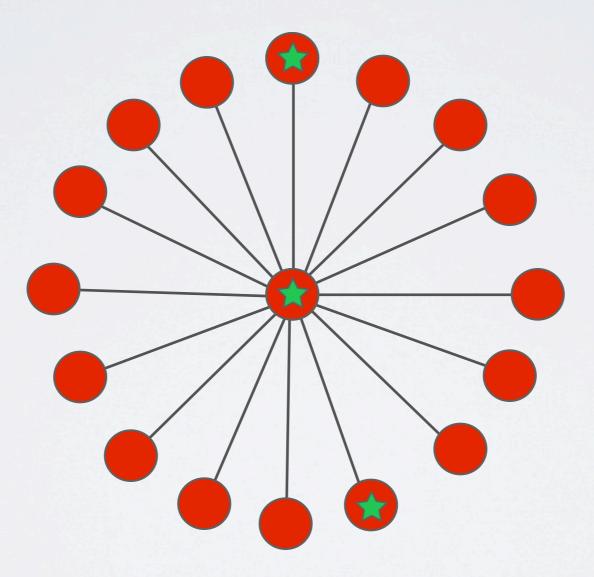




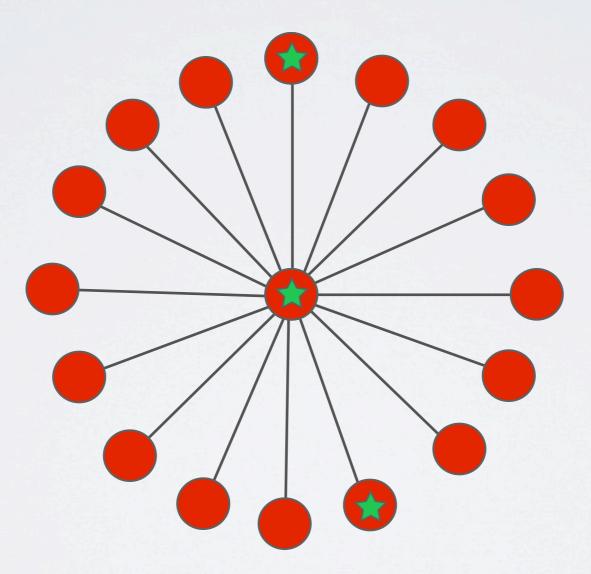




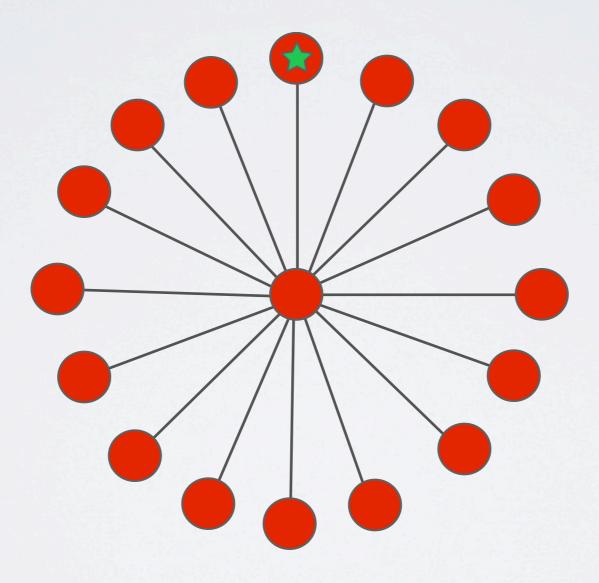


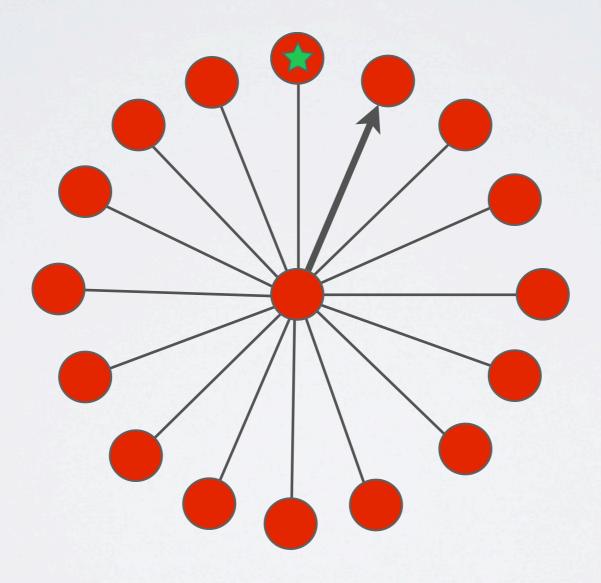


Coupon Collector!



Coupon Collector!

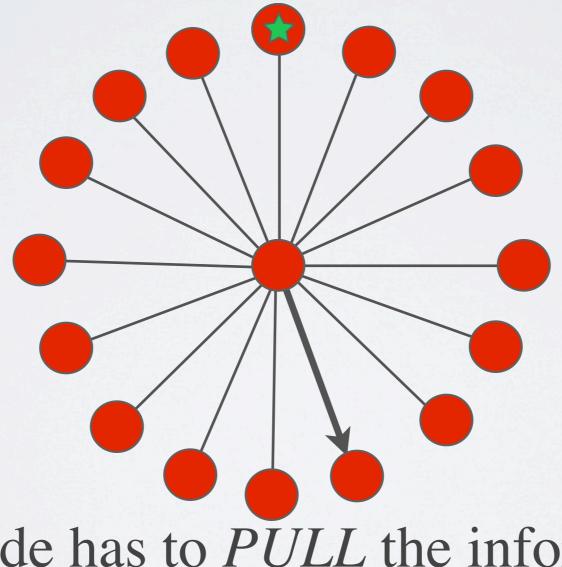






The central node has to *PULL* the information from the right node.

Is the PULL strategy fast? NO



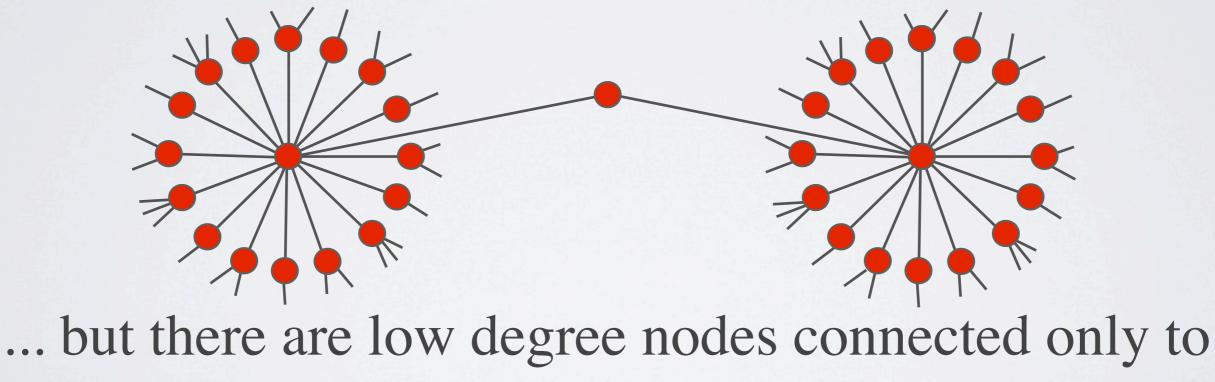
The central node has to *PULL* the information from the right node.

T_{PUSH} and **T**_{PULL} in social networks

Social networks do not look like a star...

T_{PUSH} and **T**_{PULL} in social networks

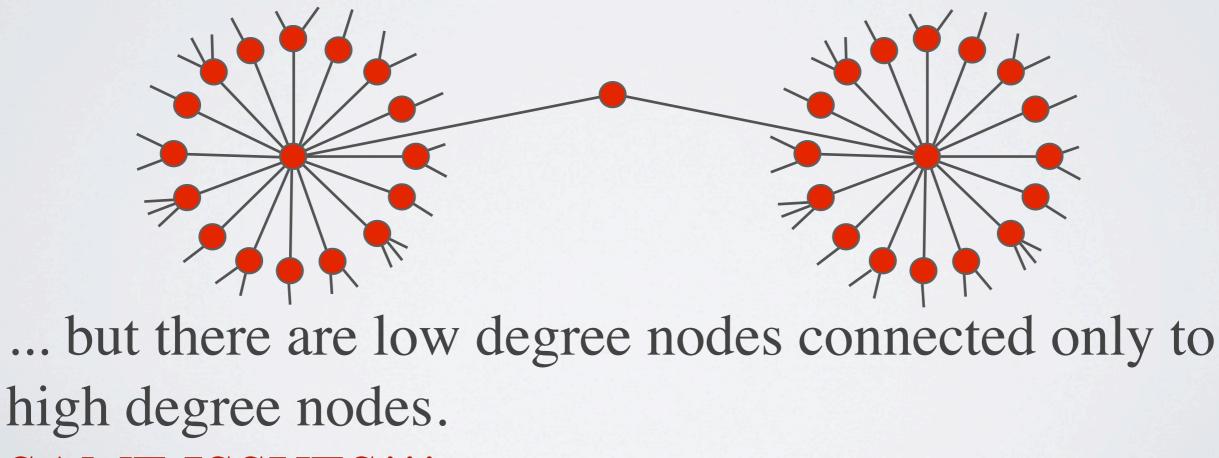
Social networks do not look like a star...



high degree nodes.

T_{PUSH} and **T**_{PULL} in social networks

Social networks do not look like a star...



SAME ISSUES!!!

TPUSH-PULL?

Let G be a graph with conductance Φ , then w.h.p.

 $T_{PUSH-PULL} = O\left(\frac{\log n}{\Phi}\left(\log\frac{1}{\Phi}\right)^{2}\right)$

Let G be a graph with conductance Φ , then w.h.p.

$$T_{PUSH-PULL} = O\left(\frac{\log n}{\Phi} \left(\log \frac{1}{\Phi}\right)^2\right)$$
$$T_{PUSH-PULL} = \Omega\left(\frac{\log n}{\Phi}\right)$$

Lower bound

• Take any 3-regular graph of constant vertex expansion of order $\Theta(n\Phi)$ and diameter $\Theta(\log n)$

Lower bound

- Take any 3-regular graph of constant vertex expansion of order $\Theta(n\Phi)$ and diameter $\Theta(\log n)$
- Replace each edge with a path of length $\Theta(\Phi^{-1})$

Lower bound

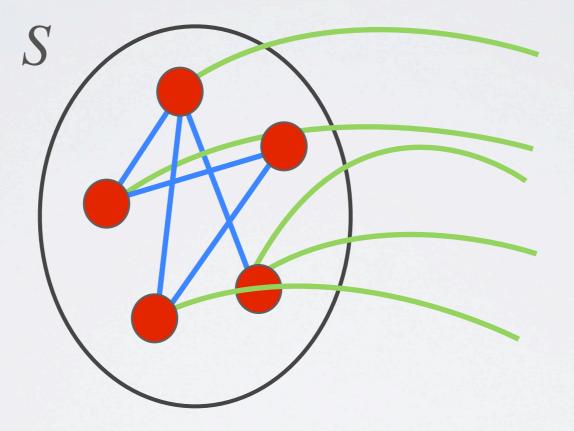
- Take any 3-regular graph of constant vertex expansion of order $\Theta(n\Phi)$ and diameter $\Theta(\log n)$
- Replace each edge with a path of length $\Theta(\Phi^{-1})$
- The resulting graph will have order $\Theta(n)$, diameter $\Theta(\Phi^{-1} \log n)$ and conductance $\Theta(\Phi)$.

Upper bound

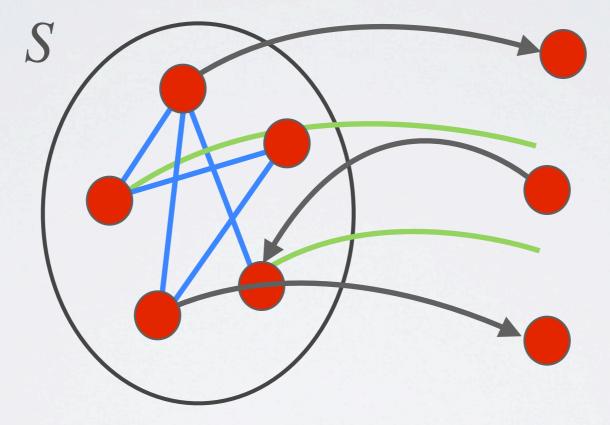
Let G be a graph with conductance Φ , then w.h.p.

$T_{PUSH-PULL} = O\left(\frac{\log n}{\Phi^2}\right)$

Key lemma

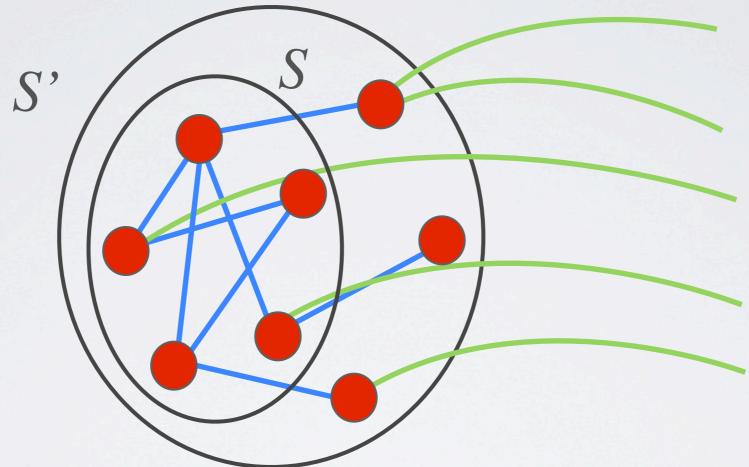


Key lemma



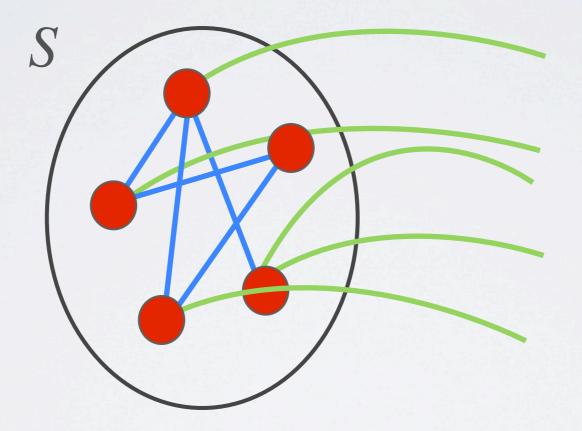
We consider the process for $O(\Phi^{-1})$ steps.

Key lemma

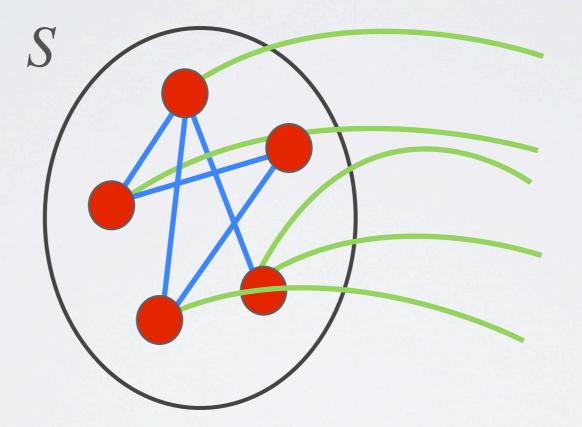


After $\Theta(\Phi^{-1})$ steps with $\Theta(1)$ probability, if S' is the new set of informed nodes, then $\operatorname{Vol}(S') \ge (1 + \Omega(\Phi)) \operatorname{Vol}(S)$

We consider macro-phases composed by $O(\Phi^{-1})$ steps

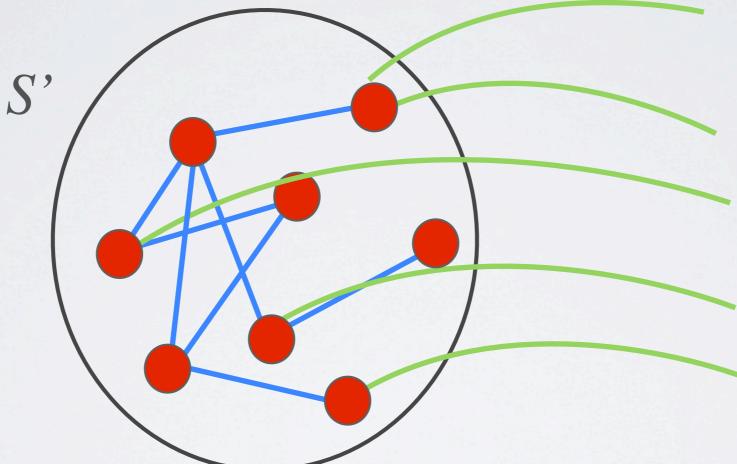


We consider macro-phases composed by $O(\Phi^{-1})$ steps



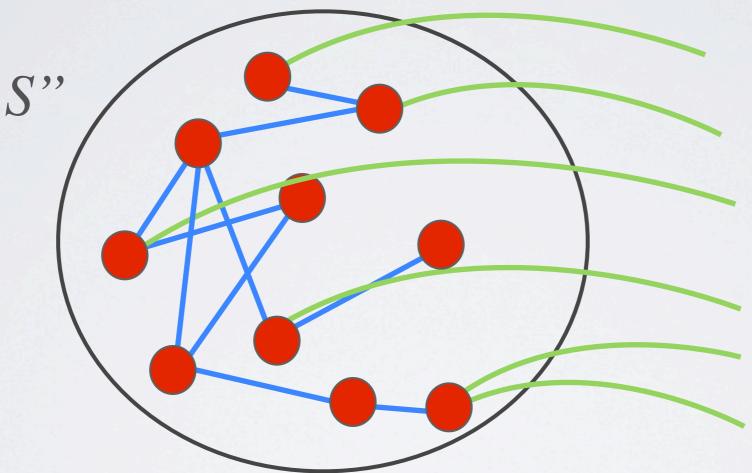
We say that a macro-phase is successful if the volume increases by a factor of $(1 + \Phi)$.

We consider macro-phases composed by $O(\Phi^{-1})$ steps



After 1 successful macro-phase, we have: $Vol(S') \ge (1 + \Omega(\Phi)) Vol(S)$

We consider macro-phases composed by $O(\Phi^{-1})$ steps



After 2 successful macro-phases, we have: $Vol(S'') \ge (1 + \Omega(\Phi))^2 Vol(S)$

We consider macro-phases composed by $O(\Phi^{-1})$ steps

INFORMED After $\Theta(\Phi^{-1}\log n)$ successful macro-phases, we have: Vol(INFORMED) > Vol(G)/2

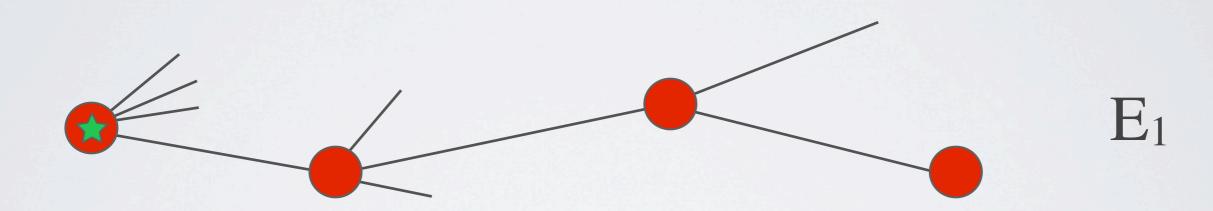
• A macro-phase is successful with constant probability.

- A macro-phase is successful with constant probability.
- After $O(\Phi^{-1} \log n)$ successful macro-phases, we have $Vol(INFORMED) \ge Vol(G)/2$

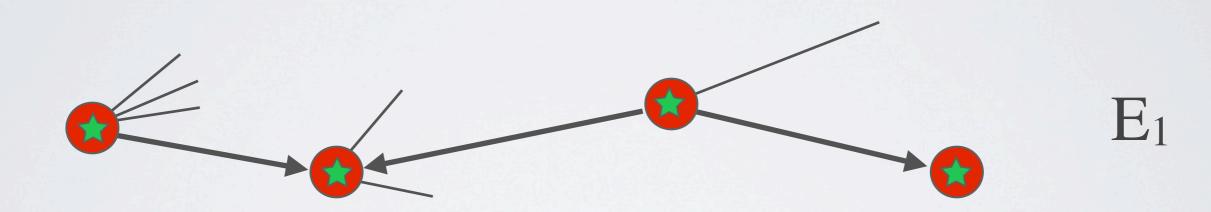
- A macro-phase is successful with constant probability.
- After $O(\Phi^{-1}\log n)$ successful macro-phases, we have $Vol(INFORMED) \ge Vol(G)/2$
- Using the Chernoff bound after O(Φ⁻¹ log n) macro-phases, we have O(Φ⁻¹ log n) successful macro-phases.

After $O(\Phi^{-2} \log n)$ steps we have Vol(*INFORMED*) > Vol(*G*)/2 w.h.p.

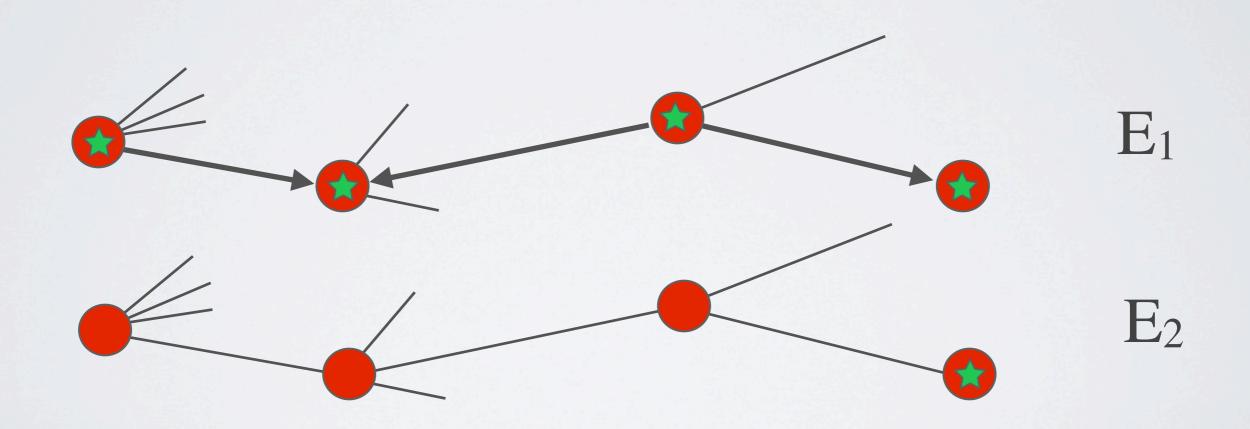
After $O(\Phi^{-2} \log n)$ steps we have Vol(INFORMED) > Vol(G)/2 w.h.p.



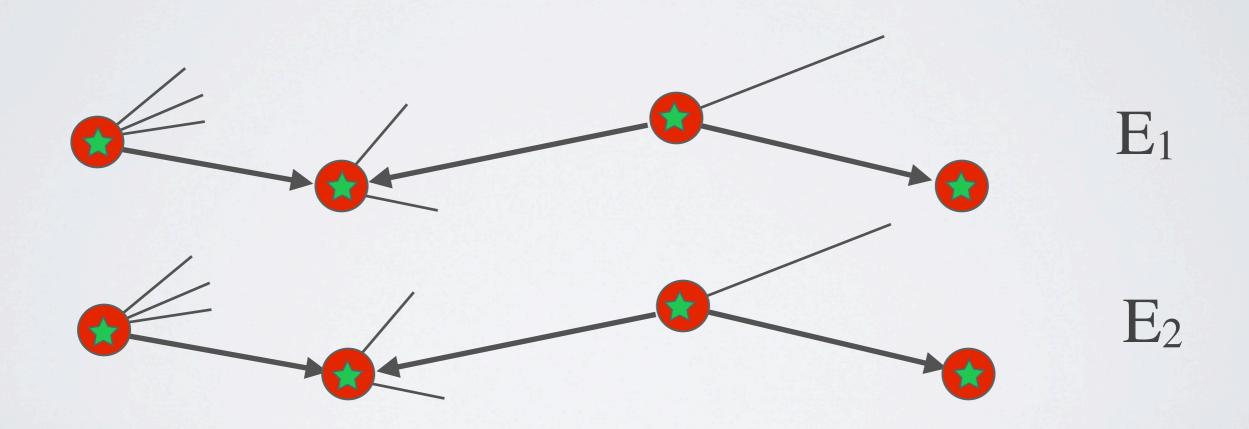
After $O(\Phi^{-2} \log n)$ steps we have Vol(INFORMED) > Vol(G)/2 w.h.p.



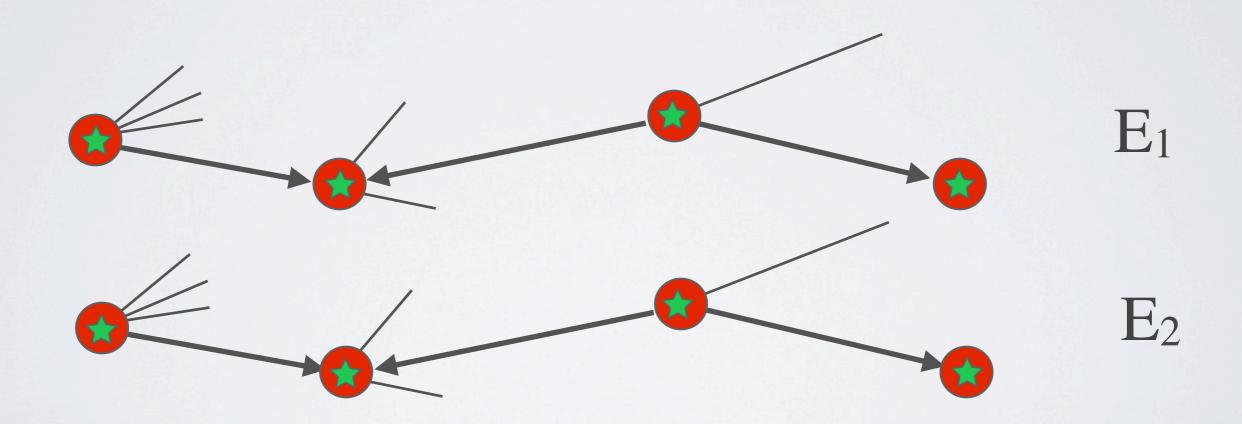
After $O(\Phi^{-2} \log n)$ steps we have Vol(*INFORMED*) > Vol(*G*)/2 w.h.p.



After $O(\Phi^{-2} \log n)$ steps we have Vol(*INFORMED*) > Vol(*G*)/2 w.h.p.



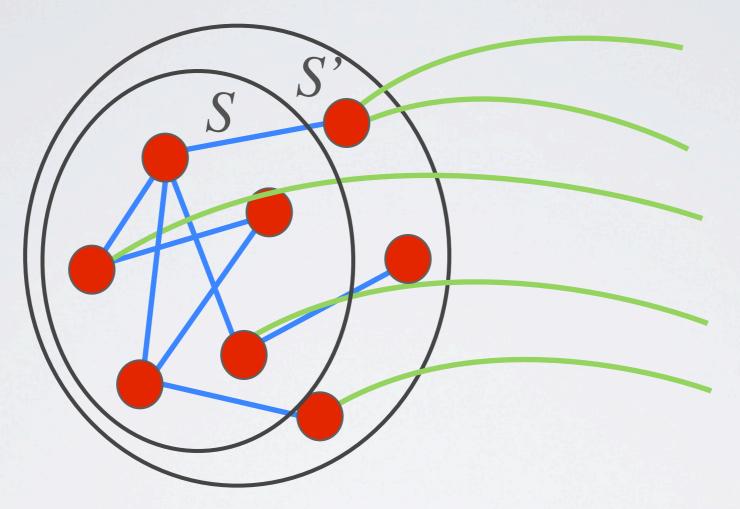
After $O(\Phi^{-2} \log n)$ steps we have Vol(*INFORMED*) > Vol(*G*)/2 w.h.p.



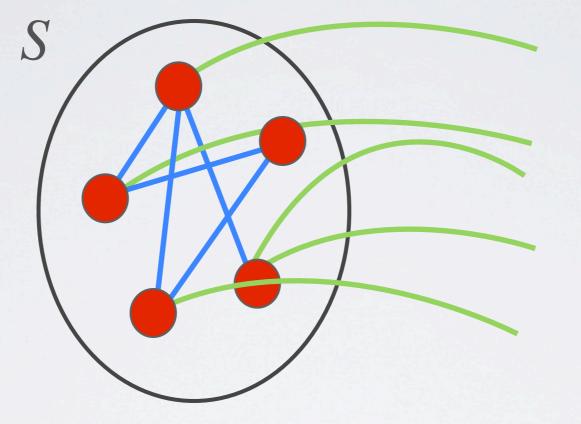
 $P(E_1) = P(E_2)$

- After $O(\Phi^{-2} \log n)$ steps we have Vol(INFORMED) > Vol(G)/2 w.h.p.
- After O(Φ⁻² log n) steps each node pulls the information from a set of nodes of Vol(G)/2 w.h.p.
- After O(Φ⁻² log n) steps all the nodes have the info w.h.p.

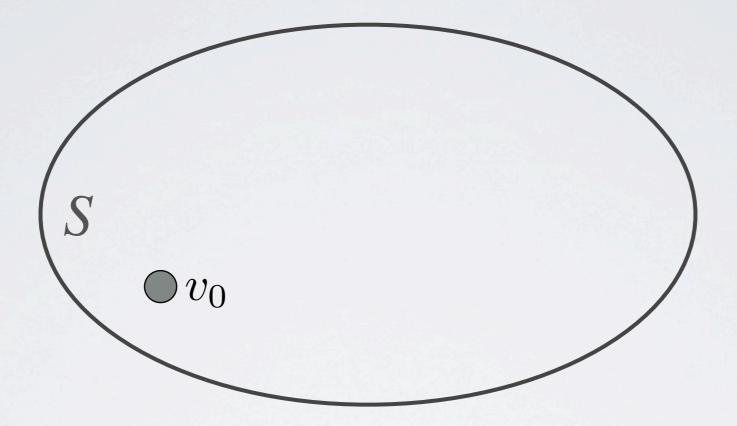
Key lemma

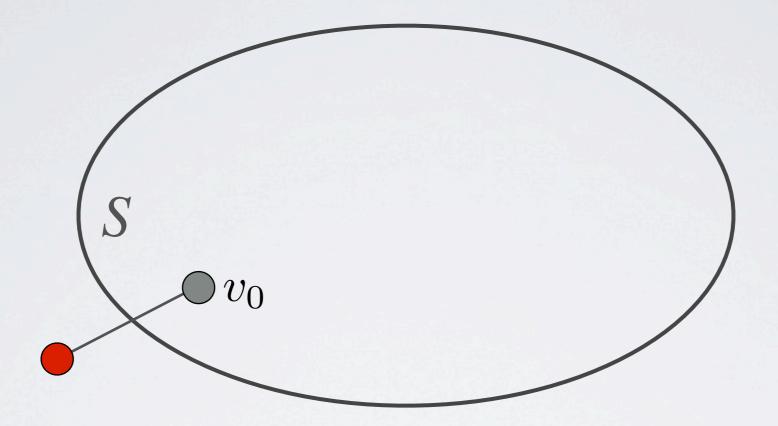


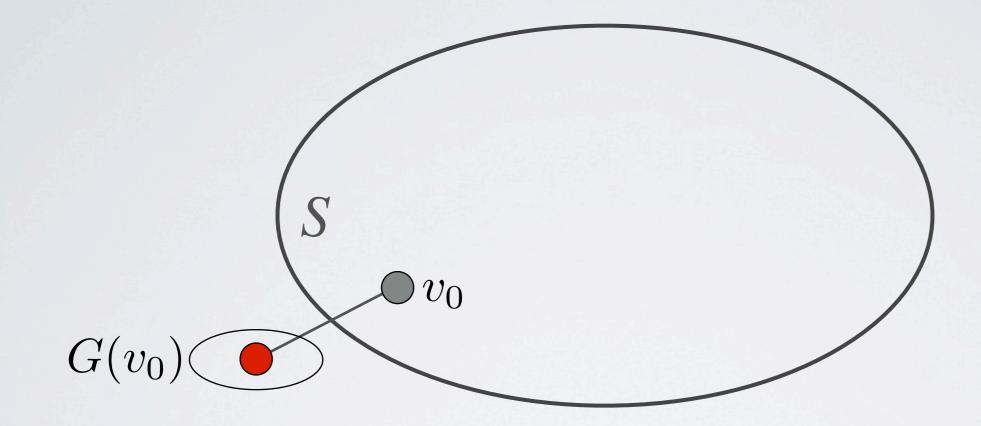
After $O(\Phi^{-1})$ steps with constant probability, we have that for the new set of informed nodes S' $Vol(S') \ge (1 + \Omega(\Phi)) Vol(S)$

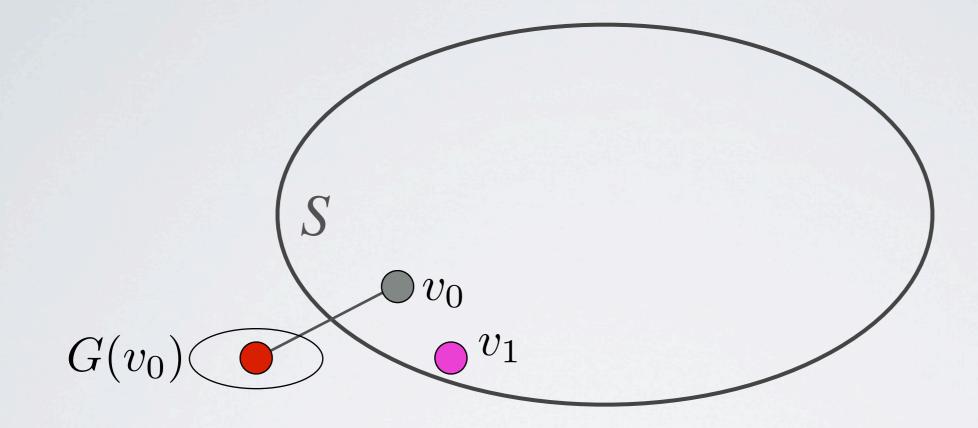


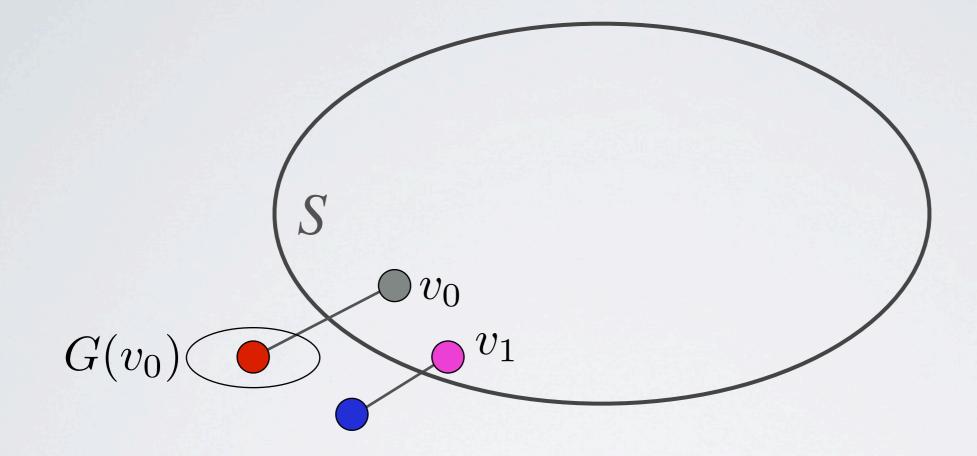
Idea: analyze what happens to each node in *S* in a macro-phase

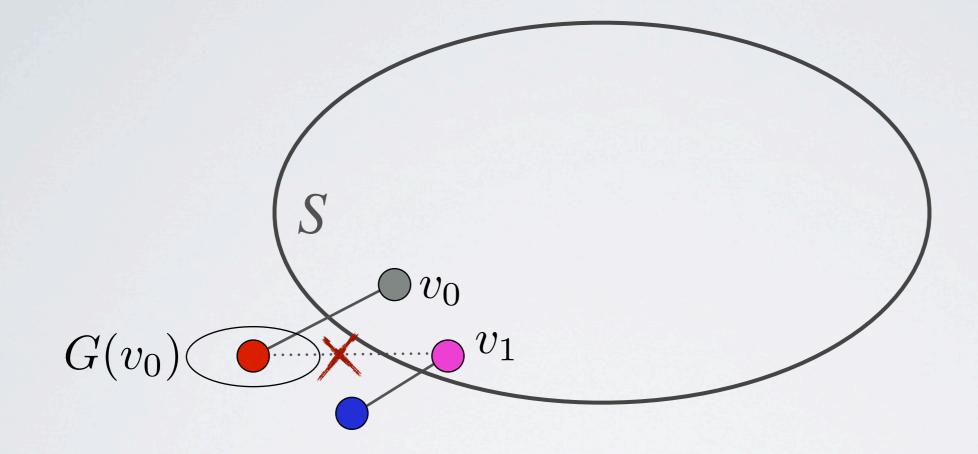


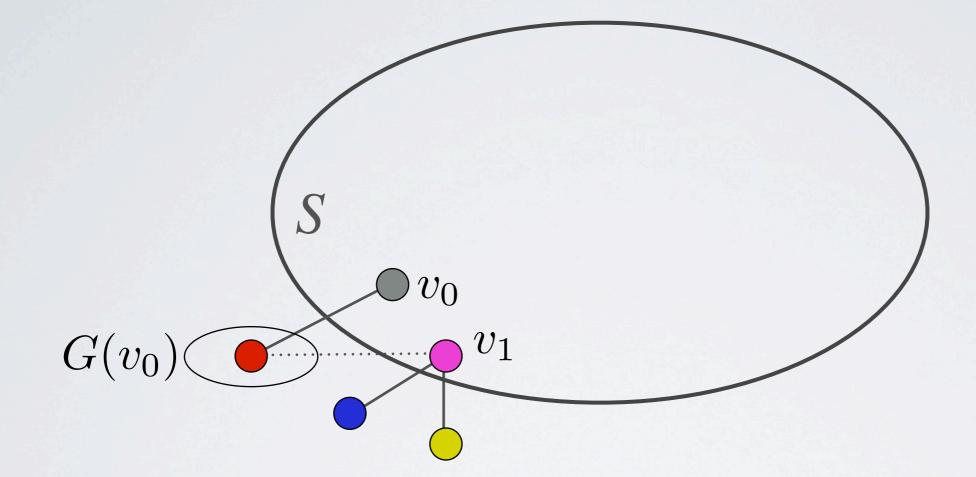


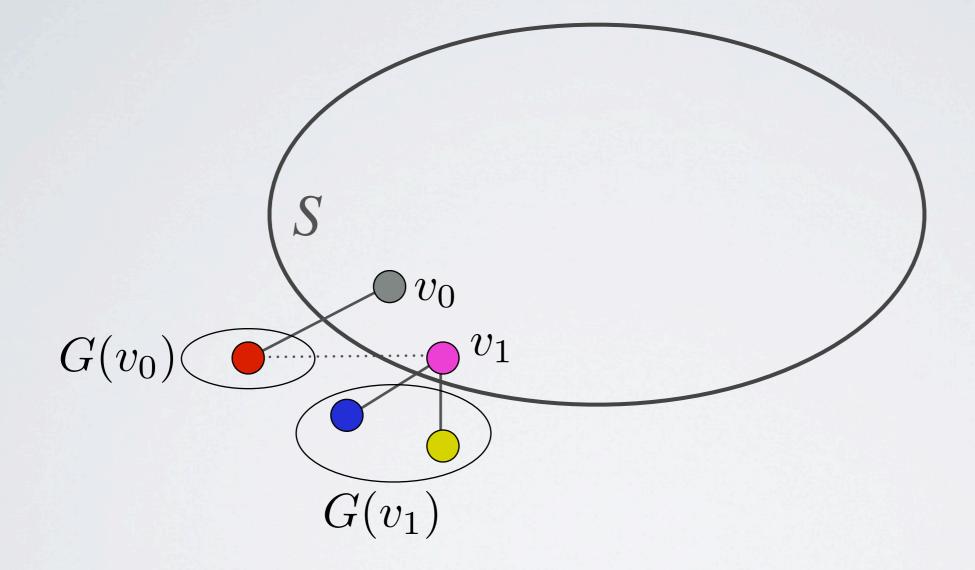


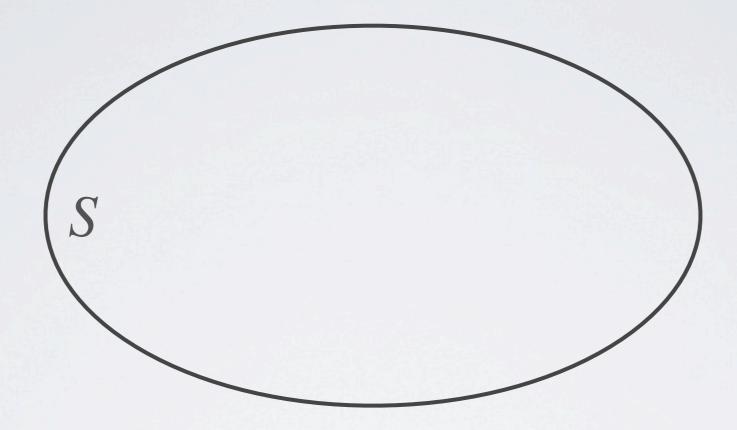


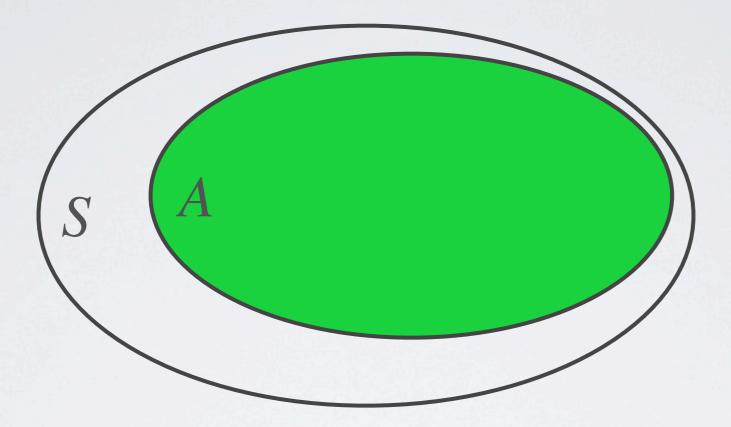






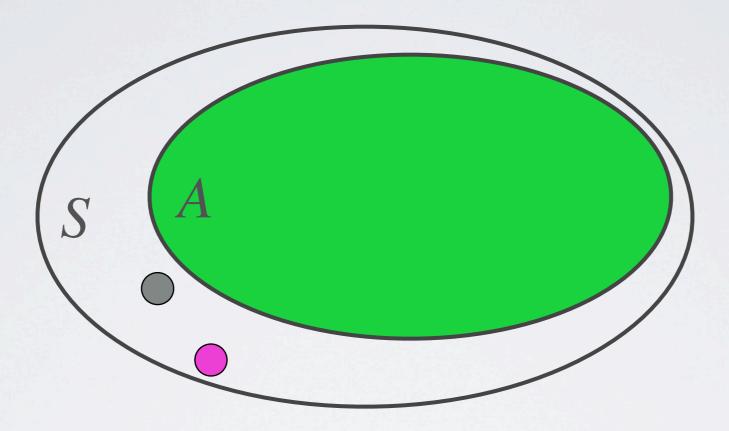






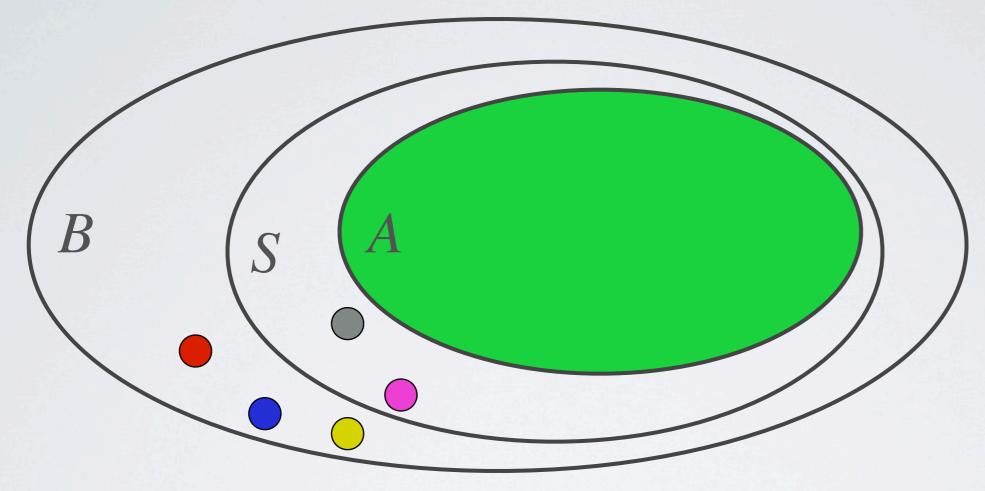
We define the following sets:

• $A \subseteq S$, informed nodes that we still have to consider

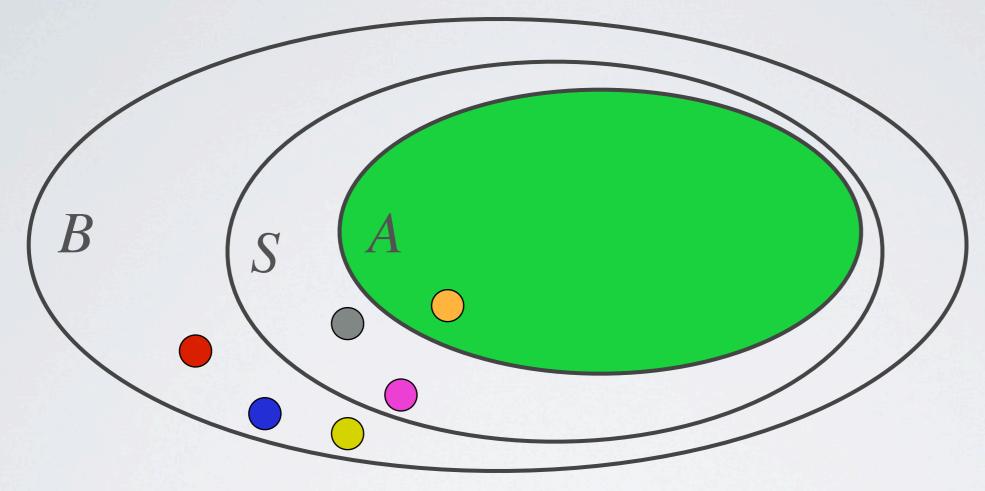


We define the following sets:

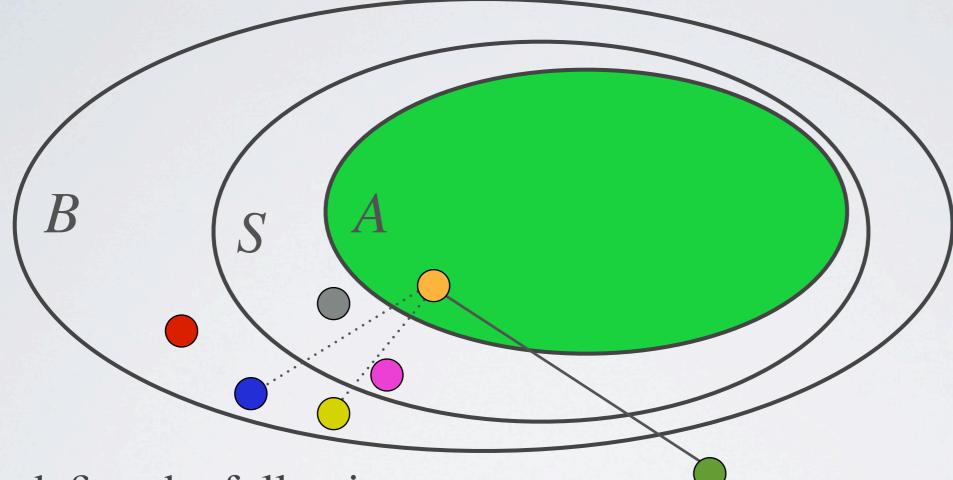
• $A \subseteq S$, informed nodes that we still have to consider



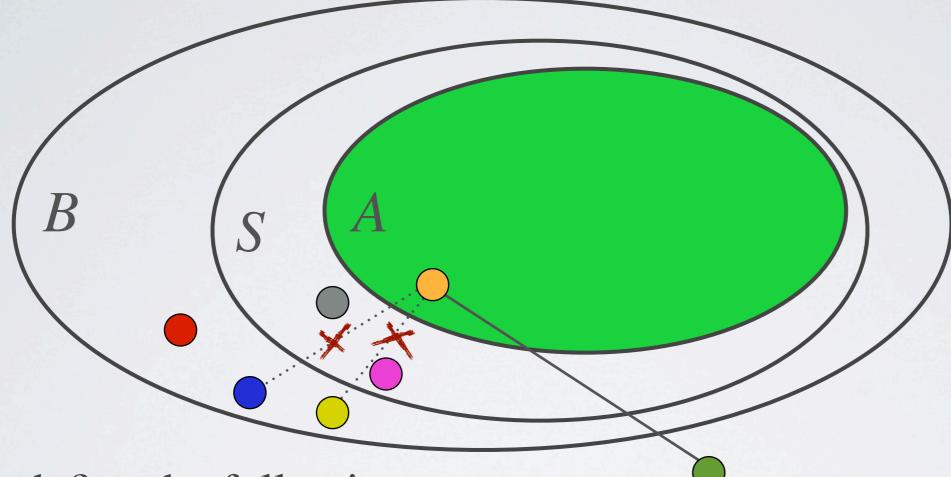
- $A \subseteq S$, informed nodes that we still have to consider
- $B \supseteq S$, informed nodes at the current phase



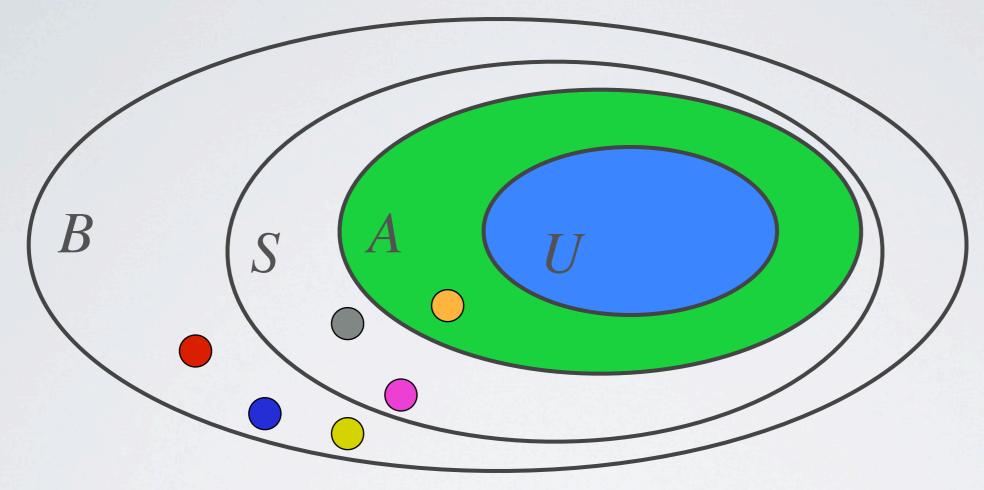
- $A \subseteq S$, informed nodes that we still have to consider
- $B \supseteq S$, informed nodes at the current phase



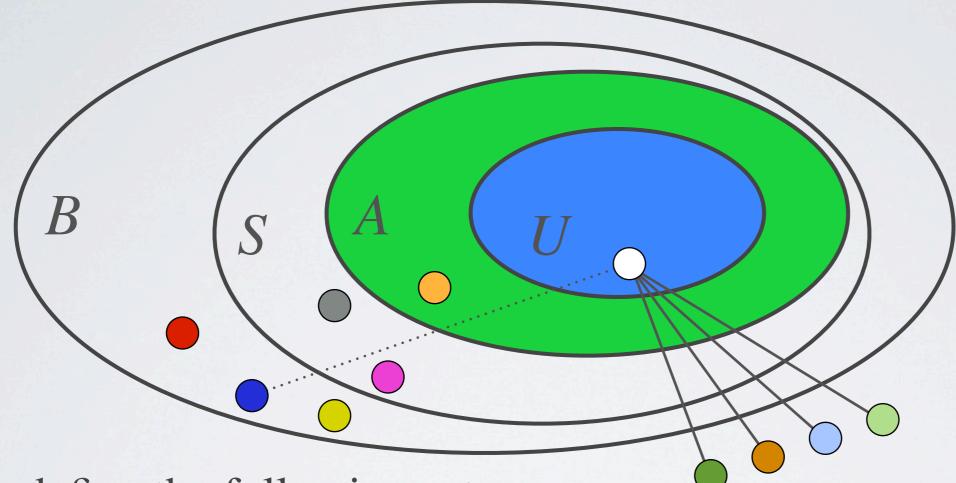
- $A \subseteq S$, informed nodes that we still have to consider
- $B \supseteq S$, informed nodes at the current phase



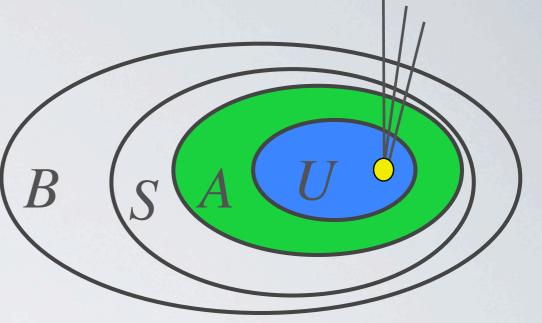
- $A \subseteq S$, informed nodes that we still have to consider
- $B \supseteq S$, informed nodes at the current phase



- $A \subseteq S$, informed nodes that we still have to consider
- $B \supseteq S$, informed nodes at the current phase
- U useful nodes in A

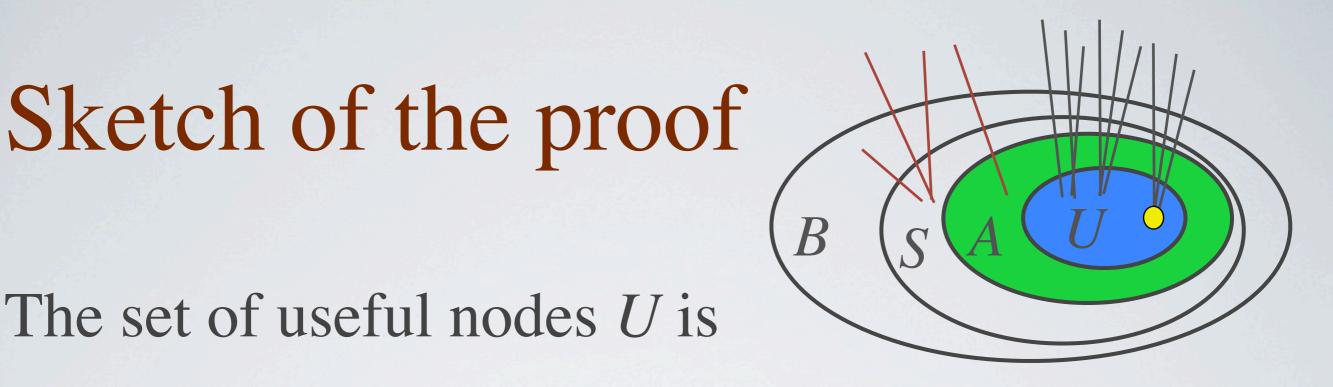


- $A \subseteq S$, informed nodes that we still have to consider
- $B \supseteq S$, informed nodes at the current phase
- U useful nodes in A



The set of useful nodes U is

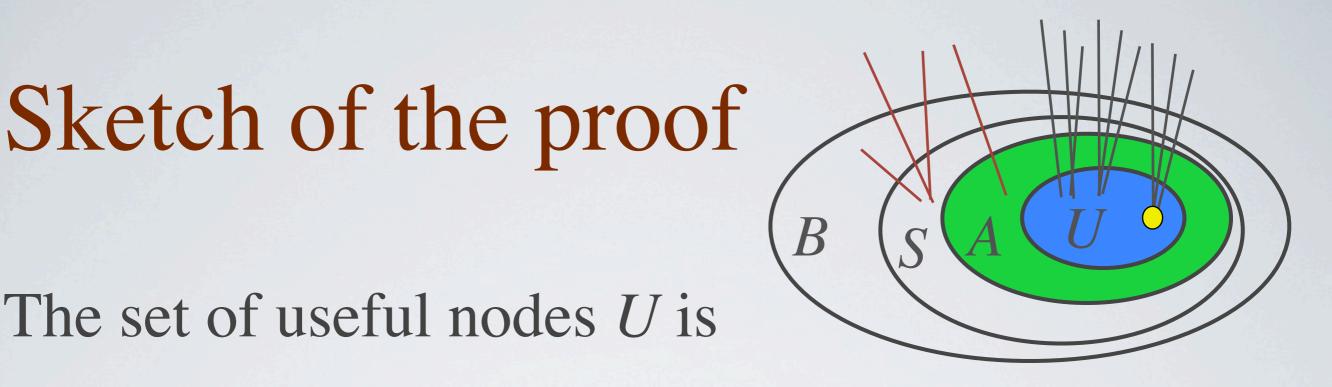
$$U = U_B(A) = \left\{ v \in A \mid \frac{\deg_B^+(v)}{\deg(v)} \ge \frac{\phi}{2} \right\}$$



The set of useful nodes U is

$$U = U_B(A) = \left\{ v \in A \mid \frac{\deg_B^+(v)}{\deg(v)} \ge \frac{\phi}{2} \right\}$$

1. The cut (U, V - B) is a large part of the cut (S, V - S), which has size at least Φ Vol(S).



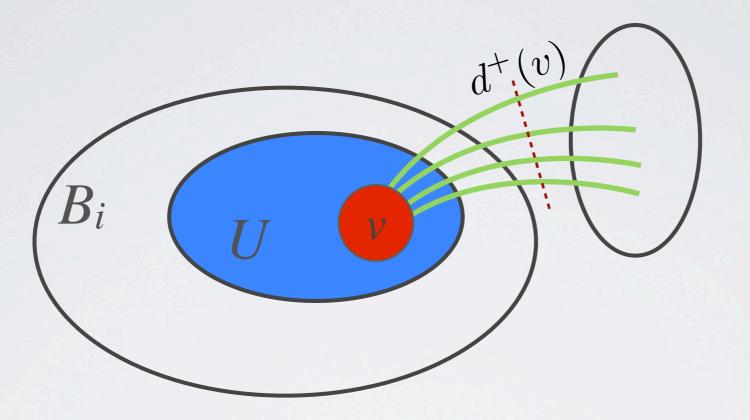
The set of useful nodes U is

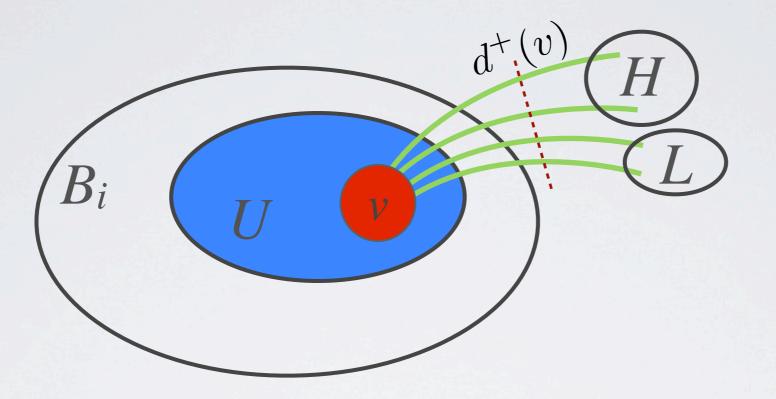
$$U = U_B(A) = \left\{ v \in A \mid \frac{\deg_B^+(v)}{\deg(v)} \ge \frac{\phi}{2} \right\}$$

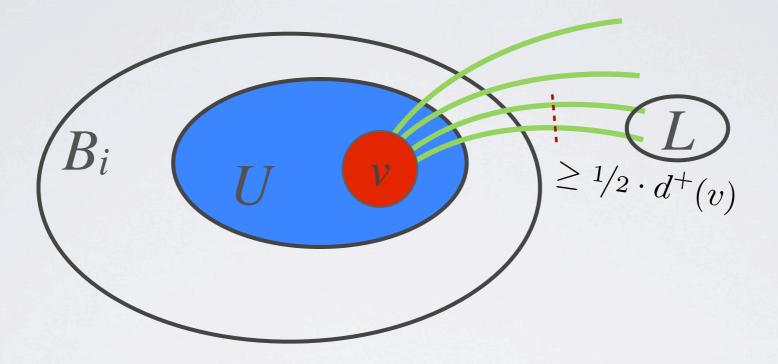
1. The cut (U, V - B) is a large part of the cut (S, V - S), which has size at least Φ Vol(S). 2. And, furthermore, each node in U will have constant probability of gaining a constant fraction of its edges in the cut.

In order to get the key lemma we prove that for every macrophase, and every v in U

$$\Pr\left[G(v) \ge \frac{1}{20} \cdot \deg_B^+(v)\right] \ge 1 - e^{-1}$$

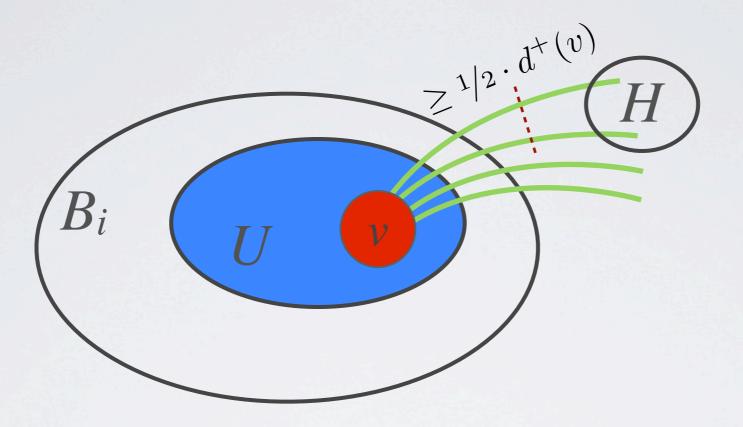






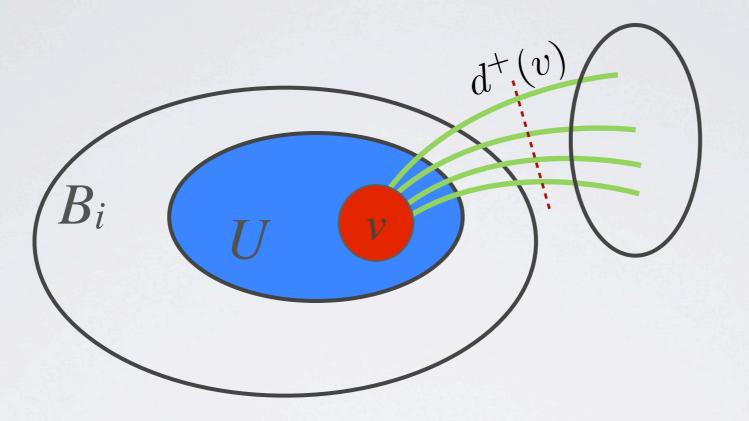
By applying Chebyshev inequality with some arithmetic manipulation, we get that, in the PULL regime:

$$\Pr\left[g(v) > \frac{1}{20} \cdot d^+(v)\right] \ge \frac{1}{10}$$



In the PUSH regime, we had:

$$\Pr\left[g(v) > \frac{1}{20} \cdot d^+(v)\right] \ge \frac{\phi}{10}$$



So, in general,

$$\Pr\left[g(v) > \frac{1}{20} \cdot d^+(v)\right] \ge \frac{\phi}{10}$$

Since we go on for Φ^{-1} steps,

$$\Pr\left[G(v) \ge \frac{1}{20} \cdot \deg_B^+(v)\right] \ge 1 - e^{-1}$$

Upper bound

Let G be a graph with conductance Φ , then w.h.p.

$T_{PUSH-PULL} = O\left(\frac{\log n}{\Phi^2}\right)$

The tighter bound

Let G be a graph with conductance Φ , then w.h.p.

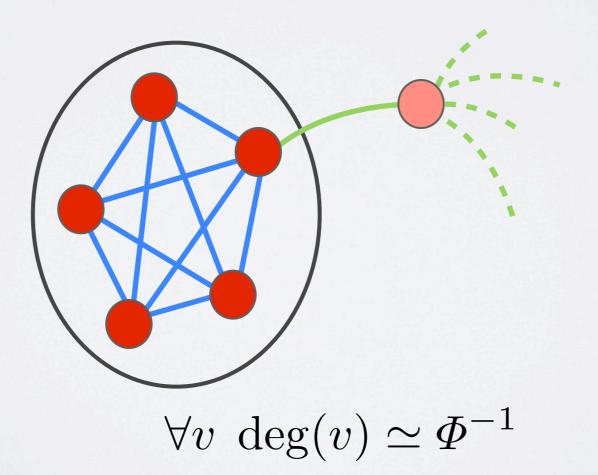
$T_{PUSH-PULL} = O\left(\frac{\log n}{\Phi} \left(\log \frac{1}{\Phi}\right)^2\right)$

After $\Theta(\Phi^{-1})$ steps with $\Theta(1)$ probability, if S' is the new set of informed nodes, then $\operatorname{Vol}(S') \ge (1 + \Omega(\Phi)) \operatorname{Vol}(S)$

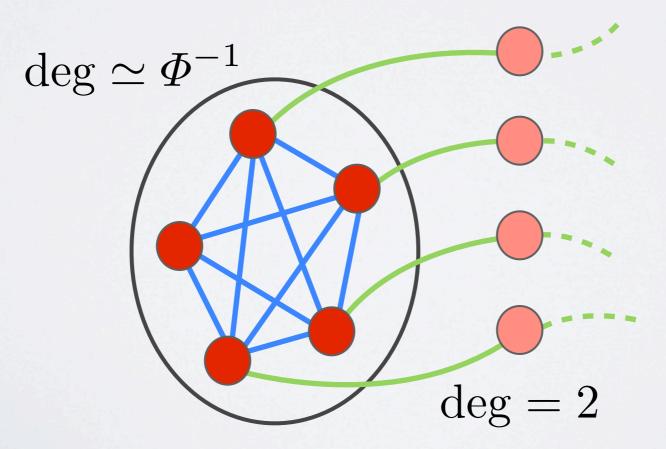
After $\Theta(\Phi^{-1})$ steps with $\Theta(1)$ probability, if S' is the new set of informed nodes, then $Vol(S') \ge (1 + \Omega(\Phi)) Vol(S)$

After $\Theta(\Phi^{-1})$ steps with $\Theta(1)$ probability, if S' is the new set of informed nodes, then $\operatorname{Vol}(S') \ge (1 + \Omega(\Phi)) \operatorname{Vol}(S)$

After $\Theta(\Phi^{-1})$ steps with $\Theta(1)$ probability, if S' is the new set of informed nodes, then $Vol(S') \ge (1 + \Omega(\Phi)) Vol(S)$

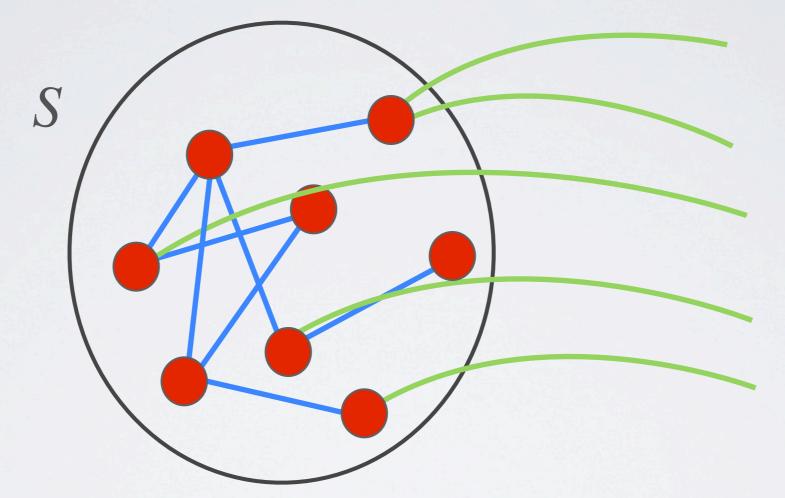


After $\Theta(\Phi^{-1})$ steps with $\Theta(1)$ probability, if S' is the new set of informed nodes, then $\operatorname{Vol}(S') \ge (1 + \Omega(\Phi)) \operatorname{Vol}(S)$



After $\Theta(\Phi^{-1})$ steps with $\Theta(1)$ probability, if S' is the new set of informed nodes, then $\operatorname{Vol}(S') \ge (1 + \Omega(\Phi)) \operatorname{Vol}(S)$

Stronger key lemma



For some $p \ge \Phi$, after O(1/p) steps with constant probability, we have that for the new set of informed nodes S'

$$\operatorname{vol}(S') \ge \left(1 + \Omega\left(\frac{\phi}{p\log^2 \phi^{-1}}\right)\right) \cdot \operatorname{vol}(S)$$

Conclusion

- We studied the rumor spreading problem in graph of conductance Φ .
- We showed that the *PUSH* and the *PULL* strategies are not fast,
- and that the *PUSH-PULL* strategy is fast, and we gave an almost tight bound for its performance.

Conclusion

- We studied the rumor spreading problem in graph of conductance Φ .
- We showed that the *PUSH* and the *PULL* strategies are not fast, (fast if some kind of "degree uniformity" exists)
- and that the *PUSH-PULL* strategy is fast, and we gave an almost tight bound for its performance.

Open problems

• Find a tight bound for the *PUSH-PULL* strategy.

• Study the relationship between rumor spreading and vertex expansion.

• Can the *PUSH* strategy inform efficiently a large part of a social network?

Thank you! Questions?

