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Why is rumor spreading fast in 
social networks?

• How to answer this question?

• How to define rumor spreading?

• What are social networks?



Rumor spreading



Rumor spreading

• Push, Pull and Push-Pull
   Introduced in the contest of distributed database.
      Demers, Greene, Hauser, Irish, Larson, Shenker, Sturgis, Swinehart, Terry,  PODC 1987

• Basic mechanisms for information  
   dissemination in networks.
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Push Pull 



• What are the completion times TPUSH, TPULL, 
   TPUSH-PULL?

• How many rounds will it take for each node to  
   know the information with probability 1 – o(1),  
   assuming a worst-case source?

Performance



• TPUSH, TPULL  = Θ(log n) if G = Kn
      Frieze, Grimmet, Algorithms 1985
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Huge in Social Networks!



• TPUSH  O(log n) in “quasi-regular” expanders
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Connections to Spielman-Teng
sparsification theory



Social networks



Empirical evidence

• Leskovec, Lang, Dasgupta and Mahoney give   
   empirical evidence that social networks have   
   conductance

• Can we relate the performance of rumor 
   spreading algorithms with the conductance of 
   the graph?

Ω

(
1

log n

)



Conductance

S

C(S,V-S)

φ(G) = min
S⊆V

vol(S)≤|E|

|C(S, V − S)|
min(vol(S), vol(V − S))



Social networks

high conductance



Social networks

high conductance

Is rumor spreading fast on high conductance graphs?
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the right node.



TPULL

The central node has to PULL the information from 
the right node.

Is the PULL strategy fast? NO
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... but there are low degree nodes connected only to 
high degree nodes.
SAME ISSUES!!!



TPUSH-PULL?
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Lower bound

• Take any 3-regular graph of constant vertex
  expansion of order Θ(nΦ) and diameter Θ(log n)

• Replace each edge with a path of length Θ(Φ-1)

• The resulting graph will have order Θ(n), diameter 
   Θ(Φ-1 log n) and conductance Θ(Φ).



Upper bound

Let G be a graph with conductance Φ, then 
w.h.p.
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S

We consider the process for O(Φ-1) steps.

Key lemma



Proof strategy

S’

After Θ(Φ-1) steps with Θ(1) probability, if S’ 
is the new set of informed nodes, then

Vol(S’) ≥ (1+ Ω(Φ)) Vol(S)

Key lemma
S



Proof strategy

S

We consider macro-phases composed by O(Φ-1) 
steps



Proof strategy
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After Θ(Φ-1 log n) successful macro-phases, 
we have:
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We consider macro-phases composed by O(Φ-1) 
steps
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Proof strategy
• A macro-phase is successful with constant 
  probability.

• After O(Φ-1 log n) successful macro-phases, we
  have Vol(INFORMED) ≥ Vol(G)/2

• Using the Chernoff bound after O(Φ-1 log n) 
  macro-phases, we have O(Φ-1 log n) successful 
  macro-phases.
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Proof strategy

• After O(Φ-2 log n) steps we have 
          Vol(INFORMED) > Vol(G)/2 w.h.p.

• After O(Φ-2 log n) steps each node pulls the 
  information from a set of nodes of Vol(G)/2 
  w.h.p.

• After O(Φ-2 log n) steps all the nodes have 
  the info w.h.p.



Key lemma

S’

After O(Φ-1) steps with constant probability, we 
have that for the new set of informed nodes S’

Vol(S’) ≥ (1+ Ω(Φ)) Vol(S)

S



Sketch of the proof

Idea: analyze what happens to each node in 
         S in a macro-phase

S
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S
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Sketch of the proof

The set of useful nodes U is
S AB U

1. The cut (U, V - B) is a large part of the cut
    (S, V - S), which has size at least Φ Vol(S).
2. And, furthermore, each node in U will have  
    constant probability of gaining a constant 
    fraction of its edges in the cut.

U = UB(A) =

{
v ∈ A | deg

+
B(v)

deg(v)
≥ φ

2

}



Sketch of the proof

In order to get the key lemma we prove that for every macro-
phase, and every v in U

Pr

[
G(v) ≥ 1

20
· deg+B(v)

]
≥ 1− e−1
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Sketch of the proof
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U

Sketch of the proof

v

By applying Chebyshev inequality with some arithmetic 
manipulation, we get that, in the PULL regime:

Bi

Pr

[
g(v) >

1

20
· d+(v)

]
≥ 1

10

L
≥ 1/2 · d+(v)



U

Sketch of the proof

vBi

In the PUSH regime, we had:

Pr

[
g(v) >

1

20
· d+(v)

]
≥ φ

10

H≥ 1/2 · d
+ (v)



U

Sketch of the proof

vBi

So, in general,

Pr

[
g(v) >

1

20
· d+(v)

]
≥ φ

10

d
+ (v)



Sketch of the proof

Since we go on for Φ-1 steps,

Pr

[
G(v) ≥ 1

20
· deg+B(v)

]
≥ 1− e−1



Upper bound

Let G be a graph with conductance Φ, then 
w.h.p.



The tighter bound

Let G be a graph with conductance Φ, then 
w.h.p.
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Can the key lemma be improved?

After Θ(Φ-1) steps with Θ(1) probability, if S’ 
is the new set of informed nodes, then

Vol(S’) ≥ (1+ Ω(Φ)) Vol(S)

deg = 2

deg ! Φ−1



Can the key lemma be improved?

After Θ(Φ-1) steps with Θ(1) probability, if S’ 
is the new set of informed nodes, then

Vol(S’) ≥ (1+ Ω(Φ)) Vol(S)

No?



Stronger key lemma

S

For some p ≥ Φ, after O(1/p) steps with constant probability, 
we have that for the new set of informed nodes S’

vol(S′) ≥
(
1 + Ω

(
φ

p log2 φ−1

))
· vol(S)



Conclusion

• We studied the rumor spreading problem in graph 
  of conductance Φ.

• We showed that the PUSH and the PULL strategies are 
   not fast,

• and that the PUSH-PULL strategy is fast, and we gave an 
  almost tight bound for its performance.



Conclusion

• We studied the rumor spreading problem in graph 
  of conductance Φ.

• We showed that the PUSH and the PULL strategies are 
   not fast, (fast if some kind of “degree uniformity” exists)

• and that the PUSH-PULL strategy is fast, and we gave an 
  almost tight bound for its performance.



Open problems

• Find a tight bound for the PUSH-PULL strategy.

• Study the relationship between rumor spreading and
   vertex expansion.

• Can the PUSH strategy inform efficiently a large part of 
   a social network?



Thank you!
Questions?


