
Improved Direct Product Theorems for
Randomized Query Complexity

Andrew Drucker

Sept. 13, 2010

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 1/28

Big picture

Usually, computer users have not one goal, but many.

When can multiple computations be combined to make them
easier?

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 2/28

Big picture

Usually, computer users have not one goal, but many.

When can multiple computations be combined to make them
easier?

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 2/28

Separate inputs

Suppose each of the outputs we want to compute depends on a
separate input.

For example:

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 3/28

Direct Product Theorems

Intuition: the different outputs are ‘unrelated’, so computing
them together shouldn’t make the task easier.

Direct Product Theorems (DPTs) are results that make
this intuition rigorous (when it’s correct!).

DPTs have been studied for many years, in many
computational models.

Our focus: randomized query algorithms, with

cost = number of queries to the input.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 4/28

Direct Product Theorems

Intuition: the different outputs are ‘unrelated’, so computing
them together shouldn’t make the task easier.

Direct Product Theorems (DPTs) are results that make
this intuition rigorous (when it’s correct!).

DPTs have been studied for many years, in many
computational models.

Our focus: randomized query algorithms, with

cost = number of queries to the input.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 4/28

Direct Product Theorems

Intuition: the different outputs are ‘unrelated’, so computing
them together shouldn’t make the task easier.

Direct Product Theorems (DPTs) are results that make
this intuition rigorous (when it’s correct!).

DPTs have been studied for many years, in many
computational models.

Our focus: randomized query algorithms, with

cost = number of queries to the input.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 4/28

Direct Product Theorems

Intuition: the different outputs are ‘unrelated’, so computing
them together shouldn’t make the task easier.

Direct Product Theorems (DPTs) are results that make
this intuition rigorous (when it’s correct!).

DPTs have been studied for many years, in many
computational models.

Our focus: randomized query algorithms, with

cost = number of queries to the input.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 4/28

Direct Product Theorems

Intuition: the different outputs are ‘unrelated’, so computing
them together shouldn’t make the task easier.

Direct Product Theorems (DPTs) are results that make
this intuition rigorous (when it’s correct!).

DPTs have been studied for many years, in many
computational models.

Our focus: randomized query algorithms, with

cost = number of queries to the input.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 4/28

Direct Product Theorems

Intuition: the different outputs are ‘unrelated’, so computing
them together shouldn’t make the task easier.

Direct Product Theorems (DPTs) are results that make
this intuition rigorous (when it’s correct!).

DPTs have been studied for many years, in many
computational models.

Our focus: randomized query algorithms, with

cost = number of queries to the input.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 4/28

Direct products

Given
F : {0, 1}n → Σ, and k > 1,

define
F⊗k(x1 . . . , xk)

4
=
(
F (x1), . . . ,F (xk)

)
,

a function of k different n-bit inputs x1, . . . , xk .

F⊗k = ‘k-fold direct product’ of F .

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 5/28

Direct products

Given
F : {0, 1}n → Σ, and k > 1,

define
F⊗k(x1 . . . , xk)

4
=
(
F (x1), . . . ,F (xk)

)
,

a function of k different n-bit inputs x1, . . . , xk .

F⊗k = ‘k-fold direct product’ of F .

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 5/28

Average-case complexity

For a function F , a query bound T > 0, and a distribution µ
over inputs to F , define

SucT ,µ(F)

as the maximum success probability of any T -query
algorithm R in computing F (y) on input y ∼ µ.

(probability over randomness in y and in R)

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 6/28

Average-case complexity

For a function F , a query bound T > 0, and a distribution µ
over inputs to F , define

SucT ,µ(F)

as the maximum success probability of any T -query
algorithm R in computing F (y) on input y ∼ µ.

(probability over randomness in y and in R)

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 6/28

The form of a DPT

Let µ⊗k denote k independent samples from µ.

A Direct Product Theorem is of the form:

∀F , SucT ,µ(F) ≤ p =⇒ SucT ′,µ⊗k (F⊗k) ≤ p′,

where T ′, p′ depend on T , p, and k .

We hope to have p′ � p and T ′ � T .

“F is hard ⇒ F⊗k is harder.”

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 7/28

The form of a DPT

Let µ⊗k denote k independent samples from µ.

A Direct Product Theorem is of the form:

∀F , SucT ,µ(F) ≤ p =⇒ SucT ′,µ⊗k (F⊗k) ≤ p′,

where T ′, p′ depend on T , p, and k .

We hope to have p′ � p and T ′ � T .

“F is hard ⇒ F⊗k is harder.”

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 7/28

The form of a DPT

Let µ⊗k denote k independent samples from µ.

A Direct Product Theorem is of the form:

∀F , SucT ,µ(F) ≤ p =⇒ SucT ′,µ⊗k (F⊗k) ≤ p′,

where T ′, p′ depend on T , p, and k .

We hope to have p′ � p and T ′ � T .

“F is hard ⇒ F⊗k is harder.”

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 7/28

An ‘ideal’ DPT?

The strongest DPT we could hope for would say:

∀F , SucT ,µ(F) ≤ 1−ε =⇒ SucTk,µ⊗k (F⊗k) ≤ (1−ε)k .

(1− ε)k is the success prob. we’d get if we run the optimal
T -query algorithm on each of the k inputs.

True for restricted classes of algorithms [NRS94], [Sha03].

Shaltiel [Sha03] defined fair Tk-query algorithms for F⊗k as
ones which make exactly T queries to each of the k inputs.
He proved an ‘ideal’ DPT for these algorithms.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 8/28

An ‘ideal’ DPT?

The strongest DPT we could hope for would say:

∀F , SucT ,µ(F) ≤ 1−ε =⇒ SucTk,µ⊗k (F⊗k) ≤ (1−ε)k .

(1− ε)k is the success prob. we’d get if we run the optimal
T -query algorithm on each of the k inputs.

True for restricted classes of algorithms [NRS94], [Sha03].

Shaltiel [Sha03] defined fair Tk-query algorithms for F⊗k as
ones which make exactly T queries to each of the k inputs.
He proved an ‘ideal’ DPT for these algorithms.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 8/28

An ‘ideal’ DPT?

The strongest DPT we could hope for would say:

∀F , SucT ,µ(F) ≤ 1−ε =⇒ SucTk,µ⊗k (F⊗k) ≤ (1−ε)k .

(1− ε)k is the success prob. we’d get if we run the optimal
T -query algorithm on each of the k inputs.

True for restricted classes of algorithms [NRS94], [Sha03].

Shaltiel [Sha03] defined fair Tk-query algorithms for F⊗k as
ones which make exactly T queries to each of the k inputs.
He proved an ‘ideal’ DPT for these algorithms.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 8/28

An ‘ideal’ DPT?

The strongest DPT we could hope for would say:

∀F , SucT ,µ(F) ≤ 1−ε =⇒ SucTk,µ⊗k (F⊗k) ≤ (1−ε)k .

(1− ε)k is the success prob. we’d get if we run the optimal
T -query algorithm on each of the k inputs.

True for restricted classes of algorithms [NRS94], [Sha03].

Shaltiel [Sha03] defined fair Tk-query algorithms for F⊗k as
ones which make exactly T queries to each of the k inputs.
He proved an ‘ideal’ DPT for these algorithms.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 8/28

An ‘ideal’ DPT?

But, Shaltiel also showed the ideal DPT is false in general!

The message: we can sometimes solve F⊗k more effectively
by adaptive reallocation of queries.

Counterexamples of [Sha03] apply to most computational
models.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 9/28

An ‘ideal’ DPT?

But, Shaltiel also showed the ideal DPT is false in general!

The message: we can sometimes solve F⊗k more effectively
by adaptive reallocation of queries.

Counterexamples of [Sha03] apply to most computational
models.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 9/28

An ‘ideal’ DPT?

But, Shaltiel also showed the ideal DPT is false in general!

The message: we can sometimes solve F⊗k more effectively
by adaptive reallocation of queries.

Counterexamples of [Sha03] apply to most computational
models.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 9/28

Our new DPT

We modify Shaltiel’s techniques for fair algorithms, to show a new
DPT for unrestricted query algorithms.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 10/28

Our new DPT

Theorem
For any Boolean function F and α > 0,

SucT ,µ(F) ≤ 1− ε ⇒ SucαεTk,µ⊗k (F⊗k) ≤ (2αε(1− ε))k .

Success probability drops exponentially in k , if (number of
queries) ≈ εTk.
For α ≤ 1 we have 2αε(1− ε) ≤ 1− ε+ αε.

Varying α gives a tradeoff between the query bound and the
success probability.

Shaltiel’s examples tell us this is a nearly optimal tradeoff (for
most parameter settings).

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 11/28

Our new DPT

Theorem
For any Boolean function F and α > 0,

SucT ,µ(F) ≤ 1− ε ⇒ SucαεTk,µ⊗k (F⊗k) ≤ (2αε(1− ε))k .

Success probability drops exponentially in k , if (number of
queries) ≈ εTk.
For α ≤ 1 we have 2αε(1− ε) ≤ 1− ε+ αε.

Varying α gives a tradeoff between the query bound and the
success probability.

Shaltiel’s examples tell us this is a nearly optimal tradeoff (for
most parameter settings).

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 11/28

Our new DPT

Theorem
For any Boolean function F and α > 0,

SucT ,µ(F) ≤ 1− ε ⇒ SucαεTk,µ⊗k (F⊗k) ≤ (2αε(1− ε))k .

Success probability drops exponentially in k , if (number of
queries) ≈ εTk.
For α ≤ 1 we have 2αε(1− ε) ≤ 1− ε+ αε.

Varying α gives a tradeoff between the query bound and the
success probability.

Shaltiel’s examples tell us this is a nearly optimal tradeoff (for
most parameter settings).

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 11/28

Our new DPT

Theorem
For any Boolean function F and α > 0,

SucT ,µ(F) ≤ 1− ε ⇒ SucαεTk,µ⊗k (F⊗k) ≤ (2αε(1− ε))k .

Success probability drops exponentially in k , if (number of
queries) ≈ εTk.
For α ≤ 1 we have 2αε(1− ε) ≤ 1− ε+ αε.

Varying α gives a tradeoff between the query bound and the
success probability.

Shaltiel’s examples tell us this is a nearly optimal tradeoff (for
most parameter settings).

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 11/28

Proof sketch

First, some definitions about a single, n-bit input y ∼ µ to F .

For v ∈ {0, 1, ∗}n, let µ[v] denote y ∼ µ conditioned on the
event

[yi = vi , for each i such that vi ∈ {0, 1}].

E.g., if µ is uniform on 3 bits, then µ[00∗] is uniform on
{000, 001}.
(We can assume µ has full support.)

Let |v | = number of 0/1 entries in v .

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 12/28

Proof sketch

First, some definitions about a single, n-bit input y ∼ µ to F .

For v ∈ {0, 1, ∗}n, let µ[v] denote y ∼ µ conditioned on the
event

[yi = vi , for each i such that vi ∈ {0, 1}].

E.g., if µ is uniform on 3 bits, then µ[00∗] is uniform on
{000, 001}.
(We can assume µ has full support.)

Let |v | = number of 0/1 entries in v .

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 12/28

Proof sketch

First, some definitions about a single, n-bit input y ∼ µ to F .

For v ∈ {0, 1, ∗}n, let µ[v] denote y ∼ µ conditioned on the
event

[yi = vi , for each i such that vi ∈ {0, 1}].

E.g., if µ is uniform on 3 bits, then µ[00∗] is uniform on
{000, 001}.
(We can assume µ has full support.)

Let |v | = number of 0/1 entries in v .

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 12/28

Proof sketch

First, some definitions about a single, n-bit input y ∼ µ to F .

For v ∈ {0, 1, ∗}n, let µ[v] denote y ∼ µ conditioned on the
event

[yi = vi , for each i such that vi ∈ {0, 1}].

E.g., if µ is uniform on 3 bits, then µ[00∗] is uniform on
{000, 001}.
(We can assume µ has full support.)

Let |v | = number of 0/1 entries in v .

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 12/28

Proof sketch

First, some definitions about a single, n-bit input y ∼ µ to F .

For v ∈ {0, 1, ∗}n, let µ[v] denote y ∼ µ conditioned on the
event

[yi = vi , for each i such that vi ∈ {0, 1}].

E.g., if µ is uniform on 3 bits, then µ[00∗] is uniform on
{000, 001}.
(We can assume µ has full support.)

Let |v | = number of 0/1 entries in v .

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 12/28

The k-fold setting

Say the algorithm R receives inputs x1, . . . , xk ∼ µ⊗k and
makes M = bαεTkc queries.

For j ∈ {1, . . . , k} and t ≥ 0, let the random string

v jt ∈ {0, 1, ∗}n

describe bits seen of the j-th input xj , after R has made t
queries overall (to the entire collection).

Claim
Conditioned on v1t , . . . , v

k
t , the k inputs remain independent, with

xj ∼ µ[v jt].

Proof is a simple calculation.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 13/28

The k-fold setting

Say the algorithm R receives inputs x1, . . . , xk ∼ µ⊗k and
makes M = bαεTkc queries.

For j ∈ {1, . . . , k} and t ≥ 0, let the random string

v jt ∈ {0, 1, ∗}n

describe bits seen of the j-th input xj , after R has made t
queries overall (to the entire collection).

Claim
Conditioned on v1t , . . . , v

k
t , the k inputs remain independent, with

xj ∼ µ[v jt].

Proof is a simple calculation.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 13/28

The k-fold setting

Say the algorithm R receives inputs x1, . . . , xk ∼ µ⊗k and
makes M = bαεTkc queries.

For j ∈ {1, . . . , k} and t ≥ 0, let the random string

v jt ∈ {0, 1, ∗}n

describe bits seen of the j-th input xj , after R has made t
queries overall (to the entire collection).

Claim
Conditioned on v1t , . . . , v

k
t , the k inputs remain independent, with

xj ∼ µ[v jt].

Proof is a simple calculation.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 13/28

The k-fold setting

Say the algorithm R receives inputs x1, . . . , xk ∼ µ⊗k and
makes M = bαεTkc queries.

For j ∈ {1, . . . , k} and t ≥ 0, let the random string

v jt ∈ {0, 1, ∗}n

describe bits seen of the j-th input xj , after R has made t
queries overall (to the entire collection).

Claim
Conditioned on v1t , . . . , v

k
t , the k inputs remain independent, with

xj ∼ µ[v jt].

Proof is a simple calculation.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 13/28

k inputs, k ‘fortunes’

For each input xj and each step t ≥ 0, define a random
variable X (j , t) ∈ [0, 1].

Think of the algorithm R as a gambler gambling at k tables,
and consider X (j , t) his fortune at the j-th table after t steps
(i.e., queries).

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 14/28

k inputs, k ‘fortunes’

Recall: v jt ∈ {0, 1, ∗}n describes the queries made to xj so far.

If |v jt | ≤ T , say that input j is under-budget (after t steps),
otherwise j is over-budget.

If j is under-budget, define X (j , t) as the maximum success
probability of computing F (xj) correctly of any algorithm

making ≤ T − |v jt | queries to input xj , under distribution

xj ∼ µ[v jt].

Meaning: X (j , t) = best possible ‘winning prospects’ of
computing F (xj), if we stay under-budget.

Observe: X (j , t) ≥ 1/2 in this case.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 15/28

k inputs, k ‘fortunes’

Recall: v jt ∈ {0, 1, ∗}n describes the queries made to xj so far.

If |v jt | ≤ T , say that input j is under-budget (after t steps),
otherwise j is over-budget.

If j is under-budget, define X (j , t) as the maximum success
probability of computing F (xj) correctly of any algorithm

making ≤ T − |v jt | queries to input xj , under distribution

xj ∼ µ[v jt].

Meaning: X (j , t) = best possible ‘winning prospects’ of
computing F (xj), if we stay under-budget.

Observe: X (j , t) ≥ 1/2 in this case.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 15/28

k inputs, k ‘fortunes’

Recall: v jt ∈ {0, 1, ∗}n describes the queries made to xj so far.

If |v jt | ≤ T , say that input j is under-budget (after t steps),
otherwise j is over-budget.

If j is under-budget, define X (j , t) as the maximum success
probability of computing F (xj) correctly of any algorithm

making ≤ T − |v jt | queries to input xj , under distribution

xj ∼ µ[v jt].

Meaning: X (j , t) = best possible ‘winning prospects’ of
computing F (xj), if we stay under-budget.

Observe: X (j , t) ≥ 1/2 in this case.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 15/28

k inputs, k ‘fortunes’

Recall: v jt ∈ {0, 1, ∗}n describes the queries made to xj so far.

If |v jt | ≤ T , say that input j is under-budget (after t steps),
otherwise j is over-budget.

If j is under-budget, define X (j , t) as the maximum success
probability of computing F (xj) correctly of any algorithm

making ≤ T − |v jt | queries to input xj , under distribution

xj ∼ µ[v jt].

Meaning: X (j , t) = best possible ‘winning prospects’ of
computing F (xj), if we stay under-budget.

Observe: X (j , t) ≥ 1/2 in this case.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 15/28

k inputs, k ‘fortunes’

Recall: v jt ∈ {0, 1, ∗}n describes the queries made to xj so far.

If |v jt | ≤ T , say that input j is under-budget (after t steps),
otherwise j is over-budget.

If j is under-budget, define X (j , t) as the maximum success
probability of computing F (xj) correctly of any algorithm

making ≤ T − |v jt | queries to input xj , under distribution

xj ∼ µ[v jt].

Meaning: X (j , t) = best possible ‘winning prospects’ of
computing F (xj), if we stay under-budget.

Observe: X (j , t) ≥ 1/2 in this case.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 15/28

k inputs, k ‘fortunes’

If j is over-budget, set

X (j , t) = 1/2.

Note: going over-budget can’t increase our fortune!

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 16/28

k inputs, k ‘fortunes’

If j is over-budget, set

X (j , t) = 1/2.

Note: going over-budget can’t increase our fortune!

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 16/28

Unfavorable gambles

Two important properties:

1. For all j ,
X (j , 0) ≤ 1− ε

(follows from our initial assumption that SucT ,µ(F) ≤ 1− ε).

2. If R makes its next query at table j , then

E[X (j , t + 1)|v1t , . . . , vkt] ≤ X (j , t), and

X (j ′, t + 1) = X (j ′, t) ∀j ′ 6= j .

(Follows from definition of X (j , t) and the fact that the inputs
remain independent.)

So, choosing input j to query next is like making an unfavorable
gamble at the j-th table!

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 17/28

Unfavorable gambles

Two important properties:

1. For all j ,
X (j , 0) ≤ 1− ε

(follows from our initial assumption that SucT ,µ(F) ≤ 1− ε).

2. If R makes its next query at table j , then

E[X (j , t + 1)|v1t , . . . , vkt] ≤ X (j , t), and

X (j ′, t + 1) = X (j ′, t) ∀j ′ 6= j .

(Follows from definition of X (j , t) and the fact that the inputs
remain independent.)

So, choosing input j to query next is like making an unfavorable
gamble at the j-th table!

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 17/28

Unfavorable gambles

Two important properties:

1. For all j ,
X (j , 0) ≤ 1− ε

(follows from our initial assumption that SucT ,µ(F) ≤ 1− ε).

2. If R makes its next query at table j , then

E[X (j , t + 1)|v1t , . . . , vkt] ≤ X (j , t), and

X (j ′, t + 1) = X (j ′, t) ∀j ′ 6= j .

(Follows from definition of X (j , t) and the fact that the inputs
remain independent.)

So, choosing input j to query next is like making an unfavorable
gamble at the j-th table!

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 17/28

Unfavorable gambles

Two important properties:

1. For all j ,
X (j , 0) ≤ 1− ε

(follows from our initial assumption that SucT ,µ(F) ≤ 1− ε).

2. If R makes its next query at table j , then

E[X (j , t + 1)|v1t , . . . , vkt] ≤ X (j , t), and

X (j ′, t + 1) = X (j ′, t) ∀j ′ 6= j .

(Follows from definition of X (j , t) and the fact that the inputs
remain independent.)

So, choosing input j to query next is like making an unfavorable
gamble at the j-th table!

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 17/28

Bounding expectations

It follows that

E

∏
j

X (j , t + 1)

∣∣∣∣v1t , . . . , vkt
 ≤∏

j

X (j , t),

so

E

∏
j

X (j , t)

 ≤∏
j

X (j , 0) ≤ (1− ε)k

for all 0 ≤ t ≤ M.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 18/28

Bounding expectations

It follows that

E

∏
j

X (j , t + 1)

∣∣∣∣v1t , . . . , vkt
 ≤∏

j

X (j , t),

so

E

∏
j

X (j , t)

 ≤∏
j

X (j , 0) ≤ (1− ε)k

for all 0 ≤ t ≤ M.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 18/28

Success probability

What do the final fortunes X (j ,M) tell us?

If input j is under-budget after M queries, then for any guess
y ∈ {0, 1},

Pr
[
y = f (xj)

∣∣v1M , . . . , vkM] ≤ X (j ,M).

If j is over-budget, then (trivially) for any y ,

Pr
[
y = f (xj)

∣∣v1M , . . . , vkM] ≤ 1 = 2 · (1/2) = 2X (j ,M).

Also, these k events are independent, after we condition on
the guesses (y1, . . . , yk) produced by R.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 19/28

Success probability

What do the final fortunes X (j ,M) tell us?

If input j is under-budget after M queries, then for any guess
y ∈ {0, 1},

Pr
[
y = f (xj)

∣∣v1M , . . . , vkM] ≤ X (j ,M).

If j is over-budget, then (trivially) for any y ,

Pr
[
y = f (xj)

∣∣v1M , . . . , vkM] ≤ 1 = 2 · (1/2) = 2X (j ,M).

Also, these k events are independent, after we condition on
the guesses (y1, . . . , yk) produced by R.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 19/28

Success probability

What do the final fortunes X (j ,M) tell us?

If input j is under-budget after M queries, then for any guess
y ∈ {0, 1},

Pr
[
y = f (xj)

∣∣v1M , . . . , vkM] ≤ X (j ,M).

If j is over-budget, then (trivially) for any y ,

Pr
[
y = f (xj)

∣∣v1M , . . . , vkM] ≤ 1 = 2 · (1/2) = 2X (j ,M).

Also, these k events are independent, after we condition on
the guesses (y1, . . . , yk) produced by R.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 19/28

Success probability

What do the final fortunes X (j ,M) tell us?

If input j is under-budget after M queries, then for any guess
y ∈ {0, 1},

Pr
[
y = f (xj)

∣∣v1M , . . . , vkM] ≤ X (j ,M).

If j is over-budget, then (trivially) for any y ,

Pr
[
y = f (xj)

∣∣v1M , . . . , vkM] ≤ 1 = 2 · (1/2) = 2X (j ,M).

Also, these k events are independent, after we condition on
the guesses (y1, . . . , yk) produced by R.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 19/28

Success probability

Thus,

Pr
[
R computes F⊗k

∣∣v1M , . . . , vkM] ≤ 2|B|
∏
j

X (j ,M),

where

B
4
= {j : input j is over-budget after M steps}.

Counting queries, we have

|B| < M/T ≤ (αεTk)/T = αεk.

Thus

Pr
[
R computes F⊗k

]
≤ 2αεkE

∏
j

X (j ,M)

≤ 2αεk(1− ε)k .

QED

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 20/28

Success probability

Thus,

Pr
[
R computes F⊗k

∣∣v1M , . . . , vkM] ≤ 2|B|
∏
j

X (j ,M),

where

B
4
= {j : input j is over-budget after M steps}.

Counting queries, we have

|B| < M/T ≤ (αεTk)/T = αεk.

Thus

Pr
[
R computes F⊗k

]
≤ 2αεkE

∏
j

X (j ,M)

≤ 2αεk(1− ε)k .

QED

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 20/28

Success probability

Thus,

Pr
[
R computes F⊗k

∣∣v1M , . . . , vkM] ≤ 2|B|
∏
j

X (j ,M),

where

B
4
= {j : input j is over-budget after M steps}.

Counting queries, we have

|B| < M/T ≤ (αεTk)/T = αεk.

Thus

Pr
[
R computes F⊗k

]
≤ 2αεkE

∏
j

X (j ,M)

≤ 2αεk(1− ε)k .

QED

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 20/28

Success probability

Thus,

Pr
[
R computes F⊗k

∣∣v1M , . . . , vkM] ≤ 2|B|
∏
j

X (j ,M),

where

B
4
= {j : input j is over-budget after M steps}.

Counting queries, we have

|B| < M/T ≤ (αεTk)/T = αεk.

Thus

Pr
[
R computes F⊗k

]
≤ 2αεkE

∏
j

X (j ,M)

≤ 2αεk(1− ε)k .

QED

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 20/28

Seeking generalizations

Many other DPT variants we’d like to prove. But our previous
technique was rather specific.

We used the fact X (j , t) ≥ 1/2, which followed since F was
Boolean. Result weakens as output alphabet grows.

Bounding E
[∏

j ,M X (j ,M)
]

helped us upper-bound

Pr[R correct on all inputs],

but we’d like to even bound

Pr[R correct on most inputs].

Next: an approach to address both these issues.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 21/28

Seeking generalizations

Many other DPT variants we’d like to prove. But our previous
technique was rather specific.

We used the fact X (j , t) ≥ 1/2, which followed since F was
Boolean. Result weakens as output alphabet grows.

Bounding E
[∏

j ,M X (j ,M)
]

helped us upper-bound

Pr[R correct on all inputs],

but we’d like to even bound

Pr[R correct on most inputs].

Next: an approach to address both these issues.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 21/28

Seeking generalizations

Many other DPT variants we’d like to prove. But our previous
technique was rather specific.

We used the fact X (j , t) ≥ 1/2, which followed since F was
Boolean. Result weakens as output alphabet grows.

Bounding E
[∏

j ,M X (j ,M)
]

helped us upper-bound

Pr[R correct on all inputs],

but we’d like to even bound

Pr[R correct on most inputs].

Next: an approach to address both these issues.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 21/28

Seeking generalizations

Many other DPT variants we’d like to prove. But our previous
technique was rather specific.

We used the fact X (j , t) ≥ 1/2, which followed since F was
Boolean. Result weakens as output alphabet grows.

Bounding E
[∏

j ,M X (j ,M)
]

helped us upper-bound

Pr[R correct on all inputs],

but we’d like to even bound

Pr[R correct on most inputs].

Next: an approach to address both these issues.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 21/28

Seeking generalizations

Consider a more general setting than ours, in which a gambler
plays games at k tables. Assume:

1. Gambler has an initial endowment of (1− ε) at every table.

2. Cannot transfer funds between tables, or go into debt at a
table.

3. All games ‘favor the house’ (in expectation).

4. Gambler can choose which game to play next, at which table.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 22/28

Seeking generalizations

Consider a more general setting than ours, in which a gambler
plays games at k tables. Assume:

1. Gambler has an initial endowment of (1− ε) at every table.

2. Cannot transfer funds between tables, or go into debt at a
table.

3. All games ‘favor the house’ (in expectation).

4. Gambler can choose which game to play next, at which table.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 22/28

Seeking generalizations

Consider a more general setting than ours, in which a gambler
plays games at k tables. Assume:

1. Gambler has an initial endowment of (1− ε) at every table.

2. Cannot transfer funds between tables, or go into debt at a
table.

3. All games ‘favor the house’ (in expectation).

4. Gambler can choose which game to play next, at which table.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 22/28

Seeking generalizations

Consider a more general setting than ours, in which a gambler
plays games at k tables. Assume:

1. Gambler has an initial endowment of (1− ε) at every table.

2. Cannot transfer funds between tables, or go into debt at a
table.

3. All games ‘favor the house’ (in expectation).

4. Gambler can choose which game to play next, at which table.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 22/28

Seeking generalizations

Consider a more general setting than ours, in which a gambler
plays games at k tables. Assume:

1. Gambler has an initial endowment of (1− ε) at every table.

2. Cannot transfer funds between tables, or go into debt at a
table.

3. All games ‘favor the house’ (in expectation).

4. Gambler can choose which game to play next, at which table.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 22/28

Seeking generalizations

Suppose the gambler wishes to reach a fortune of 1 at every
table.

Reasoning similar to before gives

Pr[success] ≤ (1− ε)k .

= winning odds if gambler plays independent ‘all or nothing’
bets at each table!

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 23/28

Seeking generalizations

Suppose the gambler wishes to reach a fortune of 1 at every
table.

Reasoning similar to before gives

Pr[success] ≤ (1− ε)k .

= winning odds if gambler plays independent ‘all or nothing’
bets at each table!

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 23/28

Seeking generalizations

Suppose the gambler wishes to reach a fortune of 1 at every
table.

Reasoning similar to before gives

Pr[success] ≤ (1− ε)k .

= winning odds if gambler plays independent ‘all or nothing’
bets at each table!

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 23/28

Seeking generalizations

Now suppose the gambler’s goal is just to reach a fortune of 1
at ‘many’ tables.

Here ‘many’ is specified by some monotone collection C of
subsets of {1, . . . , k}.
That is, (A ∈ C ∧ B ⊇ A)⇒ B ∈ C.

It’s natural to ask: does the ‘all or nothing’ strategy remain
optimal?

Lemma (‘Gambling lemma’—informal)

YES! Under assumptions 1-4 above, independent all-or-nothing
bets are an optimal strategy.

Proof is a simple induction.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 24/28

Seeking generalizations

Now suppose the gambler’s goal is just to reach a fortune of 1
at ‘many’ tables.

Here ‘many’ is specified by some monotone collection C of
subsets of {1, . . . , k}.
That is, (A ∈ C ∧ B ⊇ A)⇒ B ∈ C.

It’s natural to ask: does the ‘all or nothing’ strategy remain
optimal?

Lemma (‘Gambling lemma’—informal)

YES! Under assumptions 1-4 above, independent all-or-nothing
bets are an optimal strategy.

Proof is a simple induction.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 24/28

Seeking generalizations

Now suppose the gambler’s goal is just to reach a fortune of 1
at ‘many’ tables.

Here ‘many’ is specified by some monotone collection C of
subsets of {1, . . . , k}.
That is, (A ∈ C ∧ B ⊇ A)⇒ B ∈ C.

It’s natural to ask: does the ‘all or nothing’ strategy remain
optimal?

Lemma (‘Gambling lemma’—informal)

YES! Under assumptions 1-4 above, independent all-or-nothing
bets are an optimal strategy.

Proof is a simple induction.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 24/28

Seeking generalizations

Now suppose the gambler’s goal is just to reach a fortune of 1
at ‘many’ tables.

Here ‘many’ is specified by some monotone collection C of
subsets of {1, . . . , k}.
That is, (A ∈ C ∧ B ⊇ A)⇒ B ∈ C.

It’s natural to ask: does the ‘all or nothing’ strategy remain
optimal?

Lemma (‘Gambling lemma’—informal)

YES! Under assumptions 1-4 above, independent all-or-nothing
bets are an optimal strategy.

Proof is a simple induction.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 24/28

Seeking generalizations

Now suppose the gambler’s goal is just to reach a fortune of 1
at ‘many’ tables.

Here ‘many’ is specified by some monotone collection C of
subsets of {1, . . . , k}.
That is, (A ∈ C ∧ B ⊇ A)⇒ B ∈ C.

It’s natural to ask: does the ‘all or nothing’ strategy remain
optimal?

Lemma (‘Gambling lemma’—informal)

YES! Under assumptions 1-4 above, independent all-or-nothing
bets are an optimal strategy.

Proof is a simple induction.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 24/28

Further results

With this Gambling Lemma, we can derive a variety of new direct
product-type theorems for query complexity:

threshold DPTs;

an XOR lemma;

DPTs for worst-case error;

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 25/28

Further results

With this Gambling Lemma, we can derive a variety of new direct
product-type theorems for query complexity:

threshold DPTs;

an XOR lemma;

DPTs for worst-case error;

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 25/28

Even more DPTs...

DPTs for search problems and errorless heuristics;

DPTs for decision tree size (greatly improving on earlier
ones [IRW94]);

DPTs for interactive puzzles, in which the algorithm talks
with dynamic entities rather than querying static strings.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 26/28

What’s next?

Our proofs crucially used the conditional independence
property of k independent inputs queried by an algorithm.

A simple analogue of this property is missing in richer
computational models (including the quantum query model),
which holds us back.

But perhaps the ideas in our work can be helpful beyond the
randomized query model.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 27/28

What’s next?

Our proofs crucially used the conditional independence
property of k independent inputs queried by an algorithm.

A simple analogue of this property is missing in richer
computational models (including the quantum query model),
which holds us back.

But perhaps the ideas in our work can be helpful beyond the
randomized query model.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 27/28

What’s next?

Our proofs crucially used the conditional independence
property of k independent inputs queried by an algorithm.

A simple analogue of this property is missing in richer
computational models (including the quantum query model),
which holds us back.

But perhaps the ideas in our work can be helpful beyond the
randomized query model.

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 27/28

Thanks!

Andrew Drucker, Improved Direct Product Theorems for Randomized Query Complexity 28/28

	Introduction

