Improved Direct Product Theorems for Randomized Query Complexity

Andrew Drucker

Sept. 13, 2010

Big picture

- Usually, computer users have not one goal, but many.
- When can multiple computations be combined to make them easier?

Big picture

- Usually, computer users have not one goal, but many.
- When can multiple computations be combined to make them easier?

Separate inputs

Suppose each of the outputs we want to compute depends on a separate input.

For example:

$$
\begin{aligned}
& \boldsymbol{X}^{1} \longrightarrow \boldsymbol{F}\left(\boldsymbol{X}^{1}\right) \\
& \boldsymbol{X}^{2} \longrightarrow \boldsymbol{F}\left(\boldsymbol{X}^{2}\right) \\
& \boldsymbol{X}^{3} \longrightarrow \boldsymbol{F}\left(\boldsymbol{X}^{3}\right)
\end{aligned}
$$

Direct Product Theorems

- Intuition: the different outputs are 'unrelated', so computing them together shouldn't make the task easier.
- Direct Product Theorems (DPTs) are results that make this intuition rigorous (when it's correct!).
- DPTs have been studied for many vears, in many computational models.
- Our focus: randomized query algorithms, with

$$
\text { cost }=\text { number of queries to the input. }
$$

Direct Product Theorems

- Intuition: the different outputs are 'unrelated', so computing them together shouldn't make the task easier.
- Direct Product Theorems (DPTs) are results that make this intuition rigorous (when it's correct!).
- DPTs have been studied for many years, in many computational models.
- Our focus: randomized query algorithms, with
cost $=$ number of queries to the input.

Direct Product Theorems

- Intuition: the different outputs are 'unrelated', so computing them together shouldn't make the task easier.
- Direct Product Theorems (DPTs) are results that make this intuition rigorous
- DPTs have been studied for many years, in many computational models.
- Our focus: randomized cuery algorithms, with
cost $=$ number of queries to the input.

Direct Product Theorems

- Intuition: the different outputs are 'unrelated', so computing them together shouldn't make the task easier.
- Direct Product Theorems (DPTs) are results that make this intuition rigorous (when it's correct!).
- DPTs have been studied for many years, in many computational models.
- Our focus: randomized query algorithms, with
cost $=$ number of queries to the input.

Direct Product Theorems

- Intuition: the different outputs are 'unrelated', so computing them together shouldn't make the task easier.
- Direct Product Theorems (DPTs) are results that make this intuition rigorous (when it's correct!).
- DPTs have been studied for many years, in many computational models.
- Our focus: randomized query algorithms, with
cost $=$ number of queries to the input.

Direct Product Theorems

- Intuition: the different outputs are 'unrelated', so computing them together shouldn't make the task easier.
- Direct Product Theorems (DPTs) are results that make this intuition rigorous (when it's correct!).
- DPTs have been studied for many years, in many computational models.
- Our focus: randomized query algorithms, with

$$
\text { cost }=\text { number of queries to the input. }
$$

Direct products

- Given

$$
F:\{0,1\}^{n} \rightarrow \Sigma, \quad \text { and } k>1
$$

define

$$
F^{\otimes k}\left(x^{1} \ldots, x^{k}\right) \triangleq\left(F\left(x^{1}\right), \ldots, F\left(x^{k}\right)\right)
$$

a function of k different n-bit inputs x^{1}, \ldots, x^{k}.

Direct products

- Given

$$
F:\{0,1\}^{n} \rightarrow \Sigma, \quad \text { and } k>1
$$

define

$$
F^{\otimes k}\left(x^{1} \ldots, x^{k}\right) \triangleq\left(F\left(x^{1}\right), \ldots, F\left(x^{k}\right)\right)
$$

a function of k different n-bit inputs x^{1}, \ldots, x^{k}.

- $F^{\otimes k}=$ 'k-fold direct product' of F.

Average-case complexity

- For a function F, a query bound $T>0$, and a distribution μ over inputs to F, define

$$
\operatorname{Suc}_{T, \mu}(F)
$$

as the maximum success probability of any T-query algorithm \mathcal{R} in computing $F(\mathbf{y})$ on input $\mathbf{y} \sim \mu$.

- (probability over randomness in y and in \mathcal{R})

Average-case complexity

- For a function F, a query bound $T>0$, and a distribution μ over inputs to F, define

$$
\operatorname{Suc}_{T, \mu}(F)
$$

as the maximum success probability of any T-query algorithm \mathcal{R} in computing $F(\mathbf{y})$ on input $\mathbf{y} \sim \mu$.

- (probability over randomness in \mathbf{y} and in \mathcal{R})

The form of a DPT

- Let $\mu^{\otimes k}$ denote k independent samples from μ.
- A Direct Product Theorem is of the form:

where T^{\prime}, p^{\prime} depend on T, p, and k.
- We hope to have $p^{\prime} \ll p$ and $T^{\prime} \gg T$.
- " F is hard $\Rightarrow F^{\otimes k}$ is harder."

The form of a DPT

- Let $\mu^{\otimes k}$ denote k independent samples from μ.
- A Direct Product Theorem is of the form:

$$
\forall F, \quad \operatorname{Suc}_{T, \mu}(F) \leq p \quad \Longrightarrow \quad \operatorname{Suc}_{T^{\prime}, \mu} \mu^{\otimes k}\left(F^{\otimes k}\right) \leq p^{\prime},
$$

where T^{\prime}, p^{\prime} depend on T, p, and k.

- We hope to have $p^{\prime} \ll p$ and $T^{\prime} \gg T$

The form of a DPT

- Let $\mu^{\otimes k}$ denote k independent samples from μ.
- A Direct Product Theorem is of the form:

$$
\forall F, \quad \operatorname{Suc}_{T, \mu}(F) \leq p \quad \Longrightarrow \quad \operatorname{Suc}_{T^{\prime}, \mu}{ }^{\otimes k}\left(F^{\otimes k}\right) \leq p^{\prime}
$$

where T^{\prime}, p^{\prime} depend on T, p, and k.

- We hope to have $p^{\prime} \ll p$ and $T^{\prime} \gg T$.
- " F is hard $\Rightarrow F^{\otimes k}$ is harder."

An 'ideal' DPT?

- The strongest DPT we could hope for would say:

$$
\forall F, \quad \operatorname{Suc}_{T, \mu}(F) \leq 1-\varepsilon \quad \Longrightarrow \quad \operatorname{Suc}_{T k, \mu} \otimes k\left(F^{\otimes k}\right) \leq(1-\varepsilon)^{k}
$$

- $(1-\varepsilon)^{k}$ is the success prob. we'd get if we run the optimal T-query algorithm on each of the k inputs.
- True for restricted classes of algorithms [NRS94], [Sha03].
- Shaltiel [Sha03] defined fair Tk-query algorithms for $F^{\otimes k}$ as ones which make exactly T queries to each of the k inputs. He proved an 'ideal' DPT for these algorithms.

An 'ideal' DPT?

- The strongest DPT we could hope for would say:

$$
\forall F, \quad \operatorname{Suc}_{T, \mu}(F) \leq 1-\varepsilon \quad \Longrightarrow \quad \operatorname{Suc}_{T k, \mu}{ }^{\otimes k}\left(F^{\otimes k}\right) \leq(1-\varepsilon)^{k}
$$

- $(1-\varepsilon)^{k}$ is the success prob. we'd get if we run the optimal T-query algorithm on each of the k inputs.
- True for restricted classes of algorithms [NRS94], [Sha03]. - Shaltiel [Sha03] defined fair Tk-query algorithms for $F^{\otimes k}$ as ones which make exactly T queries to each of the k inputs. He proved an 'ideal' DPT for these algorithms.

An 'ideal' DPT?

- The strongest DPT we could hope for would say:

$$
\forall F, \quad \operatorname{Suc}_{T, \mu}(F) \leq 1-\varepsilon \quad \Longrightarrow \quad \operatorname{Suc}_{T k, \mu}{ }^{\otimes k}\left(F^{\otimes k}\right) \leq(1-\varepsilon)^{k}
$$

- $(1-\varepsilon)^{k}$ is the success prob. we'd get if we run the optimal T-query algorithm on each of the k inputs.
- True for restricted classes of algorithms [NRS94], [Sha03].
- Shaltiel [Sha03] defined fair Tk-query algorithms for $F^{\otimes k}$ as
ones which make exactly T queries to each of the k inputs. He proved an 'ideal' DPT for these algorithms.

An 'ideal' DPT?

- The strongest DPT we could hope for would say:

$$
\forall F, \quad \operatorname{Suc}_{T, \mu}(F) \leq 1-\varepsilon \quad \Longrightarrow \quad \operatorname{Suc}_{T k, \mu}{ }^{\otimes k}\left(F^{\otimes k}\right) \leq(1-\varepsilon)^{k}
$$

- $(1-\varepsilon)^{k}$ is the success prob. we'd get if we run the optimal T-query algorithm on each of the k inputs.
- True for restricted classes of algorithms [NRS94], [Sha03].
- Shaltiel [Sha03] defined fair $T k$-query algorithms for $F^{\otimes k}$ as ones which make exactly T queries to each of the k inputs. He proved an 'ideal' DPT for these algorithms.

An 'ideal' DPT?

- But, Shaltiel also showed the ideal DPT is false in general!
- The message: we can sometimes solve $F^{\otimes k}$ more effectively by adaptive reallocation of queries.
- Counterexamples of [Sha03] apply to most computational models.

An 'ideal' DPT?

- But, Shaltiel also showed the ideal DPT is false in general!
- The message: we can sometimes solve $F^{\otimes k}$ more effectively by adaptive reallocation of queries.
- Counterexamples of [Sha03] apply to most computational models.

An 'ideal' DPT?

- But, Shaltiel also showed the ideal DPT is false in general!
- The message: we can sometimes solve $F^{\otimes k}$ more effectively by adaptive reallocation of queries.
- Counterexamples of [Sha03] apply to most computational models.

Our new DPT

We modify Shaltiel's techniques for fair algorithms, to show a new DPT for unrestricted query algorithms.

Our new DPT

Theorem
For any Boolean function F and $\alpha>0$,
$\operatorname{Suc}_{T, \mu}(F) \leq 1-\varepsilon \quad \Rightarrow \quad \operatorname{Suc}_{\alpha \varepsilon T k, \mu^{\otimes k}}\left(F^{\otimes k}\right) \leq\left(2^{\alpha \varepsilon}(1-\varepsilon)\right)^{k}$.

- Success probability drops exponentially in k, if (number of queries) $\approx \varepsilon T k$. For $\alpha \leq 1$ we have $2^{\alpha \varepsilon}(1-\varepsilon) \leq 1-\varepsilon+\alpha \varepsilon$.
- Varying α gives a tradeoff between the query bound and the success probability.
- Shaltiel's examples tell us this is a nearly optimal tradeoff (for most parameter settings).

Our new DPT

Theorem
For any Boolean function F and $\alpha>0$,
$\operatorname{Suc}_{T, \mu}(F) \leq 1-\varepsilon \quad \Rightarrow \quad \operatorname{Suc}_{\alpha \varepsilon T k, \mu^{\otimes k}}\left(F^{\otimes k}\right) \leq\left(2^{\alpha \varepsilon}(1-\varepsilon)\right)^{k}$.

- Success probability drops exponentially in k, if (number of queries) $\approx \varepsilon T k$.
For $\alpha \leq 1$ we have $2^{\alpha \varepsilon}(1-\varepsilon) \leq 1-\varepsilon+\alpha \varepsilon$.
- Varying α gives a tradeoff between the query bound and the success probability.
- Shaltiel's examples tell us this is a nearly optimal tradeoff (for most parameter settings).

Our new DPT

Theorem
For any Boolean function F and $\alpha>0$,
$\operatorname{Suc}_{T, \mu}(F) \leq 1-\varepsilon \quad \Rightarrow \quad \operatorname{Suc}_{\alpha \varepsilon T k, \mu}{ }^{\otimes k}\left(F^{\otimes k}\right) \leq\left(2^{\alpha \varepsilon}(1-\varepsilon)\right)^{k}$.

- Success probability drops exponentially in k, if (number of queries) $\approx \varepsilon T k$.
For $\alpha \leq 1$ we have $2^{\alpha \varepsilon}(1-\varepsilon) \leq 1-\varepsilon+\alpha \varepsilon$.
- Varying α gives a tradeoff between the query bound and the success probability.
- Shaltiel's examples tell us this is a nearly optimal tradeoff (for most parameter settings).

Our new DPT

Theorem
For any Boolean function F and $\alpha>0$,

$$
\operatorname{Suc}_{T, \mu}(F) \leq 1-\varepsilon \quad \Rightarrow \quad \operatorname{Suc}_{\alpha \varepsilon T k, \mu^{\otimes k}}\left(F^{\otimes k}\right) \leq\left(2^{\alpha \varepsilon}(1-\varepsilon)\right)^{k}
$$

- Success probability drops exponentially in k, if (number of queries) $\approx \varepsilon T k$.
For $\alpha \leq 1$ we have $2^{\alpha \varepsilon}(1-\varepsilon) \leq 1-\varepsilon+\alpha \varepsilon$.
- Varying α gives a tradeoff between the query bound and the success probability.
- Shaltiel's examples tell us this is a nearly optimal tradeoff (for most parameter settings).

Proof sketch

- First, some definitions about a single, n-bit input $\mathbf{y} \sim \mu$ to F.
- For $v \in\{0,1, *\}^{n}$, let $\mu[v]$ denote $\mathbf{y} \sim \mu$ conditioned on the event

$$
\left[\mathbf{y}_{i}=v_{i}, \text { for each } i \text { such that } v_{i} \in\{0,1\}\right] \text {. }
$$

- E.g., if μ is uniform on 3 bits, then $\mu[00 *]$ is uniform on $\{000,001\}$
- (We can assume μ has full support.)
- Let $|v|=$ number of $0 / 1$ entries in v.

Proof sketch

- First, some definitions about a single, n-bit input $\mathbf{y} \sim \mu$ to F.
- For $v \in\{0,1, *\}^{n}$, let $\mu[v]$ denote $\mathbf{y} \sim \mu$ conditioned on the event

$$
\left[\mathbf{y}_{i}=v_{i}, \text { for each } i \text { such that } v_{i} \in\{0,1\}\right]
$$

- E.g., if μ is uniform on 3 bits, then $\mu\left[00^{*}\right]$ is uniform on $\{000,001\}$
- (We can assume μ has full support.)
- Let $|v|=$ number of $0 / 1$ entries in v

Proof sketch

- First, some definitions about a single, n-bit input $\mathbf{y} \sim \mu$ to F.
- For $v \in\{0,1, *\}^{n}$, let $\mu[v]$ denote $\mathbf{y} \sim \mu$ conditioned on the event

$$
\left[\mathbf{y}_{i}=v_{i}, \text { for each } i \text { such that } v_{i} \in\{0,1\}\right]
$$

- E.g., if μ is uniform on 3 bits, then $\mu[00 *]$ is uniform on $\{000,001\}$.
- (We can assume μ has full support.)
- Let $|v|=$ number of $0 / 1$ entries in v

Proof sketch

- First, some definitions about a single, n-bit input $\mathbf{y} \sim \mu$ to F.
- For $v \in\{0,1, *\}^{n}$, let $\mu[v]$ denote $\mathbf{y} \sim \mu$ conditioned on the event

$$
\left[\mathbf{y}_{i}=v_{i}, \text { for each } i \text { such that } v_{i} \in\{0,1\}\right] .
$$

- E.g., if μ is uniform on 3 bits, then $\mu[00 *$] is uniform on $\{000,001\}$.
- (We can assume μ has full support.)
- Let $|v|=$ number of $0 / 1$ entries in v.

Proof sketch

- First, some definitions about a single, n-bit input $\mathbf{y} \sim \mu$ to F.
- For $v \in\{0,1, *\}^{n}$, let $\mu[v]$ denote $\mathbf{y} \sim \mu$ conditioned on the event

$$
\left[\mathbf{y}_{i}=v_{i}, \text { for each } i \text { such that } v_{i} \in\{0,1\}\right]
$$

- E.g., if μ is uniform on 3 bits, then $\mu[00 *]$ is uniform on $\{000,001\}$.
- (We can assume μ has full support.)
- Let $|v|=$ number of $0 / 1$ entries in v.

The k-fold setting

- Say the algorithm \mathcal{R} receives inputs $\mathbf{x}^{1}, \ldots, \mathbf{x}^{k} \sim \mu^{\otimes k}$ and makes $M=\lfloor\alpha \varepsilon T k\rfloor$ queries.
- For $j \in\{1, \ldots, k\}$ and $t \geq 0$, let the random string

$$
v_{t}^{j} \in\{0,1, *\}^{n}
$$

describe bits seen of the j-th input \mathbf{x}^{j}, after \mathcal{R} has made t queries overall (to the entire collection).

Conditioned on $v_{t}^{1}, \ldots, v_{t}^{k}$, the k inputs remain independent, with

Proof is a simple calculation.

The k-fold setting

- Say the algorithm \mathcal{R} receives inputs $\mathbf{x}^{1}, \ldots, \mathbf{x}^{k} \sim \mu^{\otimes k}$ and makes $M=\lfloor\alpha \varepsilon T k\rfloor$ queries.
- For $j \in\{1, \ldots, k\}$ and $t \geq 0$, let the random string

$$
v_{t}^{j} \in\{0,1, *\}^{n}
$$

describe bits seen of the j-th input \mathbf{x}^{j}, after \mathcal{R} has made t queries overall (to the entire collection).

Claim
Conditioned on $v_{t}^{1}, \ldots, v_{t}^{k}$, the k inputs remain independent, with

Proof is a simple calculation.

The k-fold setting

- Say the algorithm \mathcal{R} receives inputs $\mathbf{x}^{1}, \ldots, \mathbf{x}^{k} \sim \mu^{\otimes k}$ and makes $M=\lfloor\alpha \varepsilon T k\rfloor$ queries.
- For $j \in\{1, \ldots, k\}$ and $t \geq 0$, let the random string

$$
v_{t}^{j} \in\{0,1, *\}^{n}
$$

describe bits seen of the j-th input \mathbf{x}^{j}, after \mathcal{R} has made t queries overall (to the entire collection).

Claim
Conditioned on $v_{t}^{1}, \ldots, v_{t}^{k}$, the k inputs remain independent, with

$$
\mathbf{x}^{j} \sim \mu\left[v_{t}^{j}\right]
$$

Proof is a simple calculation.

The k-fold setting

- Say the algorithm \mathcal{R} receives inputs $\mathbf{x}^{1}, \ldots, \mathbf{x}^{k} \sim \mu^{\otimes k}$ and makes $M=\lfloor\alpha \varepsilon T k\rfloor$ queries.
- For $j \in\{1, \ldots, k\}$ and $t \geq 0$, let the random string

$$
v_{t}^{j} \in\{0,1, *\}^{n}
$$

describe bits seen of the j-th input \mathbf{x}^{j}, after \mathcal{R} has made t queries overall (to the entire collection).

Claim
Conditioned on $v_{t}^{1}, \ldots, v_{t}^{k}$, the k inputs remain independent, with

$$
\mathbf{x}^{j} \sim \mu\left[v_{t}^{j}\right]
$$

Proof is a simple calculation.

k inputs, k 'fortunes'

- For each input \mathbf{x}^{j} and each step $t \geq 0$, define a random variable $X(j, t) \in[0,1]$.
- Think of the algorithm \mathcal{R} as a gambler gambling at k tables, and consider $X(j, t)$ his fortune at the j-th table after t steps (i.e., queries).

k inputs, k 'fortunes'

- Recall: $v_{t}^{j} \in\{0,1, *\}^{n}$ describes the queries made to x^{j} so far.
- If $\left|v_{t}^{j}\right| \leq T$, say that input j is under-budget (after t steps), otherwise j is over-budget.
- If j is under-budget, define $X(j, t)$ as the maximum success probability of computing $F\left(x^{j}\right)$ correctly of any algorithm making $\leq T-\left|v_{t}^{j}\right|$ queries to input \mathbf{x}^{j}, under distribution

$$
x^{j} \sim \mu\left[v_{t}^{j}\right] .
$$

- Meaning: $X(j, t)=$ best possible 'winning prospects' of computing $F\left(x^{j}\right)$, if we stay under-budget.
- Observe: $X(j, t) \geq 1 / 2$ in this case.

k inputs, k 'fortunes'

- Recall: $v_{t}^{j} \in\{0,1, *\}^{n}$ describes the queries made to \boldsymbol{x}^{j} so far.
- If $\left|v_{t}^{j}\right| \leq T$, say that input j is under-budget (after t steps), otherwise j is over-budget.
- If j is under-budget, define $X(j, t)$ as the maximum success probability of computing $F\left(x^{j}\right)$ correctly of any algorithm making $\leq T-\left|v_{t}^{j}\right|$ queries to input \mathbf{x}^{j}, under distribution
- Meaning: $X(j, t)=$ best possible 'winning prospects' of computing $F\left(x^{j}\right)$, if we stay under-budget. - Observe: $X(j, t) \geq 1 / 2$ in this case.

k inputs, k 'fortunes'

- Recall: $v_{t}^{j} \in\{0,1, *\}^{n}$ describes the queries made to \boldsymbol{x}^{j} so far.
- If $\left|v_{t}^{j}\right| \leq T$, say that input j is under-budget (after t steps), otherwise j is over-budget.
- If j is under-budget, define $X(j, t)$ as the maximum success probability of computing $F\left(x^{j}\right)$ correctly of any algorithm making $\leq T-\left|v_{t}^{j}\right|$ queries to input \mathbf{x}^{j}, under distribution

$$
\mathbf{x}^{j} \sim \mu\left[v_{t}^{j}\right]
$$

- Meaning: $X(j, t)=$ best possible 'winning prospects' of computing $F\left(x^{j}\right)$, if we stay under-budget.
- Observe: $X(j, t) \geq 1 / 2$ in this case.

k inputs, k 'fortunes'

- Recall: $v_{t}^{j} \in\{0,1, *\}^{n}$ describes the queries made to \boldsymbol{x}^{j} so far.
- If $\left|v_{t}^{j}\right| \leq T$, say that input j is under-budget (after t steps), otherwise j is over-budget.
- If j is under-budget, define $X(j, t)$ as the maximum success probability of computing $F\left(x^{j}\right)$ correctly of any algorithm making $\leq T-\left|v_{t}^{j}\right|$ queries to input x^{j}, under distribution

$$
\mathbf{x}^{j} \sim \mu\left[v_{t}^{j}\right]
$$

- Meaning: $X(j, t)=$ best possible 'winning prospects' of computing $F\left(x^{j}\right)$, if we stay under-budget.

k inputs, k 'fortunes'

- Recall: $v_{t}^{j} \in\{0,1, *\}^{n}$ describes the queries made to \boldsymbol{x}^{j} so far.
- If $\left|v_{t}^{j}\right| \leq T$, say that input j is under-budget (after t steps), otherwise j is over-budget.
- If j is under-budget, define $X(j, t)$ as the maximum success probability of computing $F\left(x^{j}\right)$ correctly of any algorithm making $\leq T-\left|v_{t}^{j}\right|$ queries to input \mathbf{x}^{j}, under distribution

$$
\mathbf{x}^{j} \sim \mu\left[v_{t}^{j}\right]
$$

- Meaning: $X(j, t)=$ best possible 'winning prospects' of computing $F\left(x^{j}\right)$, if we stay under-budget.
- Observe: $X(j, t) \geq 1 / 2$ in this case.

k inputs, k 'fortunes'

- If j is over-budget, set

$$
X(j, t)=1 / 2
$$

- Note: going over-budget can't increase our fortune!

k inputs, k 'fortunes'

- If j is over-budget, set

$$
X(j, t)=1 / 2
$$

- Note: going over-budget can't increase our fortune!

Unfavorable gambles

Two important properties:

1. For all j,

$$
X(j, 0) \leq 1-\varepsilon
$$

(follows from our initial assumption that $\operatorname{Suc}_{T, \mu}(F) \leq 1-\varepsilon$).
2. If \mathcal{R} makes its next query at table j then

$$
\mathbb{E}\left[X(j, t+1) \mid v_{t}^{1}, \ldots, v_{t}^{k}\right] \leq X(j, t), \text { and }
$$

$$
X\left(j^{\prime}, t+1\right)=X\left(j^{\prime}, t\right) \quad \forall j^{\prime} \neq j
$$

(Follows from definition of $X(j, t)$ and the fact that the inputs remain independent.)

So, choosing input j to query next is like making an unfavorable gamble at the j-th table!

Unfavorable gambles

Two important properties:

1. For all j,

$$
X(j, 0) \leq 1-\varepsilon
$$

(follows from our initial assumption that $\operatorname{Suc}_{T, \mu}(F) \leq 1-\varepsilon$).
2. If \mathcal{R} makes its next query at table j, then

(Follows from definition of $X(j, t)$ and the fact that the inputs remain independent.)

So, choosing input j to query next is like making an unfavorable gamble at the j-th table!

Unfavorable gambles

Two important properties:

1. For all j,

$$
X(j, 0) \leq 1-\varepsilon
$$

(follows from our initial assumption that $\operatorname{Suc}_{T, \mu}(F) \leq 1-\varepsilon$).
2. If \mathcal{R} makes its next query at table j, then

$$
\begin{gathered}
\mathbb{E}\left[X(j, t+1) \mid v_{t}^{1}, \ldots, v_{t}^{k}\right] \leq X(j, t), \text { and } \\
X\left(j^{\prime}, t+1\right)=X\left(j^{\prime}, t\right) \quad \forall j^{\prime} \neq j
\end{gathered}
$$

(Follows from definition of $X(j, t)$ and the fact that the inputs remain independent.)

So, choosing input j to query next is like making an unfavorable gamble at the j-th table!

Unfavorable gambles

Two important properties:

1. For all j,

$$
X(j, 0) \leq 1-\varepsilon
$$

(follows from our initial assumption that $\operatorname{Suc}_{T, \mu}(F) \leq 1-\varepsilon$).
2. If \mathcal{R} makes its next query at table j, then

$$
\begin{gathered}
\mathbb{E}\left[X(j, t+1) \mid v_{t}^{1}, \ldots, v_{t}^{k}\right] \leq X(j, t), \text { and } \\
X\left(j^{\prime}, t+1\right)=X\left(j^{\prime}, t\right) \quad \forall j^{\prime} \neq j
\end{gathered}
$$

(Follows from definition of $X(j, t)$ and the fact that the inputs remain independent.)
So, choosing input j to query next is like making an unfavorable gamble at the j-th table!

Bounding expectations

- It follows that

$$
\mathbb{E}\left[\prod_{j} X(j, t+1) \mid v_{t}^{1}, \ldots, v_{t}^{k}\right] \leq \prod_{j} X(j, t)
$$

Bounding expectations

- It follows that

$$
\mathbb{E}\left[\prod_{j} X(j, t+1) \mid v_{t}^{1}, \ldots, v_{t}^{k}\right] \leq \prod_{j} X(j, t)
$$

so

$$
\mathbb{E}\left[\prod_{j} X(j, t)\right] \leq \prod_{j} X(j, 0) \leq(1-\varepsilon)^{k}
$$

for all $0 \leq t \leq M$.

Success probability

- What do the final fortunes $X(j, M)$ tell us?
- If input j is under-budget after M queries, then for any guess $y \in\{0,1\}$,

$$
\operatorname{Pr}\left[y=f\left(x^{j}\right) \mid v_{M}^{1}, \ldots, v_{M}^{k}\right] \leq X(j, M)
$$

- If j is over-budget, then (trivially) for any y,

$$
\operatorname{Pr}\left[y=f\left(x^{j}\right) \mid v_{M}^{1} \ldots, v_{M}^{k}\right] \leq 1=2 \cdot(1 / 2)=2 x(j, M) .
$$

- Also, these k events are independent, after we condition on the guesses $\left(y_{1}, \ldots, y_{k}\right)$ produced by \mathcal{R}.

Success probability

- What do the final fortunes $X(j, M)$ tell us?
- If input j is under-budget after M queries, then for any guess $y \in\{0,1\}$,

$$
\operatorname{Pr}\left[y=f\left(\mathbf{x}^{j}\right) \mid v_{M}^{1}, \ldots, v_{M}^{k}\right] \leq X(j, M)
$$

- If j is over-budget, then (trivially) for any y,

- Also, these k events are independent, after we condition on the guesses $\left(y_{1}, \ldots, y_{k}\right)$ produced by \mathcal{R}.

Success probability

- What do the final fortunes $X(j, M)$ tell us?
- If input j is under-budget after M queries, then for any guess $y \in\{0,1\}$,

$$
\operatorname{Pr}\left[y=f\left(\mathbf{x}^{j}\right) \mid v_{M}^{1}, \ldots, v_{M}^{k}\right] \leq X(j, M)
$$

- If j is over-budget, then (trivially) for any y,

$$
\operatorname{Pr}\left[y=f\left(\mathbf{x}^{j}\right) \mid v_{M}^{1}, \ldots, v_{M}^{k}\right] \leq 1=2 \cdot(1 / 2)=2 X(j, M)
$$

- Also, these k events are independent, after we condition on the guesses $\left(y_{1}, \ldots, y_{k}\right)$ produced by \mathcal{R}.

Success probability

- What do the final fortunes $X(j, M)$ tell us?
- If input j is under-budget after M queries, then for any guess $y \in\{0,1\}$,

$$
\operatorname{Pr}\left[y=f\left(\mathbf{x}^{j}\right) \mid v_{M}^{1}, \ldots, v_{M}^{k}\right] \leq X(j, M)
$$

- If j is over-budget, then (trivially) for any y,

$$
\operatorname{Pr}\left[y=f\left(\mathbf{x}^{j}\right) \mid v_{M}^{1}, \ldots, v_{M}^{k}\right] \leq 1=2 \cdot(1 / 2)=2 X(j, M)
$$

- Also, these k events are independent, after we condition on the guesses $\left(y_{1}, \ldots, y_{k}\right)$ produced by \mathcal{R}.

Success probability

- Thus,

$$
\operatorname{Pr}\left[\mathcal{R} \text { computes } F^{\otimes k} \mid v_{M}^{1}, \ldots, v_{M}^{k}\right] \leq 2^{|B|} \prod_{j} X(j, M)
$$

where

$$
B \triangleq\{j: \text { input } j \text { is over-budget after } M \text { steps }\} .
$$

- Counting queries, we have

$$
|B|<M / T \leq(\alpha \varepsilon T k) / T=\alpha \varepsilon k .
$$

- Thus

Success probability

- Thus,

$$
\operatorname{Pr}\left[\mathcal{R} \text { computes } F^{\otimes k} \mid v_{M}^{1}, \ldots, v_{M}^{k}\right] \leq 2^{|B|} \prod_{j} X(j, M)
$$

where

$$
B \triangleq\{j: \text { input } j \text { is over-budget after } M \text { steps }\}
$$

- Counting queries, we have

$$
|B|<M / T \leq(\alpha \varepsilon T k) / T=\alpha \varepsilon k .
$$

Success probability

- Thus,

$$
\operatorname{Pr}\left[\mathcal{R} \text { computes } F^{\otimes k} \mid v_{M}^{1}, \ldots, v_{M}^{k}\right] \leq 2^{|B|} \prod_{j} X(j, M)
$$

where

$$
B \triangleq\{j: \text { input } j \text { is over-budget after } M \text { steps }\}
$$

- Counting queries, we have

$$
|B|<M / T \leq(\alpha \varepsilon T k) / T=\alpha \varepsilon k .
$$

- Thus

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{R} \text { computes } F^{\otimes k}\right] & \leq 2^{\alpha \varepsilon k} \mathbb{E}\left[\prod_{j} X(j, M)\right] \\
& \leq 2^{\alpha \varepsilon k}(1-\varepsilon)^{k}
\end{aligned}
$$

Success probability

- Thus,

$$
\operatorname{Pr}\left[\mathcal{R} \text { computes } F^{\otimes k} \mid v_{M}^{1}, \ldots, v_{M}^{k}\right] \leq 2^{|B|} \prod_{j} X(j, M)
$$

where

$$
B \triangleq\{j: \text { input } j \text { is over-budget after } M \text { steps }\} \text {. }
$$

- Counting queries, we have

$$
|B|<M / T \leq(\alpha \varepsilon T k) / T=\alpha \varepsilon k .
$$

- Thus

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{R} \text { computes } F^{\otimes k}\right] & \leq 2^{\alpha \varepsilon k} \mathbb{E}\left[\prod_{j} X(j, M)\right] \\
& \leq 2^{\alpha \varepsilon k}(1-\varepsilon)^{k}
\end{aligned}
$$

QED

Seeking generalizations

- Many other DPT variants we'd like to prove. But our previous technique was rather specific.
- We used the fact $X(j, t) \geq 1 / 2$, which followed since F was Boolean. Result weakens as output alphabet grows.
- Bounding $\mathbb{E}\left[\Pi_{j, M} X(; M)\right]$ helned us upper-bound $\operatorname{Pr}[\mathcal{R}$ correct on all inputs],
but we'd like to even bound'

$$
\operatorname{Pr}[\mathcal{R} \text { correct on most inputs]. }
$$

- Next: an approach to address both these issues.

Seeking generalizations

- Many other DPT variants we'd like to prove. But our previous technique was rather specific.
- We used the fact $X(j, t) \geq 1 / 2$, which followed since F was Boolean. Result weakens as output alphabet grows.
- Bounding $\mathbb{E}\left[\prod_{j, M} X(j, M)\right]$ helped us upper-bound $\operatorname{Pr}[\mathcal{R}$ correct on all inputs],
but we'd like to even bound'

$$
\operatorname{Pr}[\mathcal{R} \text { correct on most inputs }] .
$$

- Next: an approach to address both these issues.

Seeking generalizations

- Many other DPT variants we'd like to prove. But our previous technique was rather specific.
- We used the fact $X(j, t) \geq 1 / 2$, which followed since F was Boolean. Result weakens as output alphabet grows.
- Bounding $\mathbb{E}\left[\prod_{j, M} X(j, M)\right]$ helped us upper-bound

$$
\operatorname{Pr}[\mathcal{R} \text { correct on all inputs }],
$$

but we'd like to even bound

$$
\operatorname{Pr}[\mathcal{R} \text { correct on most inputs }] .
$$

- Next: an approach to address both these issues.

Seeking generalizations

- Many other DPT variants we'd like to prove. But our previous technique was rather specific.
- We used the fact $X(j, t) \geq 1 / 2$, which followed since F was Boolean. Result weakens as output alphabet grows.
- Bounding $\mathbb{E}\left[\prod_{j, M} X(j, M)\right]$ helped us upper-bound

$$
\operatorname{Pr}[\mathcal{R} \text { correct on all inputs }],
$$

but we'd like to even bound

$$
\operatorname{Pr}[\mathcal{R} \text { correct on most inputs }] .
$$

- Next: an approach to address both these issues.

Seeking generalizations

Consider a more general setting than ours, in which a gambler plays games at k tables. Assume:
> 1. Gambler has an initial endowment of $(1-\varepsilon)$ at every table.
> 2. Cannot transfer funds between tables, or go into debt at a table.
> 3. All games 'favor the house' (in expectation).
> 4. Gambler can choose which game to play next, at which table.

Seeking generalizations

Consider a more general setting than ours, in which a gambler plays games at k tables. Assume:

1. Gambler has an initial endowment of $(1-\varepsilon)$ at every table.
2. Cannot transfer funds between tables, or go into debt at a table.
3. All games 'favor the house' (in expectation).
4. Gambler can choose which game to play next, at which table.

Seeking generalizations

Consider a more general setting than ours, in which a gambler plays games at k tables. Assume:

1. Gambler has an initial endowment of $(1-\varepsilon)$ at every table.
2. Cannot transfer funds between tables, or go into debt at a table.
3. All games 'favor the house' (in expectation).
4. Gambler can choose which game to play next, at which table.

Seeking generalizations

Consider a more general setting than ours, in which a gambler plays games at k tables. Assume:

1. Gambler has an initial endowment of $(1-\varepsilon)$ at every table.
2. Cannot transfer funds between tables, or go into debt at a table.
3. All games 'favor the house' (in expectation).
4. Gambler can choose which game to play next, at which table.

Seeking generalizations

Consider a more general setting than ours, in which a gambler plays games at k tables. Assume:

1. Gambler has an initial endowment of $(1-\varepsilon)$ at every table.
2. Cannot transfer funds between tables, or go into debt at a table.
3. All games 'favor the house' (in expectation).
4. Gambler can choose which game to play next, at which table.

Seeking generalizations

- Suppose the gambler wishes to reach a fortune of 1 at every table.
- Reasoning similar to before gives
$\operatorname{Pr}[$ success $] \leq(1-\varepsilon)^{k}$.
= winning odds if gambler plays independent 'all or nothing' bets at each table!

Seeking generalizations

- Suppose the gambler wishes to reach a fortune of 1 at every table.
- Reasoning similar to before gives

$$
\operatorname{Pr}[\text { success }] \leq(1-\varepsilon)^{k}
$$

$=$ winning odds if gambler plays independent 'all or nothing'
bets at each table!

Seeking generalizations

- Suppose the gambler wishes to reach a fortune of 1 at every table.
- Reasoning similar to before gives

$$
\operatorname{Pr}[\text { success }] \leq(1-\varepsilon)^{k}
$$

$=$ winning odds if gambler plays independent 'all or nothing' bets at each table!

Seeking generalizations

- Now suppose the gambler's goal is just to reach a fortune of 1 at 'many' tables.
- Here 'many' is specified by some monotone collection \mathcal{C} of subsets of $\{1, \ldots, k\}$
That is, $(A \in \mathcal{C} \wedge B \supseteq A) \Rightarrow B \in C$.
- It's natural to ask: does the 'all or nothing' strategy remain optimal?

> Lemma ('Gambling lemma'-informal)
> YES! Under assumptions 1-4 above, independent all-or-nothing bets are an optimal strategy.

- Proof is a simple induction.

Seeking generalizations

- Now suppose the gambler's goal is just to reach a fortune of 1 at 'many' tables.
- Here 'many' is specified by some monotone collection \mathcal{C} of subsets of $\{1, \ldots, k\}$.
That is, $(A \in \mathcal{C} \wedge B \supseteq A) \Rightarrow B \in \mathcal{C}$.
- It's natural to ask: does the 'all or nothing' strategy remain optimal?

Lemma ('Gambling lemma'-informal)
YES! Under assumptions 1-4 above, independent all-or-nothing bets are an optimal strategy.

- Proof is a simple induction.

Seeking generalizations

- Now suppose the gambler's goal is just to reach a fortune of 1 at 'many' tables.
- Here 'many' is specified by some monotone collection \mathcal{C} of subsets of $\{1, \ldots, k\}$.
That is, $(A \in \mathcal{C} \wedge B \supseteq A) \Rightarrow B \in \mathcal{C}$.
- It's natural to ask: does the 'all or nothing' strategy remain optimal?

> Lemma ('Gambling lemma'—informal)
> YES! Under assumptions 1-4 above, independent all-or-nothing bets are an optimal strategy.

- Proof is a simple induction.

Seeking generalizations

- Now suppose the gambler's goal is just to reach a fortune of 1 at 'many' tables.
- Here 'many' is specified by some monotone collection \mathcal{C} of subsets of $\{1, \ldots, k\}$.
That is, $(A \in \mathcal{C} \wedge B \supseteq A) \Rightarrow B \in \mathcal{C}$.
- It's natural to ask: does the 'all or nothing' strategy remain optimal?

Lemma ('Gambling lemma'—informal)

YES! Under assumptions 1-4 above, independent all-or-nothing bets are an optimal strategy.

Seeking generalizations

- Now suppose the gambler's goal is just to reach a fortune of 1 at 'many' tables.
- Here 'many' is specified by some monotone collection \mathcal{C} of subsets of $\{1, \ldots, k\}$.
That is, $(A \in \mathcal{C} \wedge B \supseteq A) \Rightarrow B \in \mathcal{C}$.
- It's natural to ask: does the 'all or nothing' strategy remain optimal?

Lemma ('Gambling lemma'—informal)

YES! Under assumptions 1-4 above, independent all-or-nothing bets are an optimal strategy.

- Proof is a simple induction.

Further results

With this Gambling Lemma, we can derive a variety of new direct product-type theorems for query complexity:

- threshold DPTs;
- an XOR lemma;
- DPTs for worst-case error;

Further results

With this Gambling Lemma, we can derive a variety of new direct product-type theorems for query complexity:

- threshold DPTs;
- an XOR lemma;
- DPTs for worst-case error;

Even more DPTs...

- DPTs for search problems and errorless heuristics;
- DPTs for decision tree size (greatly improving on earlier ones [IRW94]);
- DPTs for interactive puzzles, in which the algorithm talks with dynamic entities rather than querying static strings.

What's next?

- Our proofs crucially used the conditional independence property of k independent inputs queried by an algorithm.
- A simple analogue of this property is missing in richer computational models (including the quantum query model), which holds us back.
- But perhaps the ideas in our work can be helpful beyond the randomized query model.

What's next?

- Our proofs crucially used the conditional independence property of k independent inputs queried by an algorithm.
- A simple analogue of this property is missing in richer computational models (including the quantum query model), which holds us back.
- But perhaps the ideas in our work can be helpful beyond the randomized query model.

What's next?

- Our proofs crucially used the conditional independence property of k independent inputs queried by an algorithm.
- A simple analogue of this property is missing in richer computational models (including the quantum query model), which holds us back.
- But perhaps the ideas in our work can be helpful beyond the randomized query model.

Thanks!

