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Max Coverage: History

Location of bank accounts: Cornuejols, Fisher
& Nemhauser 1977, Management Science
Official definition: Hochbaum & Pathria 1998,
Naval Research Quarterly
Lower bound: Feige 1998
Extended to Submodular Max. over a Matroid:
Calinescu, Chekuri, Pál & Vondrák 2008
(with help from Ageev & Sviridenko 2004)

We consider Maximum Coverage over a Matroid.

Filmus, Ward Max Coverage Over Matroid



Maximum Coverage ...

Input:
Universe U with weights w ≥ 0
Sets Si ⊂ U
Number n

Goal:
Find n sets Si that maximize w(Si1 ∪ · · · ∪ Sin)

Greedy algorithm gives 1 − 1/e approximation.

Feige (’98): optimal unless P=NP.
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... over a Matroid

Input:
Universe U with weights w ≥ 0
Sets Si ⊂ U
Matroid m over set of all Si

Goal:
Find collection of sets S ∈ m that maximizes
w(
⋃
S)
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What is a matroid?

Invented by Whitney (1935).

Definition: Matroid
A collection of independent sets s.t.

1 A independent, B ⊂ A ⇒ B independent.
2 A ,B independent, |A | > |B | ⇒ there exists

some x ∈ A \ B s.t. B ∪ x is independent.

Partition Matroid
F1, . . . ,Fn disjoint sets.
Independent set: ≤ 1 set from each Fi.
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Max Coverage over a Partition Matroid

Input:
Universe U with weights w ≥ 0
n families Fi ⊂ 2U

Goal:
Find collection of sets Si ∈ Fi that maximizes
w(S1 ∪ · · · ∪ Sn)

n is the rank of the matroid.
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Some algorithms

Greedy
1 Pick set S1 of maximal weight.
2 Pick set S2 of maximal additional weight.
3 And so on.

Local Search
1 Start at some solution S1, . . . ,Sn.
2 Replace some Si with some S ′i that improves

total weight.
3 Repeat Step 2 while possible.
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Failure of greedy

Bad instance for Greedy

A1 = {x, ε} B = {x}
A2 = {y}
F1 F2

w(x) = w(y) � w(ε)

Greedy chooses {A1,B}, optimal is {A2,B}.

Resulting approximation ratio is only 1/2.

Local search finds optimal solution.
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Maybe local search?

Bad instance for Local Search
A1 = {x, εx} B1 = {x}

A2 = {y} B2 = {εy}

F1 F2

w(x) = w(y) � w(εx) = w(εy)

{A1,B2} is local maximum. Optimum is {A2,B1}.

k -local search (on SBO matroids) has approx ratio

1
2
+

k − 1
2n − k − 1

.
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Local search fantasy

A1 = {x, εx} B1 = {x}
A2 = {y} B2 = {εy}

Fantasy algorithm

We lose εy but gain second appearance of x.
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Local search fantasy

A1 = {x, εx} B1 = {x}
A2 = {y} B2 = {εy}

x × 1
εx × 1

Greedy stage

We lose εy but gain second appearance of x.
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Local search fantasy

A1 = {x, εx} B1 = {x}
A2 = {y} B2 = {εy}

x × 2
εx × 1

Local search stage

We lose εy but gain second appearance of x.
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Local search fantasy

A1 = {x, εx} B1 = {x}
A2 = {y} B2 = {εy}

x × 1
y × 1

Done — found optimal solution

We lose εy but gain second appearance of x.
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Non-oblivious local search

Idea
Give more weight to duplicate elements.

Use local search with auxiliary objective function
(Alimonti ’94; Khanna, Motwani, Sudan & U. Vazirani ’98):

f(S) =
∑
u∈U

α#u(S)w(u).

Change is considered beneficial if it improves f(S).

Oblivious local search: α0 = 0, αi = 1 for i ≥ 1.
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Choosing the weights

Consider what happens at termination.

Setup:
S1, . . . ,Sn: local maximum.
O1, . . . ,On: optimal solution.

Local optimality implies (using Brualdi’s theorem)

nf(S1, . . . ,Sn) ≥
n∑

i=1

f(S1, . . . ,Si−1,Oi,Si+1, . . . ,Sn)
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Choosing the weights

Parametrize situation using wl,c,g = total weight of
elements which belong to

l + c sets Si

g + c sets Oi

c of the indices in common

I.e., up to permutation

S1 ∩ · · · ∩ Sl∩Sl+1 ∩ · · · ∩ Sl+c∩

Ol+1 ∩ · · · ∩ Ol+c ∩ Ol+c+1 ∩ · · · ∩ Ol+c+g
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Choosing the weights
Local optimality implies

nf(S1, . . . ,Sn) ≥
n∑

i=1

f(S1, . . . ,Si−1,Oi,Si+1, . . . ,Sn)

Take some x. Let L = {i : x ∈ Si}, G = {i : x ∈ Oi}.

Coefficient on the left: nα|L |
Coefficient on the right:

(|L ∪ G|+|L ∩ G|︸  ︷︷  ︸
c

)α|L |+|L \ G|︸ ︷︷ ︸
l

·α|L |−1+|G \ L |︸ ︷︷ ︸
g

·α|L |+1

So local optimality is equivalent to∑
l,c,g

[l(αl+c − αl+c−1) + g(αl+c − αl+c+1)]wl,c,g ≥ 0
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Choosing the weights

Local optimality translates to∑
l,c,g

[(l + g)αl+c − lαl+c−1 − gαl+c+1]wl,c,g ≥ 0

Also,

w(O1, . . . ,On) =
∑

g+c≥1

wl,c,g

w(S1, . . . ,Sn) =
∑

l+c≥1

wl,c,g
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Choosing the weights

Approximation ratio θ is given by

max
αi

min
wl,c,g

∑
l+c≥1

wl,c,g

s.t . ∑
g+c≥1

wl,c,g = 1∑
l,c,g

[(l + g)αl+c − lαl+c−1 − gαl+c+1]wl,c,g ≥ 0

wl,c,g ≥ 0
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Choosing the weights

Dualize the inner LP, fix second variable to 1:

max
αi

max
θ
θ

s.t .
l(αl − αl−1) ≤ 1 l≥1

− gα1 ≤ −θ g≥1

(l + g)αl+c − lαl+c−1 − gαl+c+1 ≤ 1 − θ
c≥1 or l,g≥1

Fold both max’s to get an LP for the coefficients αi.
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Optimal weights
Solution to LP is θ = 1 − 1/e and

α0 = 0,
α1 = θ,

αl+1 = (l + 1)αl − lαl−1 − (1 − θ).

Sequence monotone concave, αl =
1
e log l + O(1).

For rank n, can replace e with

e[n] =
n−1∑
k=0

1
k !

+
1

(n − 1) · (n − 1)!
≈ e +

1
(n + 2)!

.
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Optimal weights (normalized)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5
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What now?

Conclusion
Optimal combinatorial algorithm for
maximum coverage over a matroid.

Holy grail
Optimal combinatorial algorithm for monotone
submodular maximization over a matroid.

Continuous algorithm by Calinescu, Chekuri, Pál
and Vondrák (STOC 2008).

Work in progress. We’re hopeful.
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Monotone submodular functions

Monotonicity

A ⊆ B ⇒ f(A) ≤ f(B)

Submodularity

f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B)

Discrete analog of concave.

Coverage function is monotone submodular.
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Generalizing the algorithm

Original function depended on elements.

No longer have elements, so instead use

g(S) =
∑
T⊆S

β|T |f(T).

f is actual objective function (monotone
submodular).
g is objective function used for local search.
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Choosing the coefficients

If f is a coverage function, can recover elements
using inclusion-exclusion, so can interpret
previous algorithm in new setting.
Surprisingly, works for general monotone
submodular functions up to rank 6.

Stops working at rank 7 (explicit counterexample).
Can calculate optimal coefficients as before.
Empirically, still yields 1 − 1/e.
Work in progress.
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Conclusions

Our results:
Combinatorial algorithm for maximum
coverage over a matroid with optimal
approximation ratio.
Possible extension to arbitrary monotone
submodular functions.

Questions?
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