A Unified Continuous Greedy Algorithm for Submodular Maximization

Moran Feldman

Joseph (Seffi) Naor Roy Schwartz

Technion - Israel Institute of Technology

Moran Feldman, Joseph (Seffi) Naor, Roy Schwartz A Unified Continuous Greedy Algorithm for Submodular Maximiza

Definitions Submodular Maximization Multilinear Relaxation

Submodular Functions

Ground set \mathcal{N} and $f: 2^{\mathcal{N}} \to \mathbb{R}$.

Submodular - Definition

$$f(A \cup B) + f(A \cap B) \leq f(A) + f(B) \quad \forall A, B \subseteq \mathcal{N}.$$

Definitions Submodular Maximization Multilinear Relaxation

Submodular Functions

Ground set \mathcal{N} and $f: 2^{\mathcal{N}} \to \mathbb{R}$.

Submodular - Definition

$$f(A \cup B) + f(A \cap B) \leq f(A) + f(B) \quad \forall A, B \subseteq \mathcal{N}.$$

Decreasing Marginal Values:

$$f(A \cup \{e\}) - f(A) \ge f(B \cup \{e\}) - f(B)$$
$$\forall A \subseteq B \subseteq \mathcal{N}, \forall e \in \mathcal{N} \setminus B.$$

Moran Feldman, Joseph (Seffi) Naor, Roy Schwartz A Unified Continuous Greedy Algorithm for Submodular Maximiza

Definitions Submodular Maximization Multilinear Relaxation

Submodular Functions (Cont.)

Monotonicity - Definition

$f(A) \leqslant f(B) \quad \forall A \subseteq B \subseteq \mathcal{N}.$

Moran Feldman, Joseph (Seffi) Naor, Roy Schwartz A Unified Continuous Greedy Algorithm for Submodular Maximiza

Definitions Submodular Maximization Multilinear Relaxation

Submodular Functions (Cont.)

Common in combinatorial optimization:

- Rank functions of matroids.
- Outs in undirected and directed graphs.
- Outs in hypergraphs.
- Overing functions.

Abundant uses in game-theory and economics.

Definitions Submodular Maximization Multilinear Relaxation

Submodular Maximization

Optimization Problem

Family of allowed subsets $\mathcal{M} \subseteq 2^{\mathcal{N}}$.

 $\begin{array}{ll} \max & f(S) \\ s.t. & S \in \mathcal{M} \end{array}$

Moran Feldman, Joseph (Seffi) Naor, Roy Schwartz A Unified Continuous Greedy Algorithm for Submodular Maximiza

Definitions Submodular Maximization Multilinear Relaxation

Submodular Maximization

Optimization Problem

Family of allowed subsets $\mathcal{M} \subseteq 2^{\mathcal{N}}$.

 $\begin{array}{ll} \max & f(S) \\ s.t. & S \in \mathcal{M} \end{array}$

Question - how is f given ?

Moran Feldman, Joseph (Seffi) Naor, Roy Schwartz A Unified Continuous Greedy Algorithm for Submodular Maximiza

Definitions Submodular Maximization Multilinear Relaxation

Submodular Maximization

Optimization Problem

Family of allowed subsets $\mathcal{M} \subseteq 2^{\mathcal{N}}$.

 $\begin{array}{ll} \max & f(S) \\ s.t. & S \in \mathcal{M} \end{array}$

Question - how is *f* given ?

Value Oracle Model: Returns f(S) for given $S \subseteq \mathcal{N}$.

Definitions Submodular Maximization Multilinear Relaxation

Submodular Maximization - Problems

Submodular Welfare

- k players and m items Q.
- Monotone and submodular $f_i : 2^{\mathcal{Q}} \to \mathbb{R}^+$ for player *i*.

Goal: allocate each item to a single player to maximize

$$\sum_{i=1}^k f_i(\mathcal{Q}_i).$$

 Q_i - items allocated to player i

Definitions Submodular Maximization Multilinear Relaxation

Submodular Maximization - Problems (Cont.)

Additional work:

- Variants: [Dobzinski-Nisan-Schapira], [Feige-Vondrák], [Feige].
- Hardness: [Chakrabarty-Goel], [Khot-Lipton-Markakis-Mehta].

Definitions Submodular Maximization Multilinear Relaxation

Submodular Maximization - Problems (Cont.)

Generalization of Submodular Welfare with 2 players.

Submodular Max-SAT

- CNF formula with n variables and m clauses Q.
- Monotone submodular $f : 2^{\mathcal{Q}} \to \mathbb{R}^+$ over the clauses.

Goal: find an assignment which satisfies clauses $S \subseteq Q$ that maximizes f(S).

Definitions Submodular Maximization Multilinear Relaxation

Submodular Maximization - Problems (Cont.)

Generalization of Submodular Welfare with 2 players.

Submodular Max-SAT

- CNF formula with n variables and m clauses Q.
- Monotone submodular $f : 2^{\mathcal{Q}} \to \mathbb{R}^+$ over the clauses.

Goal: find an assignment which satisfies clauses $S \subseteq Q$ that maximizes f(S).

Related work:

- (2/3)-approximation [Azar-Gamzu-Roth], [Dobzinski-Schapira].
- (3/4)-hardness [Vondrák].

Definitions Submodular Maximization Multilinear Relaxation

Submodular Maximization - Problems (Cont.)

A Matroid Constraint

- Matroid $M = (\mathcal{N}, \mathcal{I})$.
- Submodular $f: 2^{\mathcal{N}} \to \mathbb{R}^+$ not monotone !

Goal: find an independent set $S \in M$ that maximizes f(S).

Definitions Submodular Maximization Multilinear Relaxation

Submodular Maximization - Problems (Cont.)

A Matroid Constraint

- Matroid $M = (\mathcal{N}, \mathcal{I})$.
- Submodular $f: 2^{\mathcal{N}} \to \mathbb{R}^+$ not monotone !

Goal: find an independent set $S \in M$ that maximizes f(S).

Related work:

- ≈ 0.325-approximation [Ageev-Sviridenko], [Chekuri-Vondrák-Zenklusen], [Gharan-Vondrák].
- Hardness: ≈ 0.478 [Gharan-Vondrák].

Definitions Submodular Maximization Multilinear Relaxation

Submodular Maximization - Problems (Cont.)

O(1) Knapsack Constraints

- O(1) knapsack constraints on *n* elements \mathcal{N} .
- Submodular $f: 2^{\mathcal{N}} \to \mathbb{R}^+$ not monotone !

Goal: find a feasible packing $S \subseteq \mathcal{N}$ that maximizes f(S).

Definitions Submodular Maximization Multilinear Relaxation

Submodular Maximization - Problems (Cont.)

O(1) Knapsack Constraints

- O(1) knapsack constraints on *n* elements \mathcal{N} .
- Submodular $f: 2^{\mathcal{N}} \to \mathbb{R}^+$ not monotone !

Goal: find a feasible packing $S \subseteq \mathcal{N}$ that maximizes f(S).

Related work:

- ≈ 0.325 -approximation [Chekuri-Vondrák-Zenklusen], [Kulik-Shachnai], [Lee-Mirrokni-Nagarajan-Sviridenko].
- 1/2-hardness can be derived from [Vondrák].

Definitions Submodular Maximization Multilinear Relaxation

Approximating a Submodular Maximization Problem

Combinatorial Approach:

- Local search, greedy rules etc.
- Used as early as the late 70's.
- Provides current state of the art and tight [Feldman-Naor-S-Ward], [Lee, Sviridenko, Vondrák], [Sviridenko].
- Usually tailored for a specific structure.

Definitions Submodular Maximization Multilinear Relaxation

Approximating a Submodular Maximization Problem

Continuous Approach:

- Formulate a relaxation.
- Find a good fractional solution.
- Round solution.

Notable example: *asymptotically tight* approximation for a monotone submodular function over a matroid [Calinescu, Chekuri, Pal, Vondrák], [Nemhauser, Wolsey], [Nemhauser, Wolsey, Fisher].

Definitions Submodular Maximization Multilinear Relaxation

Approximating a Submodular Maximization Problem

Continuous Approach:

- Formulate a relaxation.
- Find a good fractional solution.
- Round solution.

Notable example: *asymptotically tight* approximation for a monotone submodular function over a matroid [Calinescu, Chekuri, Pal, Vondrák], [Nemhauser, Wolsey], [Nemhauser, Wolsey, Fisher].

Note

Improved fractional solution \Rightarrow improved approximation !

Our Results

Definitions Submodular Maximization Multilinear Relaxation

Main Result

A simple algorithm that finds better fractional solutions.

Moran Feldman, Joseph (Seffi) Naor, Roy Schwartz A Unified Continuous Greedy Algorithm for Submodular Maximiza

Definitions Submodular Maximization Multilinear Relaxation

Our Results

Main Result

A simple algorithm that finds better fractional solutions.

Some Applications:

- Tight results for Submodular Welfare and Submodular Max-SAT.
- Improved (1/e)-approximation for maximizing a non-monotone submodular function given a matroid or O(1) knapsack constraints.

Definitions Submodular Maximization Multilinear Relaxation

Formulating a Relaxation

How to formulate a relaxation ?

Definitions Submodular Maximization Multilinear Relaxation

Formulating a Relaxation

How to formulate a relaxation ?

Multilinear Relaxation

• $\mathcal{P} \subseteq [0, 1]^{\mathcal{N}}$ - polytope containing \mathcal{M} .

•
$$F(x) = \sum_{R \subseteq \mathcal{N}} f(R) \prod_{e \in R} x_e \prod_{e \notin R} (1 - x_e)$$
, $\forall x \in [0, 1]^{\mathcal{N}}$

 $\begin{array}{ll} \max & F(x) \\ s.t. & x \in \mathcal{P} \end{array}$

Definitions Submodular Maximization Multilinear Relaxation

Formulating a Relaxation

How to formulate a relaxation ?

Multilinear Relaxation

• $\mathcal{P} \subseteq [0,1]^{\mathcal{N}}$ - polytope containing \mathcal{M} .

•
$$F(x) = \sum_{R \subseteq \mathcal{N}} f(R) \prod_{e \in R} x_e \prod_{e \notin R} (1 - x_e)$$
, $\forall x \in [0, 1]^{\mathcal{N}}$

 $\begin{array}{ll} \max & F(x) \\ s.t. & x \in \mathcal{P} \end{array}$

Problem

F is neither convex nor concave - how to solve relaxation?

Solving Multilinear Relaxations - Monotone f

- Works only for monotone *f*.
- \mathcal{P} is down-monotone and solvable.

Solving Multilinear Relaxations - Monotone f

- Works only for monotone *f*.
- \mathcal{P} is down-monotone and solvable.

Solving Multilinear Relaxations - Monotone f (Cont.)

- First suggested by [Calinescu-Chekuri-Pal-Vondrák], [Vondrák].
- Simple and elegant.
- Achieves asymptotically tight results in some cases.
- Outputs a convex combination of points in \mathcal{P} .

Theorem

The continuous greedy algorithm finds a feasible solution with value at least $(1 - e^{-t})f(OPT)$ when terminated at time $t \in [0, 1]$.

Algorithm

Solving Multilinear Relaxations - Non-Monotone f

Question

What happens when f is not necessarily monotone ?

Algorithm

Solving Multilinear Relaxations - Non-Monotone f

Question

What happens when f is not necessarily monotone ?

• The algorithm fails !

• Much more involved methods are known - the best achieves an approximation of ≈ 0.325 [Chekuri-Vondrák-Zenklusen].

Algorithm Our Results

Intuition

Improvement determined by residual increase:

$$w_e \triangleq F(x \vee \mathbf{1}_e) - F(x).$$

Algorithm Our Results

Intuition

Improvement determined by residual increase:

$$w_e \triangleq F(x \vee \mathbf{1}_e) - F(x).$$

Monotonicity of f is used when showing:

 $w_e \leq \partial_e F(x).$

Can we do better?

Algorithm Our Results

Intuition (Cont.)

Observation

$$w_e \triangleq F(x \lor \mathbf{1}_e) - F(x) = \partial_e F(x) \cdot (1 - x_e)$$
$$\Downarrow$$

Change update step to: $x_e \leftarrow x_e + \delta \cdot y_e \cdot (1 - x_e), \forall e \in \mathcal{N}.$

Algorithm Our Results

Intuition (Cont.)

Observation

$$w_e \triangleq F(x \lor \mathbf{1}_e) - F(x) = \partial_e F(x) \cdot (1 - x_e)$$

$$\Downarrow$$

Change update step to: $x_e \leftarrow x_e + \delta \cdot y_e \cdot (1 - x_e)$, $\forall e \in \mathcal{N}$.

Unified Continuous Greedy Algorithm

2

$$\mathbf{1} \quad x \leftarrow 0, t \leftarrow 0$$

•
$$w_e = F(x \lor \mathbf{1}_e) - F(x), \forall e \in \mathcal{N}.$$

• $y = \operatorname{argmax}\{w \cdot y \mid y \in \mathcal{P}\}.$

$$x_e \leftarrow x_e + \delta \cdot y_e \cdot (1 - x_e), \forall e \in \mathcal{N}.$$

3 Output *x*.

Algorithm Our Results

Our Results

A unified continuous greedy algorithm for both cases.

Moran Feldman, Joseph (Seffi) Naor, Roy Schwartz A Unified Continuous Greedy Algorithm for Submodular Maximiza

Our Results

A unified continuous greedy algorithm for both cases.

Theorem [Feldman-Naor-S]

The unified continuous greedy algorithm finds a fractional solution with value at least:

•
$$(1 - e^{-t})f(OPT)$$
 (f is monotone),

2
$$(t \cdot e^{-t})f(OPT)$$
 (general f),

when terminated at time t.

Comments

• f non-monotone \Rightarrow set t = 1 achieving approximation 1/e.

Our Results

Comments

• f non-monotone \Rightarrow set t = 1 achieving approximation 1/e.

Our Results

- x is **not** a convex combination of points in \mathcal{P} !
- What happens in the monotone case?

Comments

• f non-monotone \Rightarrow set t = 1 achieving approximation 1/e.

Our Results

- *x* is **not** a convex combination of points in \mathcal{P} !
- What happens in the monotone case?

Monotone f - choice of t depends on \mathcal{P}

- **density** of \mathcal{P} determines best $t \ge 1$
- *t* might be larger than 1 and still *x* ∈ *P*.
 (original continuous greedy is somewhat wasteful)

Algorithm Our Results

Proof Outline - Non-Monotone Case

Moran Feldman, Joseph (Seffi) Naor, Roy Schwartz A Unified Continuous Greedy Algorithm for Submodular Maximiza

Algorithm Our Results

Proof Outline - Non-Monotone Case

• At time t:

$$\sum_{e \in \mathcal{N}} y_e \cdot (1 - x_e) \cdot \partial_e(F(x)) \ge F(x \vee \mathbf{1}_{OPT}) - F(x).$$

Algorithm Our Results

Proof Outline - Non-Monotone Case

• At time t:

$$\sum_{e \in \mathcal{N}} y_e \cdot (1 - x_e) \cdot \partial_e(F(x)) \ge F(x \vee \mathbf{1}_{OPT}) - F(x).$$

• *F* is *"linear"* up to low order terms.

Algorithm Our Results

Proof Outline - Non-Monotone Case

• At time t:

$$\sum_{e \in \mathcal{N}} y_e \cdot (1 - x_e) \cdot \partial_e(F(x)) \ge F(x \vee \mathbf{1}_{OPT}) - F(x).$$

- *F* is *"linear"* up to low order terms.
- If $x_e \leq a, \forall e \in \mathcal{N}$, then for every $S \subseteq \mathcal{N}$:

$$F(x \vee \mathbf{1}_S) \ge (1-a)f(S).$$

Algorithm Our Results

Proof Outline - Non-Monotone Case

• At time t:

$$\sum_{e \in \mathcal{N}} y_e \cdot (1 - x_e) \cdot \partial_e(F(x)) \ge F(x \vee \mathbf{1}_{OPT}) - F(x).$$

- F is "linear" up to low order terms.
- If $x_e \leq a, \forall e \in \mathcal{N}$, then for every $S \subseteq \mathcal{N}$:

$$F(x \vee \mathbf{1}_S) \ge (1-a)f(S).$$

• Bound the value of *x_e* at each step.

Algorithm Our Results

Proof Outline - Non-Monotone Case

• At time t:

l

$$\sum_{e \in \mathcal{N}} y_e \cdot (1 - x_e) \cdot \partial_e(F(x)) \ge F(x \vee \mathbf{1}_{OPT}) - F(x).$$

- *F* is *"linear"* up to low order terms.
- If $x_e \leq a, \forall e \in \mathcal{N}$, then for every $S \subseteq \mathcal{N}$:

$$F(x \vee \mathbf{1}_S) \ge (1-a)f(S).$$

- Bound the value of *x_e* at each step.
- Find a recursive function bounding the improvement in *F*(*x*) at every step.

Algorithm Our Results

Open Questions

- Is the (1/e)-approximation for non-monotone f tight?
- Are there additional applications for the unified continuous greedy algorithm? (Unconstrained Submodular Maximization)

Algorithm Our Results

Thank You !

Moran Feldman, Joseph (Seffi) Naor, Roy Schwartz A Unified Continuous Greedy Algorithm for Submodular Maximiza