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Introduction Definitions
Submodular Maximization

Multilinear Relaxation

Submodular Functions

Ground set A" and f : 2V — R.

Submodular - Definition

f(AUB)+ f(ANB) < f(A)+ f(B) VA,BCWN.
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Introduction Definitions
Submodular Maximization

Multilinear Relaxation

Submodular Functions

Ground set A" and f : 2V — R.

Submodular - Definition

f(AUB)+ f(ANB) < f(A)+ f(B) VA,BCWN.

Decreasing Marginal Values:

B B U {e}

f(AU{e}) = f(A) = f(BU{e}) — f(B)
VACBCWN,Vee N\ B.
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Submodular Functions (Cont.)

Monotonicity - Definition

f(A)< f(B) YACBCWN.
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Submodular Functions (Cont.)

Common in combinatorial optimization:
@ Rank functions of matroids.
@ Cuts in undirected and directed graphs.
© Cuts in hypergraphs.
@ Covering functions.

Abundant uses in game-theory and economics.
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Submodular Maximization

Optimization Problem
Family of allowed subsets M C 2.

max f(S)
st. SeM
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Submodular Maximization
Multilinear Relaxation

Submodular Maximization

Optimization Problem
Family of allowed subsets M C 2.

max f(S)
st. SeM
Question - how is f given ? )
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Submodular Maximization

Optimization Problem
Family of allowed subsets M C 2.

max f(S)
st. SeM
Question - how is f given ? J
Value Oracle Model: Returns f(S) for given S C . |
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Submodular Maximization - Problems

Submodular Welfare

@ k players and m items Q.
@ Monotone and submodular f; : 22 — R* for player i.

Goal: allocate each item to a single player to maximize

k
;fi(Qi)-

Q, - items allocated to player i

m items

k players
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Submodular Maximization - Problems (Cont.)

@ max {1 — 1, z25 }-approximation
[Calinescu-Chekuri-Pal-Vondrak], [Dobzinski-Schapira], [Vondrak].

° (1 -(1- %)k)-hardness [Vondrak].
Additional work:

@ Variants: [Dobzinski-Nisan-Schapira], [Feige-Vondréak], [Feige].
@ Hardness: [Chakrabarty-Goel], [Khot-Lipton-Markakis-Mehta].
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Submodular Maximization - Problems (Cont.)

Generalization of Submodular Welfare with 2 players.

Submodular Max-SAT
@ CNF formula with n variables and m clauses O.

@ Monotone submodular f : 2¢ — R* over the clauses.

Goal: find an assignment which satisfies clauses S C Q that
maximizes f(S).
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Submodular Maximization - Problems (Cont.)

Generalization of Submodular Welfare with 2 players.

Submodular Max-SAT

@ CNF formula with n variables and m clauses Q.
@ Monotone submodular f : 2¢ — R* over the clauses.

Goal: find an assignment which satisfies clauses S C Q that
maximizes f(S).

Related work:
@ (2/3)-approximation [Azar-Gamzu-Roth], [Dobzinski-Schapira].
@ (3/4)-hardness [Vondrak].
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Submodular Maximization - Problems (Cont.)

A Matroid Constraint
@ Matroid M = (N, T).
@ Submodular f : 2V — R* - not monotone !

Goal: find an independent set S € M that maximizes f(S).
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Submodular Maximization
Multilinear Relaxation

Submodular Maximization - Problems (Cont.)

A Matroid Constraint
@ Matroid M = (N, T).
@ Submodular f : 2V — R* - not monotone !

Goal: find an independent set S € M that maximizes f(S).

Related work:

@ ~ 0.325-approximation [Ageev-Sviridenkol,
[Chekuri-Vondrak-Zenklusen], [Gharan-Vondrak].

@ Hardness: = 0.478 [Gharan-Vondrak].
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Submodular Maximization - Problems (Cont.)

O(1) Knapsack Constraints
@ O(1) knapsack constraints on n elements N.
@ Submodular f : 2V — R* - not monotone !

Goal: find a feasible packing S C N that maximizes f(S).
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Submodular Maximization - Problems (Cont.)

O(1) Knapsack Constraints

@ O(1) knapsack constraints on n elements N.
@ Submodular f : 2V — R* - not monotone !

Goal: find a feasible packing S C N that maximizes f(S).

Related work:

@ ~ 0.325-approximation [Chekuri-Vondrak-Zenklusen],
[Kulik-Shachnai], [Lee-Mirrokni-Nagarajan-Sviridenko].

@ 1/2-hardness can be derived from [Vondrak].
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Approximating a Submodular Maximization Problem

Combinatorial Approach:
@ Local search, greedy rules etc.
@ Used as early as the late 70’s.

@ Provides current state of the art and tight
[Feldman-Naor-S-Ward], [Lee, Sviridenko, Vondrak], [Sviridenko].

@ Usually tailored for a specific structure.
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Approximating a Submodular Maximization Problem

Continuous Approach:
@ Formulate a relaxation.
@ Find a good fractional solution.
© Round solution.

Notable example: asymptotically tight approximation for a
monotone submodular function over a matroid [Calinescu, Chekuri,
Pal, Vondrak], [Nemhauser, Wolsey], [Nemhauser, Wolsey, Fisher].
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Approximating a Submodular Maximization Problem

Continuous Approach:
@ Formulate a relaxation.
@ Find a good fractional solution.
© Round solution.

Notable example: asymptotically tight approximation for a
monotone submodular function over a matroid [Calinescu, Chekuri,
Pal, Vondrak], [Nemhauser, Wolsey], [Nemhauser, Wolsey, Fisher].

Improved fractional solution = improved approximation !
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Our Results

A simple algorithm that finds better fractional solutions.
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Our Results

A simple algorithm that finds better fractional solutions.

Some Applications:
@ Tight results for Submodular Welfare and Submodular
Max-SAT.
@ Improved (1/e)-approximation for maximizing a
non-monotone submodular function given a matroid or
O(1) knapsack constraints.
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Submodular Maximization
Multilinear Relaxation

Formulating a Relaxation

How to formulate a relaxation ?
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Formulating a Relaxation

How to formulate a relaxation ?

Multilinear Relaxation

@ P C [0,1]" - polytope containing M.
® F(x) = Yren f(R) Tleer *e [Tegr(1 — xe) , Vx € [0,1]V.

max F(x)
st. xeP
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Introduction Definitions
Submodular Maximization
Multilinear Relaxation

Formulating a Relaxation

How to formulate a relaxation ?

Multilinear Relaxation

@ P C [0,1]" - polytope containing M.
® F(x) = Yren f(R) Tleer *e [Tegr(1 — xe) , Vx € [0,1]V.

v

Problem
F is neither convex nor concave - how to solve relaxation?
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Continuous Greedy Algorithm

Solving Multilinear Relaxations - Monotone f

@ Works only for monotone f.
@ P is down-monotone and solvable.
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Continuous Greedy Algorithm

Solving Multilinear Relaxations - Monotone f

@ Works only for monotone f.
@ P is down-monotone and solvable.

Continuous Greedy Algorithm

Q x+0,t«0. 4
Q While r < 1:
Q@ w,=F(xV1,)—F(x),VecN. #3r0y
Q@ y=argmax{w-y|ye P} X
Q@ x+x+6-y. Y
Q t+t+6.

© Output x.

v
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Continuous Greedy Algorithm

Solving Multilinear Relaxations - Monotone f (Cont.)

@ First suggested by [Calinescu-Chekuri-Pal-Vondrak], [Vondrak].
@ Simple and elegant.

@ Achieves asymptotically tight results in some cases.

@ Outputs a convex combination of points in P.

The continuous greedy algorithm finds a feasible solution with
value at least (1 — e~ ") f(OPT) when terminated at time
t € [0,1].
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Continuous Greedy Algorithm

Solving Multilinear Relaxations - Non-Monotone f

What happens when f is not necessarily monotone ?
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Continuous Greedy Algorithm

Solving Multilinear Relaxations - Non-Monotone f

What happens when f is not necessarily monotone ?

@ The algorithm fails !

@ Much more involved methods are known - the best
achieves an approximation of ~ 0.325
[Chekuri-Vondrak-Zenklusen].
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Algorithm

Unified Continuous Greedy e RIS

Intuition

Improvement determined by residual increase:

we = F(xV1,) — F(x).
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Algorithm

Unified Continuous Greedy e RIS

Intuition

Improvement determined by residual increase:
we = F(xV1,) — F(x).
Monotonicity of f is used when showing:
we < 0.F(x).

Can we do better?
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Algorithm

Unified Continuous Greedy e RIS

Intuition (Cont.)

Observation
we = F(xV1,) — F(x) = d.F(x) - (1 — x,)
J
Change update step to: x, + x, + -y - (1 — x,), Ve € N.
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Algorithm

Unified Continuous Greedy e RIS

Intuition (Cont.)

we = F(xV1,) — F(x) = d.F(x) - (1 — x,)
J
Change update step to: x, + x, + -y - (1 — x,), Ve € N.

Unified Continuous Greedy Algorithm

Q x—0,t«0.

@ While t < 1:
Q@ w.=F(xV1,)—F(x),Vee N.
Q@ y=argmax{w-y |y € P}.
Q@ xe <X+ Yer(1—x,),VeeN.
Q t+t+454.

© Output x.
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Algorithm

Unified Continuous Greedy Ol RS

Our Results

A unified continuous greedy algorithm for both cases.
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Algorithm
Our Results

Unified Continuous Greedy

Our Results

A unified continuous greedy algorithm for both cases.

Theorem [Feldman-Naor-S]

The unified continuous greedy algorithm finds a fractional
solution with value at least:

Q@ (1—e")f(OPT) (f is monotone),
Q (t-e)f(OPT) (general f),
when terminated at time ¢.
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Algorithm

Unified Continuous Greedy Ol RS

Comments

@ f non-monotone = set t = 1 achieving approximation 1/e.
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Unified Continuous Greedy Ol RS

Comments

@ f non-monotone = set t = 1 achieving approximation 1/e.
@ x is not a convex combination of points in P!
@ What happens in the monotone case?
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Algorithm

Unified Continuous Greedy Ol RS

Comments

@ f non-monotone = set t = 1 achieving approximation 1/e.
@ x is not a convex combination of points in P!
@ What happens in the monotone case?

Monotone f - choice of t depends on P

@ density of P determines best t > 1

@ { might be larger than 1 and still x € P.
(original continuous greedy is somewhat wasteful)
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Algorithm

Unified Continuous Greedy Ol RS

Proof Outline - Non-Monotone Case
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Unified Continuous Greedy Ol RS

Proof Outline - Non-Monotone Case

@ Attime t:

ZNye (1 —=x,)-9.(F(x)) = F(xV1popr) — F(x).
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Unified Continuous Greedy Ol RS

Proof Outline - Non-Monotone Case

@ Attime t:

ZNye (1 —=x,)-9.(F(x)) = F(xV1popr) — F(x).

@ Fis “linear” up to low order terms.
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Algorithm

Unified Continuous Greedy Ol RS

Proof Outline - Non-Monotone Case

@ Attime t:

ZNye (1 —=x,)-9.(F(x)) = F(xV1popr) — F(x).

@ Fis “linear” up to low order terms.
o If x, <a,Vee N,thenforevery S C N:

F(xV1s) > (1-a)f(S).
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Unified Continuous Greedy Ol RS

Proof Outline - Non-Monotone Case

@ Attime t:

ZNye (1 —=x,)-9.(F(x)) = F(xV1popr) — F(x).

@ Fis “linear” up to low order terms.
o If x, <a,Vee N,thenforevery S C N:

F(xV1s) > (1-a)f(S).

@ Bound the value of x, at each step.
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Unified Continuous Greedy Ol RS

Proof Outline - Non-Monotone Case

@ Attime t:

ZNye (1 —=x,)-9.(F(x)) = F(xV1popr) — F(x).

@ Fis “linear” up to low order terms.
o If x, <a,Vee N,thenforevery S C N:

F(xV1s) > (1-a)f(S).

@ Bound the value of x, at each step.

@ Find a recursive function bounding the improvement in
F(x) at every step.
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Unified Continuous Greedy Ol RS

Open Questions

@ Is the (1/e)-approximation for non-monotone f tight?

© Are there additional applications for the unified continuous
greedy algorithm?
(Unconstrained Submodular Maximization)
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Our Results

Unified Continuous Greedy

Thank You !
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