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Perfect Matchings in 
Bipartite Graphs

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⌅ N ⇤ N . A perfect
matching is an edge subset M ⌅ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix A,
every perfect matching cor-
responds to a permutation �
for which Ai,⇡(i) = 1 for all
i � [n]. Row 3: In the di-
rected n-node graph defined
by A, every perfect matching
corresponds to a directed cy-
cle partition. Bottom row:
an equivalent formulation in
terms of non-attacking rooks
on a chess board with forbid-
den positions.
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The Ryser formula for counting the perfect matchings in such a graph can
be given as

⇥

�⇥Sn

n⇤

i=1

[i�(i) ⌥ E] =
⇥

S�N

(�1)|N\S|
n⇤

i=1

⇥

j⇥S

[ij ⌥ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1�(1), 2�(2), . . ., n�(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.
Proof of (4). For fixed i ⌥ N , the value

�
j⇥S [ij ⌥ E] counts the number of i’s

neighbours in S ⌅ N . Thus the expression
n⇤

i=1

⇥

j⇥S

[ij ⌥ E] (5)

is the number of ways every node i ⌥ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N ⌃ N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⇧ R, and its total contribution to the right hand
side of (4) is, using (1),

⇥

R�S�N

(�1)|N\S| · 1 = [g(N) = N ] .
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Fig. 4. Inclusion–exclusion for non-attacking rooks. The top row shows all 12 = 3 · 2 · 2
ways to place exactly one rook in every board line. Every row shows the possible place-
ments in the vertical lines given by S ⇤ {1, 2, 3}. We omit the rows whose contribution
vanishes, namely S = {1}, S = {3} and S = ?. Of particular interest is the second
column, which is subtracted twice and later added again. The entire calculation is 12�
4� 2� 4 + 1 + 0 + 0� 0 = 3.

Thus g contributes if and only if it is a permutation. ↵⌦

Perspective. Bipartite matching is an example of a sequencing problem, where
inclusion–exclusion replaces an enumeration over permutations, Â�⇧Sn by an
alternating enumeration over subsets ÂS⇤N(�1)|N\S| of functions with restricted
range. Typically, this reduces a factor n! in the running time to 2n. One can ex-
press the idea algebraically like this:

Â
f : N⌅N
f (N)=N

[ · · · ] = Â
R

[R = N] Â
f : N⌅N
f (N)=R

[ · · · ]

= Â
R

Â
S

[R ⇤ S](�1)|N\S| Â
f : N⌅N
f (N)=R

[ · · · ]

= Â
S

(�1)|N\S| Â
R

[R ⇤ S] Â
f : N⌅N
f (N)=R

[ · · · ]

= Â
S

(�1)|N\S| Â
f : N⌅S

[ · · · ] .

(6)

Ryser’s formula is normally given in a more general form, for the permanent
Â� ’i Ai�(i) of a matrix, where the entries can be other than just 0 and 1. The
running time can be improved to O(2nn) arithmetic operations by iterating over
N in Gray code order.

Ryser’s formula [17] is a very well-known result in combinatorics and ap-
pears in many textbooks. However, it is easy to achieve running time O(2nn)
using dynamic programming over the subsets, at the expense of space O(2n).

All ways of placing 1 rook per row
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Ryser’s formula is normally given in a more general form, for the permanent
Â� ’i Ai�(i) of a matrix, where the entries can be other than just 0 and 1. The
running time can be improved to O(2nn) arithmetic operations by iterating over
N in Gray code order.

Ryser’s formula [17] is a very well-known result in combinatorics and ap-
pears in many textbooks. However, it is easy to achieve running time O(2nn)
using dynamic programming over the subsets, at the expense of space O(2n).

All ways of placing 1 rook per row
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Ryser
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Fig. 5. The perfect matching algorithm for a graph with n = 6 and m = 7. There are (7
3) = 35 ways to pick 3 edges out of 7, shown in the top

row. The triangle appears in 7 other terms (4 negative, 3 positive), the two perfect matchings appear only once.
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Vertex colouring
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Invitation to Algorithmic Uses of
Inclusion–Exclusion

Thore Husfeldt

IT University of Copenhagen, Denmark
Lund University, Sweden

Abstract. I give an introduction to algorithmic uses of the principle of
inclusion–exclusion. The presentation is intended to be be concrete and
accessible, at the expense of generality and comprehensiveness.

R

T1 The principle of inclusion–exclusion. There are as
many odd-sized as even-sized subsets sandwiched be-
tween two different sets: For R ⇤ T,

�
R⇤S⇤T

(�1)|T\S| = [R = T] . (1)

We use Iverson notation [P] for proposition P, mean-
ing [P] = 1 if P and [P] = 0 otherwise.

Proof of (1). If R = T then there is exactly one sandwiched set, namely S = T.
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I3
2 Graph colouring. A k-colouring of a graph G = (N, E) on
n = |N| nodes assigns one of k colours to every node such that
neighbouring nodes have different colours. In any such colour-
ing, the nodes of the same colour form a nonempty independent
set, a set of nodes none of which are neighbours.

Let g(S) denote the number of nonempty independent sub-
sets in S ⇤ N. Then G can be k-coloured if and only if

�
S⇤N

(�1)n�|S|�g(S)
⇥k

> 0 . (2)
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Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[ ⌅i : Ii ⇤ S ](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[ ⌅i : Ii ⇤ S ](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).
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Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of
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n
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n
i

⇥
2i = 3n .

The space requirement is polynomial.
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63 = 216
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3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of
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Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
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indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).
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Alternatively, we first build a table with 2n entries containing g(S) for all

S ⇥ N, after which we can evaluate (2) in time and space 2nnO(1).
Such a table is easy to build given a recurrence for g(S). We have g(?) = 0,
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where N[v] = {v} ⌃ { u ⌅ N : uv ⌅ E } denotes the closed neighbourhood of v.

Proof of (3). Fix v ⌅ S and consider the nonempty independent sets I ⇥ S.
They can be partitioned into two classes: either v ⌅ I or v /⌅ I. The latter sets
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. It remains to argue that the sets I ⇧ v are counted in
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+ 1. We will do this by counting the equipotent family of sets I \ {v}

instead. Since I contains v and is independent, it cannot contain other nodes in
N[v]. Thus I \ {v} is disjoint from N[v] and contained in S. Now, either I is the
singleton {v} itself, accounted for by the ‘+1’ term, or I \ {v} is a nonempty
independent set and therefore counted in g
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Fig. 2. Three stages in the tabulation of g(S) for all S ⇥ N bottom-up. For example, the
value of g({A, C, D}) is given by (3) with v = D as g({A, C}) + g({C}) + 1 = 4.

Perspective. The brute force solution for graph colouring tries all kn assignments
of colours to the nodes, which is slower for k ⇤ 4. Another approach is dynamic
programming over the subsets [15], based on the idea that G can be k-coloured if
and only if G[N \ S] can be (k� 1)-coloured for some nonempty independent
set S. That algorithm also runs within a polynomial factor of 3n, but uses ex-
ponential space. In summary, the inclusion–exclusion approach is faster than
brute force, and uses less space than dynamic programming over the subsets.
The insight that this idea applies to a wide range of sequencing and packing
problems goes back to Karp [12], the application to graph colouring is from [2].

We use a space–time trade-off to reducing the exponential running time fac-
tor from 3n to 2n, applying dynamic programming to tabulate the decrease-
and-conquer recurrence (3), based on [8]. Recurrence (3) depends heavily on
the structure of independent sets; a more general approach is shown in §10.
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ponential space. In summary, the inclusion–exclusion approach is faster than
brute force, and uses less space than dynamic programming over the subsets.
The insight that this idea applies to a wide range of sequencing and packing
problems goes back to Karp [12], the application to graph colouring is from [2].

We use a space–time trade-off to reducing the exponential running time fac-
tor from 3n to 2n, applying dynamic programming to tabulate the decrease-
and-conquer recurrence (3), based on [8]. Recurrence (3) depends heavily on
the structure of independent sets; a more general approach is shown in §10.

The two strategies for computing g(S) represent extreme cases of a space–
time tradeoff that can be balanced [4].
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O*(3n) time
polynomial space

O*(2n) time
O*(2n) space

Compute Â
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n vars
m clauses

3m=O(n3) verts
O(m2) edges

exp(o(m1/2)) alg for I.S.
exp(o(n)) alg for 3-SAT

exp(o(n1/3)) alg for I.S.
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n vars
m clauses

3m=O(n3) verts
O(m) edges

exp(o(m)) alg for I.S.
exp(o(n)) alg for 3-SAT

exp(o(n1/3)) alg for I.S.
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Independent set 
n vertices m edges

1.1888n

cm

Clique 
n vertices m edges

1.1888n

2

p
m log n
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Sparsifying a Hitting Set Instance

1 2 3 4 5 6

~n2 sets

element of high “degree”
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Sparsifying a Hitting Set Instance

1 2 3 4 5 6
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max degree r·n

high degree

sparse instances

nonsparse instance
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exp(o(n))·2n=exp(n)

exp(o(n))·exp(H(1/r)n) = 
exp(o(n))

2n leaves

C(n,1) +...+ C(n,n/r) 
leaves
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Exponential Time Hypothesis

Impagliazzo
Paturi

Zane

Can’t do 3-Sat in time exp(o(n))

Can’t do 18-Sat in time exp(o(m))

Can’t do Independent 
Set in time exp(o(n))
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q states, pairwise 
constraints

CSP(q,2)

Traxler

Why No Dependency on # Colours is Surprising
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n verts

d states

n/2 verts

d2 states

Must have dn = (d2)n/2
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•k=n: Hamilton path
•no poly(k)-algorithm under P vs NP
•no exp(o(k))-algorithm under ETH
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•k=n: Hamilton path
•no poly(k)-algorithm under P vs NP
•no exp(o(k))-algorithm under ETH
•Brute force: O(n!) (note: not nk)
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•k=n: Hamilton path
•no poly(k)-algorithm under P vs NP
•no exp(o(k))-algorithm under ETH
•Brute force: O(n!) (note: not nk)
•Disjoint paths: f(k)·poly(n)

Robertson–Seymour

onsdag 12 oktober 11



share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

k specified vertices, n vertices 

•k=n: Hamilton path
•no poly(k)-algorithm under P vs NP
•no exp(o(k))-algorithm under ETH
•Brute force: O(n!) (note: not nk)
•Disjoint paths: f(k)·poly(n)
•Algorithms for k=1,2,3.  

Robertson–Seymour
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•k=n: Hamilton path
•no poly(k)-algorithm under P vs NP
•no exp(o(k))-algorithm under ETH
•Brute force: O(n!) (note: not nk)
•Disjoint paths: f(k)·poly(n)
•Algorithms for k=1,2,3.  
•Algorithm in exp(exp(k10))

Kawarabayashi

Robertson–Seymour

onsdag 12 oktober 11



share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

New result [SODA12]: 
randomised algorithm in time 

exp(k)poly(n)

k specified vertices, n vertices 

Taslaman Björklund
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New result [SODA12]: 
randomised algorithm in time 

exp(k)poly(n)

k specified vertices, n vertices 

Taslaman Björklund

Thm: Shortest(!) cycle 
through k given vertices or 
edges in time 2kpoly(n) with 
exponentially small one-
sided error.
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monomial for every walk
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monomial for every walk
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sum over all walks

Trick: Look at Polynomials Instead
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monomial for every walk

a·b·c·e·f·g·ha·b·c·e·f·g·h

sum over all walks

Trick: Look at Polynomials Instead

mod 2
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Trick: Look at Polynomials Instead

(Not really. Look at random 
numbers and interpret them as 

polynomial evaluations.)
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Trick: Look at Polynomials Instead

(Not really. Look at random 
numbers and interpret them as 

polynomial evaluations.)
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Constructing all Walks: 
Dynamic Programming for Sequencing Problems

W(r,S,v) =  walks s.t.
length: r
end in v
visit all in S exactly once
no other in K 

S ✓ K
K = specifed vertices 

K

S

v
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W(r, S, v) =

(S
uv2E W(r � 1, S, u) v /2 S

S
uv2E W(r � 1, S � v, u) v 2 S

Time: 2Kpoly(n)
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Constructing all Walks: 
Dynamic Programming for Sequencing Problems
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Constructing all Walks: 
Dynamic Programming for Sequencing Problems

Bellman

Held–Karp
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Some pitfalls…

x
y

z

xy2z

does not cancel
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Some pitfalls…

x
y

z

xy2z

does not cancel

(solved in the dynamic 
program: just avoid “digons”) 
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Some pitfalls…
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Some pitfalls…

onsdag 12 oktober 11



Some pitfalls…

(solve shorter lengths first) 
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share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

k specified vertices, n vertices 

1. Associate random value from GF(2q) to each 
edge

2. Use dynamic programming to count the 
contribution of all sufficiently well-behaved 
walks

3. Return “Found one!” if the result is nonzero
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clime
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pride
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crock

crook

grook
groom

gloom
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brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

k specified vertices, n vertices 

Theorem: Shortest cycle through k given vertices or 
edges in time 2kpoly(n) with exponentially small 
one-sided error.

1. Associate random value from GF(2q) to each 
edge

2. Use dynamic programming to count the 
contribution of all sufficiently well-behaved 
walks

3. Return “Found one!” if the result is nonzero
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Edge Colouring
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Edge Colouring
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k: # colours
d: degree
Vizing: k = d or k = d+1

Brute force: check all dm possibilities

Vertex colour the line graph: time 2m=2nd/2 
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k: # colours
d: degree

Brute force dm

Vertex colour the line graph 2m=2nd/2

“Narrow sieves” [BHKK] 2n(d-1)/2

Under ETH:  not in exp(o(n))
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Edge Colouring takes

exp(n)
dn = exp(nlog d)
exp(m) = exp(nd)
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Tak fordi I kom
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