
Exponential Time
Algorithms

Thore Husfeldt

IT University of Copenhagen
Lund University

onsdag 12 oktober 11

Perfect Matchings

onsdag 12 oktober 11

Perfect Matchings in
Bipartite Graphs

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⌅ N ⇤ N . A perfect
matching is an edge subset M ⌅ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix A,
every perfect matching cor-
responds to a permutation �
for which Ai,⇡(i) = 1 for all
i � [n]. Row 3: In the di-
rected n-node graph defined
by A, every perfect matching
corresponds to a directed cy-
cle partition. Bottom row:
an equivalent formulation in
terms of non-attacking rooks
on a chess board with forbid-
den positions.

1 1 1
1 1 0
0 1 1

1 1 1
1 1 0
0 1 1

1 1 1
1 1 0
0 1 1

1 1 1
1 1 0
0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

⇥

�⇥Sn

n⇤

i=1

[i�(i) ⌥ E] =
⇥

S�N

(�1)|N\S|
n⇤

i=1

⇥

j⇥S

[ij ⌥ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1�(1), 2�(2), . . ., n�(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.
Proof of (4). For fixed i ⌥ N , the value

�
j⇥S [ij ⌥ E] counts the number of i’s

neighbours in S ⌅ N . Thus the expression
n⇤

i=1

⇥

j⇥S

[ij ⌥ E] (5)

is the number of ways every node i ⌥ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N ⌃ N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⇧ R, and its total contribution to the right hand
side of (4) is, using (1),

⇥

R�S�N

(�1)|N\S| · 1 = [g(N) = N] .

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⌅ N ⇤ N . A perfect
matching is an edge subset M ⌅ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix A,
every perfect matching cor-
responds to a permutation �
for which Ai,⇡(i) = 1 for all
i � [n]. Row 3: In the di-
rected n-node graph defined
by A, every perfect matching
corresponds to a directed cy-
cle partition. Bottom row:
an equivalent formulation in
terms of non-attacking rooks
on a chess board with forbid-
den positions.

1 1 1
1 1 0
0 1 1

1 1 1
1 1 0
0 1 1

1 1 1
1 1 0
0 1 1

1 1 1
1 1 0
0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

⇥

�⇥Sn

n⇤

i=1

[i�(i) ⌥ E] =
⇥

S�N

(�1)|N\S|
n⇤

i=1

⇥

j⇥S

[ij ⌥ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1�(1), 2�(2), . . ., n�(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.
Proof of (4). For fixed i ⌥ N , the value

�
j⇥S [ij ⌥ E] counts the number of i’s

neighbours in S ⌅ N . Thus the expression
n⇤

i=1

⇥

j⇥S

[ij ⌥ E] (5)

is the number of ways every node i ⌥ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N ⌃ N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⇧ R, and its total contribution to the right hand
side of (4) is, using (1),

⇥

R�S�N

(�1)|N\S| · 1 = [g(N) = N] .

onsdag 12 oktober 11

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⌅ N ⇤ N . A perfect
matching is an edge subset M ⌅ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix A,
every perfect matching cor-
responds to a permutation �
for which Ai,⇡(i) = 1 for all
i � [n]. Row 3: In the di-
rected n-node graph defined
by A, every perfect matching
corresponds to a directed cy-
cle partition. Bottom row:
an equivalent formulation in
terms of non-attacking rooks
on a chess board with forbid-
den positions.

1 1 1
1 1 0
0 1 1

1 1 1
1 1 0
0 1 1

1 1 1
1 1 0
0 1 1

1 1 1
1 1 0
0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

⇥

�⇥Sn

n⇤

i=1

[i�(i) ⌥ E] =
⇥

S�N

(�1)|N\S|
n⇤

i=1

⇥

j⇥S

[ij ⌥ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1�(1), 2�(2), . . ., n�(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.
Proof of (4). For fixed i ⌥ N , the value

�
j⇥S [ij ⌥ E] counts the number of i’s

neighbours in S ⌅ N . Thus the expression
n⇤

i=1

⇥

j⇥S

[ij ⌥ E] (5)

is the number of ways every node i ⌥ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N ⌃ N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⇧ R, and its total contribution to the right hand
side of (4) is, using (1),

⇥

R�S�N

(�1)|N\S| · 1 = [g(N) = N] .

onsdag 12 oktober 11

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

Fig. 4. Inclusion–exclusion for non-attacking rooks. The top row shows all 12 = 3 · 2 · 2
ways to place exactly one rook in every board line. Every row shows the possible place-
ments in the vertical lines given by S ⇤ {1, 2, 3}. We omit the rows whose contribution
vanishes, namely S = {1}, S = {3} and S = ?. Of particular interest is the second
column, which is subtracted twice and later added again. The entire calculation is 12�
4� 2� 4 + 1 + 0 + 0� 0 = 3.

Thus g contributes if and only if it is a permutation. ↵⌦

Perspective. Bipartite matching is an example of a sequencing problem, where
inclusion–exclusion replaces an enumeration over permutations, Â�⇧Sn by an
alternating enumeration over subsets ÂS⇤N(�1)|N\S| of functions with restricted
range. Typically, this reduces a factor n! in the running time to 2n. One can ex-
press the idea algebraically like this:

Â
f : N⌅N
f (N)=N

[· · ·] = Â
R

[R = N] Â
f : N⌅N
f (N)=R

[· · ·]

= Â
R

Â
S

[R ⇤ S](�1)|N\S| Â
f : N⌅N
f (N)=R

[· · ·]

= Â
S

(�1)|N\S| Â
R

[R ⇤ S] Â
f : N⌅N
f (N)=R

[· · ·]

= Â
S

(�1)|N\S| Â
f : N⌅S

[· · ·] .

(6)

Ryser’s formula is normally given in a more general form, for the permanent
Â� ’i Ai�(i) of a matrix, where the entries can be other than just 0 and 1. The
running time can be improved to O(2nn) arithmetic operations by iterating over
N in Gray code order.

Ryser’s formula [17] is a very well-known result in combinatorics and ap-
pears in many textbooks. However, it is easy to achieve running time O(2nn)
using dynamic programming over the subsets, at the expense of space O(2n).

All ways of placing 1 rook per row

onsdag 12 oktober 11

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

Fig. 4. Inclusion–exclusion for non-attacking rooks. The top row shows all 12 = 3 · 2 · 2
ways to place exactly one rook in every board line. Every row shows the possible place-
ments in the vertical lines given by S ⇤ {1, 2, 3}. We omit the rows whose contribution
vanishes, namely S = {1}, S = {3} and S = ?. Of particular interest is the second
column, which is subtracted twice and later added again. The entire calculation is 12�
4� 2� 4 + 1 + 0 + 0� 0 = 3.

Thus g contributes if and only if it is a permutation. ↵⌦

Perspective. Bipartite matching is an example of a sequencing problem, where
inclusion–exclusion replaces an enumeration over permutations, Â�⇧Sn by an
alternating enumeration over subsets ÂS⇤N(�1)|N\S| of functions with restricted
range. Typically, this reduces a factor n! in the running time to 2n. One can ex-
press the idea algebraically like this:

Â
f : N⌅N
f (N)=N

[· · ·] = Â
R

[R = N] Â
f : N⌅N
f (N)=R

[· · ·]

= Â
R

Â
S

[R ⇤ S](�1)|N\S| Â
f : N⌅N
f (N)=R

[· · ·]

= Â
S

(�1)|N\S| Â
R

[R ⇤ S] Â
f : N⌅N
f (N)=R

[· · ·]

= Â
S

(�1)|N\S| Â
f : N⌅S

[· · ·] .

(6)

Ryser’s formula is normally given in a more general form, for the permanent
Â� ’i Ai�(i) of a matrix, where the entries can be other than just 0 and 1. The
running time can be improved to O(2nn) arithmetic operations by iterating over
N in Gray code order.

Ryser’s formula [17] is a very well-known result in combinatorics and ap-
pears in many textbooks. However, it is easy to achieve running time O(2nn)
using dynamic programming over the subsets, at the expense of space O(2n).

All ways of placing 1 rook per row

actually good

onsdag 12 oktober 11

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

Fig. 4. Inclusion–exclusion for non-attacking rooks. The top row shows all 12 = 3 · 2 · 2
ways to place exactly one rook in every board line. Every row shows the possible place-
ments in the vertical lines given by S ⇤ {1, 2, 3}. We omit the rows whose contribution
vanishes, namely S = {1}, S = {3} and S = ?. Of particular interest is the second
column, which is subtracted twice and later added again. The entire calculation is 12�
4� 2� 4 + 1 + 0 + 0� 0 = 3.

Thus g contributes if and only if it is a permutation. ↵⌦

Perspective. Bipartite matching is an example of a sequencing problem, where
inclusion–exclusion replaces an enumeration over permutations, Â�⇧Sn by an
alternating enumeration over subsets ÂS⇤N(�1)|N\S| of functions with restricted
range. Typically, this reduces a factor n! in the running time to 2n. One can ex-
press the idea algebraically like this:

Â
f : N⌅N
f (N)=N

[· · ·] = Â
R

[R = N] Â
f : N⌅N
f (N)=R

[· · ·]

= Â
R

Â
S

[R ⇤ S](�1)|N\S| Â
f : N⌅N
f (N)=R

[· · ·]

= Â
S

(�1)|N\S| Â
R

[R ⇤ S] Â
f : N⌅N
f (N)=R

[· · ·]

= Â
S

(�1)|N\S| Â
f : N⌅S

[· · ·] .

(6)

Ryser’s formula is normally given in a more general form, for the permanent
Â� ’i Ai�(i) of a matrix, where the entries can be other than just 0 and 1. The
running time can be improved to O(2nn) arithmetic operations by iterating over
N in Gray code order.

Ryser’s formula [17] is a very well-known result in combinatorics and ap-
pears in many textbooks. However, it is easy to achieve running time O(2nn)
using dynamic programming over the subsets, at the expense of space O(2n).

All ways of placing 1 rook per row

onsdag 12 oktober 11

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

Fig. 4. Inclusion–exclusion for non-attacking rooks. The top row shows all 12 = 3 · 2 · 2
ways to place exactly one rook in every board line. Every row shows the possible place-
ments in the vertical lines given by S ⇤ {1, 2, 3}. We omit the rows whose contribution
vanishes, namely S = {1}, S = {3} and S = ?. Of particular interest is the second
column, which is subtracted twice and later added again. The entire calculation is 12�
4� 2� 4 + 1 + 0 + 0� 0 = 3.

Thus g contributes if and only if it is a permutation. ↵⌦

Perspective. Bipartite matching is an example of a sequencing problem, where
inclusion–exclusion replaces an enumeration over permutations, Â�⇧Sn by an
alternating enumeration over subsets ÂS⇤N(�1)|N\S| of functions with restricted
range. Typically, this reduces a factor n! in the running time to 2n. One can ex-
press the idea algebraically like this:

Â
f : N⌅N
f (N)=N

[· · ·] = Â
R

[R = N] Â
f : N⌅N
f (N)=R

[· · ·]

= Â
R

Â
S

[R ⇤ S](�1)|N\S| Â
f : N⌅N
f (N)=R

[· · ·]

= Â
S

(�1)|N\S| Â
R

[R ⇤ S] Â
f : N⌅N
f (N)=R

[· · ·]

= Â
S

(�1)|N\S| Â
f : N⌅S

[· · ·] .

(6)

Ryser’s formula is normally given in a more general form, for the permanent
Â� ’i Ai�(i) of a matrix, where the entries can be other than just 0 and 1. The
running time can be improved to O(2nn) arithmetic operations by iterating over
N in Gray code order.

Ryser’s formula [17] is a very well-known result in combinatorics and ap-
pears in many textbooks. However, it is easy to achieve running time O(2nn)
using dynamic programming over the subsets, at the expense of space O(2n).

All ways of placing 1 rook per row

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

Fig. 4. Inclusion–exclusion for non-attacking rooks. The top row shows all 12 = 3 · 2 · 2
ways to place exactly one rook in every board line. Every row shows the possible place-
ments in the vertical lines given by S ⇤ {1, 2, 3}. We omit the rows whose contribution
vanishes, namely S = {1}, S = {3} and S = ?. Of particular interest is the second
column, which is subtracted twice and later added again. The entire calculation is 12�
4� 2� 4 + 1 + 0 + 0� 0 = 3.

Thus g contributes if and only if it is a permutation. ↵⌦

Perspective. Bipartite matching is an example of a sequencing problem, where
inclusion–exclusion replaces an enumeration over permutations, Â�⇧Sn by an
alternating enumeration over subsets ÂS⇤N(�1)|N\S| of functions with restricted
range. Typically, this reduces a factor n! in the running time to 2n. One can ex-
press the idea algebraically like this:

Â
f : N⌅N
f (N)=N

[· · ·] = Â
R

[R = N] Â
f : N⌅N
f (N)=R

[· · ·]

= Â
R

Â
S

[R ⇤ S](�1)|N\S| Â
f : N⌅N
f (N)=R

[· · ·]

= Â
S

(�1)|N\S| Â
R

[R ⇤ S] Â
f : N⌅N
f (N)=R

[· · ·]

= Â
S

(�1)|N\S| Â
f : N⌅S

[· · ·] .

(6)

Ryser’s formula is normally given in a more general form, for the permanent
Â� ’i Ai�(i) of a matrix, where the entries can be other than just 0 and 1. The
running time can be improved to O(2nn) arithmetic operations by iterating over
N in Gray code order.

Ryser’s formula [17] is a very well-known result in combinatorics and ap-
pears in many textbooks. However, it is easy to achieve running time O(2nn)
using dynamic programming over the subsets, at the expense of space O(2n).

onsdag 12 oktober 11

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

Fig. 4. Inclusion–exclusion for non-attacking rooks. The top row shows all 12 = 3 · 2 · 2
ways to place exactly one rook in every board line. Every row shows the possible place-
ments in the vertical lines given by S ⇤ {1, 2, 3}. We omit the rows whose contribution
vanishes, namely S = {1}, S = {3} and S = ?. Of particular interest is the second
column, which is subtracted twice and later added again. The entire calculation is 12�
4� 2� 4 + 1 + 0 + 0� 0 = 3.

Thus g contributes if and only if it is a permutation. ↵⌦

Perspective. Bipartite matching is an example of a sequencing problem, where
inclusion–exclusion replaces an enumeration over permutations, Â�⇧Sn by an
alternating enumeration over subsets ÂS⇤N(�1)|N\S| of functions with restricted
range. Typically, this reduces a factor n! in the running time to 2n. One can ex-
press the idea algebraically like this:

Â
f : N⌅N
f (N)=N

[· · ·] = Â
R

[R = N] Â
f : N⌅N
f (N)=R

[· · ·]

= Â
R

Â
S

[R ⇤ S](�1)|N\S| Â
f : N⌅N
f (N)=R

[· · ·]

= Â
S

(�1)|N\S| Â
R

[R ⇤ S] Â
f : N⌅N
f (N)=R

[· · ·]

= Â
S

(�1)|N\S| Â
f : N⌅S

[· · ·] .

(6)

Ryser’s formula is normally given in a more general form, for the permanent
Â� ’i Ai�(i) of a matrix, where the entries can be other than just 0 and 1. The
running time can be improved to O(2nn) arithmetic operations by iterating over
N in Gray code order.

Ryser’s formula [17] is a very well-known result in combinatorics and ap-
pears in many textbooks. However, it is easy to achieve running time O(2nn)
using dynamic programming over the subsets, at the expense of space O(2n).

All ways of placing 1 rook per row

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR

VR

VR
VR
VR

VR
VR
VR

VR
VR
VR

Fig. 4. Inclusion–exclusion for non-attacking rooks. The top row shows all 12 = 3 · 2 · 2
ways to place exactly one rook in every board line. Every row shows the possible place-
ments in the vertical lines given by S ⇤ {1, 2, 3}. We omit the rows whose contribution
vanishes, namely S = {1}, S = {3} and S = ?. Of particular interest is the second
column, which is subtracted twice and later added again. The entire calculation is 12�
4� 2� 4 + 1 + 0 + 0� 0 = 3.

Thus g contributes if and only if it is a permutation. ↵⌦

Perspective. Bipartite matching is an example of a sequencing problem, where
inclusion–exclusion replaces an enumeration over permutations, Â�⇧Sn by an
alternating enumeration over subsets ÂS⇤N(�1)|N\S| of functions with restricted
range. Typically, this reduces a factor n! in the running time to 2n. One can ex-
press the idea algebraically like this:

Â
f : N⌅N
f (N)=N

[· · ·] = Â
R

[R = N] Â
f : N⌅N
f (N)=R

[· · ·]

= Â
R

Â
S

[R ⇤ S](�1)|N\S| Â
f : N⌅N
f (N)=R

[· · ·]

= Â
S

(�1)|N\S| Â
R

[R ⇤ S] Â
f : N⌅N
f (N)=R

[· · ·]

= Â
S

(�1)|N\S| Â
f : N⌅S

[· · ·] .

(6)

Ryser’s formula is normally given in a more general form, for the permanent
Â� ’i Ai�(i) of a matrix, where the entries can be other than just 0 and 1. The
running time can be improved to O(2nn) arithmetic operations by iterating over
N in Gray code order.

Ryser’s formula [17] is a very well-known result in combinatorics and ap-
pears in many textbooks. However, it is easy to achieve running time O(2nn)
using dynamic programming over the subsets, at the expense of space O(2n).

Ryser

onsdag 12 oktober 11

Fig. 5. The perfect matching algorithm for a graph with n = 6 and m = 7. There are (7
3) = 35 ways to pick 3 edges out of 7, shown in the top

row. The triangle appears in 7 other terms (4 negative, 3 positive), the two perfect matchings appear only once.
onsdag 12 oktober 11

Fig. 5. The perfect matching algorithm for a graph with n = 6 and m = 7. There are (7
3) = 35 ways to pick 3 edges out of 7, shown in the top

row. The triangle appears in 7 other terms (4 negative, 3 positive), the two perfect matchings appear only once.

onsdag 12 oktober 11

onsdag 12 oktober 11

Vertex colouring

onsdag 12 oktober 11

Invitation to Algorithmic Uses of
Inclusion–Exclusion

Thore Husfeldt

IT University of Copenhagen, Denmark
Lund University, Sweden

Abstract. I give an introduction to algorithmic uses of the principle of
inclusion–exclusion. The presentation is intended to be be concrete and
accessible, at the expense of generality and comprehensiveness.

R

T1 The principle of inclusion–exclusion. There are as
many odd-sized as even-sized subsets sandwiched be-
tween two different sets: For R ⇤ T,

�
R⇤S⇤T

(�1)|T\S| = [R = T] . (1)

We use Iverson notation [P] for proposition P, mean-
ing [P] = 1 if P and [P] = 0 otherwise.

Proof of (1). If R = T then there is exactly one sandwiched set, namely S = T.
Otherwise we set up a bijection between the odd- and even-sized subsets as
follows. Fix t ⌅ T \ R. For every odd-sized subset S1 with R ⇤ S1 ⇤ T let
S0 = S1 ⇥ {t} denote the symmetric difference of S1 with {t}. Note that the
size of S0 is even and that S0 contains R. Furthermore, S1 can be recovered from
S0 as S1 = S0 ⇥ {t}. ⌦

Perspective. We will see the (perhaps more familiar) formulation of the principle
of inclusion–exclusion in terms of intersecting sets in §6, and another equivalent
formulation in §11.

A
B

C

D

I1

I2

I3
2 Graph colouring. A k-colouring of a graph G = (N, E) on
n = |N| nodes assigns one of k colours to every node such that
neighbouring nodes have different colours. In any such colour-
ing, the nodes of the same colour form a nonempty independent
set, a set of nodes none of which are neighbours.

Let g(S) denote the number of nonempty independent sub-
sets in S ⇤ N. Then G can be k-coloured if and only if

�
S⇤N

(�1)n�|S|�g(S)
⇥k

> 0 . (2)

Base revision d124530. . ., Tue Jul 5 09:02:55 2011 +0200, Thore Husfeldt.

onsdag 12 oktober 11

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Picking 3 independent sets

A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

1 1 1 1 0 0 0 0 1 1 0 0 0 0 0

onsdag 12 oktober 11

63 = 216

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

actually useful ones

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

ways pick 3 indep. sets

onsdag 12 oktober 11

63 = 216

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

actually useful ones

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

ways pick 3 indep. sets

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

vertex subsets

33 = 27

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

onsdag 12 oktober 11

63 = 216

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

actually useful ones

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

ways pick 3 indep. sets

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

vertex subsets

33 = 27

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

C

D

A
C

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

C

D

A
C

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

43 = 64

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

C

D

A
C

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

no!

onsdag 12 oktober 11

63 = 216

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

actually useful ones

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

ways pick 3 indep. sets

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

vertex subsets

33 = 27

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

C

D

A
C

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

C

D

A
C

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

43 = 64

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

C

D

A
C

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

no!

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

C

D

A
C

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

C

D

A
C

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

23 = 8 yes!

onsdag 12 oktober 11

Vertex subset S # indep. subsets, g(S) (g(S))3

A 1 1
B 1 1
C 1 1
D 1 1

AB 2 8
AC 2 8
AD 2 8
BC 2 8
BD 3 27
CD 3 27

ABC 3 27
ABD 4 64
ACD 4 64
BCD 5 125

ABCD 6 216

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

+

–

–

onsdag 12 oktober 11

Vertex subset S # indep.subsets, g(S) (g(S))3

A 1 1

B 1 1

C 1 1

D 1 1

AB 2 8

AC 2 8

AD 2 8

BC 2 8

BD 3 27

CD 3 27

ABC 3 27

ABD 4 64

ACD 4 64

BCD 5 125

ABCD 6 216

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

C

D

A
C

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

onsdag 12 oktober 11

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

C

D

A
C

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

onsdag 12 oktober 11

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

C

D

A
C

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

C

D

A
C

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

polynomial space

onsdag 12 oktober 11

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D A
B

C
A

C

D

A
C

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

Proof. For every S ⇤ N, the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as

�
S

�
I1

· · ·�
Ik

[⌅i : Ii ⇤ S](�1)|N\S| = �
I1

· · ·�
Ik

�
S

[⌅i : Ii ⇤ S](�1)|N\S| .

The innermost sum has the form

�
I1⇧···⇧Ik⇤S⇤N

(�1)|N\S| .

By (1), the only contributions come from I1 ⇧ · · · ⇧ Ik = N. Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

↵⌦

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2) eval-
uates an alternating sum of the cubes of these values, in this case 63 � (33 + 43 + 43 +
53) + (23 + 23 + 23 + 23 + 33 + 33)� (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evalu-
ated in two ways:

For each S ⇤ N, the value g(S) can be computed in time O(2|S||E|) by con-
structing every nonempty subset of S and testing it for independence. Thus, the
total running time for evaluating (2) is within a polynomial factor of

�
S⇤N

2|S| =
n

�
i=1

�
n
i

⇥
2i = 3n .

The space requirement is polynomial.

The space requirement is polynomial.
Alternatively, we first build a table with 2n entries containing g(S) for all

S ⇥ N, after which we can evaluate (2) in time and space 2nnO(1).
Such a table is easy to build given a recurrence for g(S). We have g(?) = 0,

and
g
�
S
⇥

= g
�
S \ {v}

⇥
+ g

�
S \ N[v]

⇥
+ 1 (v ⌅ S) , (3)

where N[v] = {v} ⌃ { u ⌅ N : uv ⌅ E } denotes the closed neighbourhood of v.

Proof of (3). Fix v ⌅ S and consider the nonempty independent sets I ⇥ S.
They can be partitioned into two classes: either v ⌅ I or v /⌅ I. The latter sets
are counted in g

�
S \ {v}

⇥
. It remains to argue that the sets I ⇧ v are counted in

g
�
S \ N[v]

⇥
+ 1. We will do this by counting the equipotent family of sets I \ {v}

instead. Since I contains v and is independent, it cannot contain other nodes in
N[v]. Thus I \ {v} is disjoint from N[v] and contained in S. Now, either I is the
singleton {v} itself, accounted for by the ‘+1’ term, or I \ {v} is a nonempty
independent set and therefore counted in g

�
S \ N[v]

⇥
. ↵⌦

0

1 1 1 1

0

1 1 1 1

2 2 2 2 3 3

0

1 1 1
C

1

2 2

AC

2 2 3 3

3 4 4

ACD

5

Fig. 2. Three stages in the tabulation of g(S) for all S ⇥ N bottom-up. For example, the
value of g({A, C, D}) is given by (3) with v = D as g({A, C}) + g({C}) + 1 = 4.

Perspective. The brute force solution for graph colouring tries all kn assignments
of colours to the nodes, which is slower for k ⇤ 4. Another approach is dynamic
programming over the subsets [15], based on the idea that G can be k-coloured if
and only if G[N \ S] can be (k� 1)-coloured for some nonempty independent
set S. That algorithm also runs within a polynomial factor of 3n, but uses ex-
ponential space. In summary, the inclusion–exclusion approach is faster than
brute force, and uses less space than dynamic programming over the subsets.
The insight that this idea applies to a wide range of sequencing and packing
problems goes back to Karp [12], the application to graph colouring is from [2].

We use a space–time trade-off to reducing the exponential running time fac-
tor from 3n to 2n, applying dynamic programming to tabulate the decrease-
and-conquer recurrence (3), based on [8]. Recurrence (3) depends heavily on
the structure of independent sets; a more general approach is shown in §10.

The two strategies for computing g(S) represent extreme cases of a space–
time tradeoff that can be balanced [4].

The space requirement is polynomial.
Alternatively, we first build a table with 2n entries containing g(S) for all

S ⇥ N, after which we can evaluate (2) in time and space 2nnO(1).
Such a table is easy to build given a recurrence for g(S). We have g(?) = 0,

and
g
�
S
⇥

= g
�
S \ {v}

⇥
+ g

�
S \ N[v]

⇥
+ 1 (v ⌅ S) , (3)

where N[v] = {v} ⌃ { u ⌅ N : uv ⌅ E } denotes the closed neighbourhood of v.

Proof of (3). Fix v ⌅ S and consider the nonempty independent sets I ⇥ S.
They can be partitioned into two classes: either v ⌅ I or v /⌅ I. The latter sets
are counted in g

�
S \ {v}

⇥
. It remains to argue that the sets I ⇧ v are counted in

g
�
S \ N[v]

⇥
+ 1. We will do this by counting the equipotent family of sets I \ {v}

instead. Since I contains v and is independent, it cannot contain other nodes in
N[v]. Thus I \ {v} is disjoint from N[v] and contained in S. Now, either I is the
singleton {v} itself, accounted for by the ‘+1’ term, or I \ {v} is a nonempty
independent set and therefore counted in g

�
S \ N[v]

⇥
. ↵⌦

0

1 1 1 1

0

1 1 1 1

2 2 2 2 3 3

0

1 1 1
C

1

2 2

AC

2 2 3 3

3 4 4

ACD

5

Fig. 2. Three stages in the tabulation of g(S) for all S ⇥ N bottom-up. For example, the
value of g({A, C, D}) is given by (3) with v = D as g({A, C}) + g({C}) + 1 = 4.

Perspective. The brute force solution for graph colouring tries all kn assignments
of colours to the nodes, which is slower for k ⇤ 4. Another approach is dynamic
programming over the subsets [15], based on the idea that G can be k-coloured if
and only if G[N \ S] can be (k� 1)-coloured for some nonempty independent
set S. That algorithm also runs within a polynomial factor of 3n, but uses ex-
ponential space. In summary, the inclusion–exclusion approach is faster than
brute force, and uses less space than dynamic programming over the subsets.
The insight that this idea applies to a wide range of sequencing and packing
problems goes back to Karp [12], the application to graph colouring is from [2].

We use a space–time trade-off to reducing the exponential running time fac-
tor from 3n to 2n, applying dynamic programming to tabulate the decrease-
and-conquer recurrence (3), based on [8]. Recurrence (3) depends heavily on
the structure of independent sets; a more general approach is shown in §10.

The two strategies for computing g(S) represent extreme cases of a space–
time tradeoff that can be balanced [4].

onsdag 12 oktober 11

Graph colouring

O*(3n) time
polynomial space

O*(2n) time
O*(2n) space

Compute Â
S✓N

(�1)n�|S|�g(S)
�k

Björklund

Koivisto

onsdag 12 oktober 11

Exponential Time
Hypothesis

onsdag 12 oktober 11

Exponential Time Hypothesis

Can do 3-Sat in
time 1.308n

Hertli

onsdag 12 oktober 11

Exponential Time Hypothesis

Impagliazzo
Paturi

Zane

Can’t do 3-Sat in
time exp(o(n))

Can do 3-Sat in
time 1.308n

Hertli

onsdag 12 oktober 11

z

x

y z

x

y z

x

y

(x _ y _ z) ^ (x _ y _ z) ^ (x _ y _ z)

onsdag 12 oktober 11

z

x

y z

x

y z

x

yz

x

y z

x

y z

x

y

(x _ y _ z) ^ (x _ y _ z) ^ (x _ y _ z)

onsdag 12 oktober 11

n vars
m clauses

3m=O(n3) verts
O(m2) edges

exp(o(m1/2)) alg for I.S.
exp(o(n)) alg for 3-SAT

exp(o(n1/3)) alg for I.S.

onsdag 12 oktober 11

(x _ y _ z) ^ (x _ y _ z) ^ (x _ y _ z)

z

x

y z

x

y z

x

y

x x y y z z

onsdag 12 oktober 11

n vars
m clauses

3m=O(n3) verts
O(m) edges

exp(o(m)) alg for I.S.
exp(o(n)) alg for 3-SAT

exp(o(n1/3)) alg for I.S.

onsdag 12 oktober 11

Independent set
n vertices m edges

1.1888n

cm

Clique
n vertices m edges

1.1888n

2

p
m log n

onsdag 12 oktober 11

Sparsification

onsdag 12 oktober 11

Hitting Set

1 2 3 4 5 6 7 8

onsdag 12 oktober 11

Hitting Set

1 2 3 4 5 6 7 8

onsdag 12 oktober 11

Hitting Set

1 2 3 4 5 6 7 8

onsdag 12 oktober 11

Sparsifying a Hitting Set Instance

1 2 3 4 5 6

~n2 sets

element of high “degree”
onsdag 12 oktober 11

Sparsifying a Hitting Set Instance

1 2 3 4 5 6

onsdag 12 oktober 11

Sparsifying a Hitting Set Instance

1 2 3 4 5 6

onsdag 12 oktober 11

Sparsifying a Hitting Set Instance

1 2 3 4 5 61 2 3 4 5 61 2 3 4 5 6

onsdag 12 oktober 11

Sparsifying a Hitting Set Instance

1 2 3 4 5 6

1 2 3 4 5 61 2 3 4 5 6

onsdag 12 oktober 11

Sparsifying a Hitting Set Instance

1 2 3 4 5 6

1 2 3 4 5 61 2 3 4 5 6

max degree r·n

high degree

sparse instances

nonsparse instance

onsdag 12 oktober 11

exp(o(n))·2n=exp(n)

exp(o(n))·exp(H(1/r)n) =
exp(o(n))

2n leaves

C(n,1) +...+ C(n,n/r)
leaves

onsdag 12 oktober 11

Exponential Time Hypothesis

Impagliazzo
Paturi

Zane

Can’t do 3-Sat in time exp(o(n))

Can’t do 18-Sat in time exp(o(m))

Can’t do Independent
Set in time exp(o(n))

onsdag 12 oktober 11

q states, pairwise
constraints

CSP(q,2)

Traxler

Why No Dependency on # Colours is Surprising

onsdag 12 oktober 11

states:

constraints

onsdag 12 oktober 11

states: constraints

onsdag 12 oktober 11

states: constraints

onsdag 12 oktober 11

states: constraints

onsdag 12 oktober 11

states: constraints

onsdag 12 oktober 11

states: constraints

onsdag 12 oktober 11

n verts

d states

n/2 verts

d2 states

Must have dn = (d2)n/2

onsdag 12 oktober 11

Path through
specified vertices

onsdag 12 oktober 11

onsdag 12 oktober 11

tears

smile

spite

guilt

pride

gloom

dread worry

shame

Path through specified vertices

from

to

through

onsdag 12 oktober 11

tears

smile

spite

guilt

pride

gloom

dread worry

shame
share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

onsdag 12 oktober 11

tubes

fusee

ended

enema

essay

nosesskyed slyer

sowedmowed

maven

vapes

fuzed

belle

genus

reduxkerbs kirks

piggypings

table

kayos

jings

jinks flaks flaps

oldie odder

pacedpoles polis

himbo

slope coyly

corks bores

pukes

nukes

hyper

mewed

major

martsmotor

moiremoist

foist foundfines fiber filed

natal ketch

silky felts delft daffy

hiver

jibes taped

hazer

macro

micks

photo

shute

rover

novelbowel

flyer klieg fleet

bells

bebugserumyerba

verbs

virus

girth gable

baron

kinky

kinksetudeeludeorder

oddly

dachamoldsdolor

globs

clock coals

peaky

sedan rebel

fryerhyped

matte

mayor

mason

mossygoose

joist noisy

towns

fovea fives gavel

gates

kited

jibed

weber

reefs taffy

liver

hives

tapes

gazer

wazoo

micro

girts

sorts

somas

nomad

bywayhogan

iliac

chiff belly

bezel

sores

yores

herby

heres

sizer

gazes

bangs

bonks

sonly

couldcowedloved locksmocha

money

towed

toots

clots

clays flake

seeks

gecko

socks

iotasmavis

mambomaltsmolls

poolsprobe

crits

catchraved

rives

ravesganefgibes giber jiber jived

toves

lives

giver

wises

arsesarson

tiros

girls saran

scion

nohowbosonhonor

chimp

china

spier

spied

soled solar

situs

sized

speed

queer

budgefudgy

sunup

hound

rower

lover

murky

tucks

hunky

turds

tufts

bluer blues becksneckshicks cocks

novaenovas

mumbo

humphhumpy

droll

proms

primp

oathsoaken

raver

wavedwidensided

gibed

vices

riced roved

riven

gnaws

evict

latex

gatedfaddyfarms

raise

swishsnackknack

tings

chive chill

epics spicy

speck

saucy

stuck

sager

steep

breed beset

bushypushy

punny

ruler kulak

punkypecks

hunkstuber

tubbyaxmenquack

quasi

cease

dialswhelknoels

goals

gummy

jumpsjumpy

drips

primaprime

octet

fakes saves

cadet sides aided aired

butyl

bucks

begat

beans

gnats

emits

matedbiter hides

faredcandy

swami

snarlboard

ridge

chili chutechuck

spics

slick

saucepatch

pager

sleptwoody

booedbower

pithy

pismo

pills

nulls

puree

perky

tubalunban

affix aphidquail

small scale

scars

stele smell

godlygoody

moodsoutdo

prams

prigs

pried oftenxylem

sales tales limeslimed sired tesla desks

regal

react

edify

emirs

desexdiver direrdormsbooms

boomy

burro

buffobipod

chalk chats

champ

soaks soilssmackdutch

atoms

slomowoodsdozerdowervowelvials viola viols

gores

golem

telex teach

flaws flail elfin

email

scant

scarf buffs buffa gully

mulchmulct

nutsy

nicad

nicer

ogles ogled

cultscalms tiles timedlumen

semen

tells melonrenal

reign

deify decrydecaf

decal darernakednuked

tulip bulgebuoys

brownbriar knelt

hotly

kooks

poise

notch

fetchhengehedgewedge

dozeddowelrewedsicko

siege

bleed

gluer alley

taper

tipsy

trawl

unapt

unfit

unzip

uncle

galls

bulbsbusts

huskyhulky

murks

nuttynatty

watts

waledsolve

sulkymylar

mimertimer

skier shier

gessopesos

xeroxdepot

needydecoydegum

debts

tares tunes

tunny

turns

burnt

purgeprove

privy

knell

idyls idyll

toils tolls

balmy

beths

hempy

weeps

vexed level

jewelsewer

trendbrent aloesaskew

tater

fatso

prism

props

bhoys

knobsknockhoochdoubt

mosts

hosed

hooky

yearn

retch

cotta

dotty

wiltsvulvasolos

caposcrops

grook

sooth

softy

poste

pengo

letupdefun

kerfs defogdeque

unbox

taros

dumpydummy

tubed

turps

yummy

adman

apian

apron

adage

clack belch belli balmstithe

tutti

lusty

beret bodes

coper

impel freer freed

alter alienwaxed

faxes

promo

prowl

prone

plopsrooky

roods

routs

vocabvoxel

vowerroarsrearm

crags

attar

vital

visor

cocoschops croft goofsgoths

motes

betel hexer deter durst

plonk

pionspewit

unwon

throe

dumpsdewey

tenet

lyres

limenmimed

areasammosflags flank

blini

acing

agile

twits

tatty

lotta

cornudopeyropedkopek

brier

briefwooer

vaned

saxes

taxed

prate

prank

prowspoops

nookykooky

mooedboxes

poxes

vowed

edged

pygmyurges

trial

trice

dicot

comfy

coopscomps

gotta

doted

motet

metedhexes

fetes flush

fling finny

pizza

huzza

duchy

dildodewedhewedhexedadmen

aimer

afoot aloof flour florahyena

tying

thine knits

fatty

lotto

corny

doped

robesboded

bodgeboobyhoops

harembarnsdarks

drays

drank

prawn

unarc

noway

bowiemohel

poxedpored

power

fogey

popes

pries

tries

arity

ascot costs

corpscoups

wordy

voter notes otter

decor

recto

slump

klunk

fizzy bigly

ingot

spoof

thudschunkdaubs

fixeramped

agone

alone

aloft

aloud

floes eggedemceething

spite

salty

saith

saris

dragsfader faxedroves

roomy

hoofs

harum

barfy

dared

duped

dunno

tuans

unarm

intro

lower

pokerphage

prats

poohs

wooed

loped lopes

truer

drier

droopjowlyjowlsgourd

cords coral

cream

croakchoos

chuff

clued

kluge fifes fouls

cohos

spool

thosewhenswades

mixes

aguesagony

aging

arias

smile

flips

alikeembertasks

taste

gaits

wails

sandy

dance

fanny facet

roper

rules

zayin

taxiswaive

waifsduple

runny

viand

tiara antis

noter

sayer

shalt shall shiki

snipe

loopy

blocs

grogs

drugs

drone

crust

joust

court

cordy

permspress

crock

whoop

gnome

clump

yodel

nodes

fours

chord

spore

adornwahoowaderbidet aider

frank flint

umiak

smite

smith

apartentryrusty

caste

oxide

waist

snide raids

eaglepayed

raker rakesdruid

groin

gravy

headsmucks

kickypicky

libraamblenabla sable scull stilt shire

skipsloppy

blackcrude

greysgross

truss

brusk

chugs

coeds

plebepseud

croup

crocs fetus

latus

lodge

tonedthermchurl

aster

aspen

achedcedarmedia

apple flack flock

disco sisal

sepal

weals

tetra

retry

onset

oxlip

wrier

grids

maids

eager

bayedlayer

taker

thugs

track

grade

amahs

baggybiggysmurf

ombreumbra

among

spout

sprig

spike

shirt

spitz

apace

alackstuds

giddy

gimme

diazo

craze

crazy

crypt

plebs

slews

clomp

crumb

thump

outgo

likes tiled toted

acmes

achesashen

pshaw

rehab

recut

reply flask

boostbosunbosomhexadhello

petri

never

enter

oiled

ivies

opine

apish

larva

largo

lanestaken talks trash trade

adaptaarghdingo

ajuga

rough

roost

broth

scorn

sprit

swirl shirrsebumhencehinds

biddy

bider

wirer

hirer

bergs

braze

grapy

gumbopubic

maximmaims

lapin

laths

laker takes

totem

acnes

haveshovel

wings

minus

mecum

jeers

fleshmoosemoonsnoons

coins

cones

bedewnewelhewercider

utter

upper

aptly

surds

lardy

lanailamed

tansy

twist

tribs adiosadieu

pipes

proem

rooty

looms

grodyguidegaily

gwine

neigh

septa

lento

pinto pints

bided

parespyres

eyrie

brass

graingamic

pubis

maria

mahua

kaput lapis

lions

riots

zooey

crier

lavedmoved

tongs

tinge

femur fetal

octal

singe

chine edict

voice

conedcedes

fewer fried grief

arced

water

bathebards

oasis

faninfaded fated faces

units

usershydrohypes

pryer

pater

third idiot

guile guilt grinddeign

nertsnewts

nifty

pieta

dicta

pacts

pains

earns

trans

cronyyawny

hauntharts

pastspatsy

lapse

midstkiosk

toons

chins

chief naves

nanny

tango

rerunreransquadscuse

thensedema

namercomesplyer flied frier drily

dualsdarns

cares

carpypasse

massemaser

mater

fates

unite

kneadendowredox

phylaphone

shimsidiom

wrist

wringgrins

glint

abend

anent

beets seeth

sputa

buttebuntsbeanocrank

crone

jaunt

fauns

baits

patty

patio

hadst

kilty fists fatwa faint

clink blindbronx

treys

teeth

terse

sousebossy

usury

vaunt

napes

bevel

plume

climb

cliff bringdjinn

tarns

carve

carts casts

casusdashy

latch batch

overt

overs

every

short shotschows

shift

shied

drift

drive

pride glide

ayins

agent

sluts shutsklutz butts blink blash

craps

bruit

boughfrumpfaith

pasta

panda

hawks

hasty

haste lathe

saint

slits slinkshone

shays

birth

tires

doses loser

pivot

naval laver lever

plunk

clansclawsbrews

eject

whelp

check

carom

carat

cakes

oases

lasso lased

yowls

goers eyers

shows

showy

shornshahs shieswhish

whips

blade

glade

eying

event

elite white

sauteemote

bloombloodumberbakedbakeswaked

faked pales paler

hamza

hazed

hayed

haven

safer sling

shine

spunk

spars

cirri siren

dosedloxes

nymphnames

lamerlevee

plain

slain

glazeglows

snowy

crews

credo

cargo

carer

caret oaten

eases

eased

pawlspearl pealsamply

avant

ovary

sharp

whichwhisk

whump

blurs click

piing

glitz

exits

sixty

salts

hafts

haute

shrugsurer

wakenwaker

paces

panedpallsyawls

nacho

ether

tacet

sacks

spake

spate

spang

spank

spans

aphis

abhorabbot

puffs

rumps

rumba

lumpy

tempi

slops

slaws

gladsgrowlcrowncreme

needs

juicy

yuccapurse

opted

eater

haterhaulsheart

pears

implyopals

ovals

years

dyersbytesbyres

blabsulnarulnas

flats fiats silty

halts

haftaharry

shrub

syrup

typal

peens

plenaposed

miser

aisle

newly

ethic

tapir

skein

spazz

sparkspade

emendembedimbed

arrow

ambit

awful

annul

rumorlumps

tends

flays plays

clads

cramp

crawsprodsreadyfence

birch burst

ogres

eavesraped

gaper

haplyhydra

impro

imams

franc

loansdawns

lawzy

barer

bilge

mincewince

whalechant

chaff

chardchartalarm

sware

slims

dying

azine

alway

acted

rimeswists

withs

dikes tikes

semis

snags

snake atilt

amino

amyls

umbel

union

infix wefts

magus

raged

runic

rends

fends fucksquake

dramsdrawn

drylyledgeridgy

dirks lures

expel

epees

vanesfazes fazed

index inlet ivied

feint

joint

stinklambsbarbs

burgs

mangepangs

chile chink

chary

chasm

feast flaky flare flams

vying

clapsalpha

altos

wimpypimps

piths

plied

prior

sedge

snaps

staph

aping

amine

ample

unpeg

unify gifts rifts

roguerogerrungs

bents

annoy

sucks

yuckydairy

hairshackshankshider hikes hiked

roses esses

laces bales

paled

holed

dopesdoily

roils twink still

carte

garbsfungihangs

mangy

marls

yarnsyawns

beast lease

fossa focalwovenwoweefoyer foxes

alloworlon

trove

primo

icier

deice

beige

brackbrantbrandthins

types

moped

mopes

logescomer

togas

boggybuggyunfix

unsayuncap

facer

gauzy

fairs

haiku

highshoper

hotel kikes

risky

wised

siree

dameshales holer

doper

donee

roily eking stiff

tarry

harks

funkyfunksmealy

meals

mains

fawny

boast

verst

fenny

nonny

wokenwowed

toyed

coset

color

tenor

troop

price

metes

metaldebit beaksbraid

tsars tease

typeduppedyokesyoked

comet

mocksbocks

bookyunhip

unpin

unman

games

gaffe fairy diarydimly

dozesrobinmodusalbum

sleep

sieve

saber baled

zones

hones

honey

homesholds

stars

agora

adoreabase

first serve feist

think

fowls

dowse

verse versa holly holeycoves

coypu

clops

clods troth

trays artsy

mesas

messy

aerie atria

genie

repro

repel leperumpedpoked

gooey

cooch

footsmoodygoods

antic untie

unmap

mamas

mammy

summa

dicut

dingsracer

rabbiimbueamberchest loess elbow

epact

spice

hoppyhonky

homer

horsysworesworn

ivory

toast

hussy

sutra

duffs tufas

topes

topoi

zeros

heronholonboloscoked

cookycloys

clone

zloty

krautmrads

missy

mussy

horns

porno

pesky

techs

centscento

conch

pockygouda

couch

mousy

moochshock

shops

until unlit

unjam

mogul

southmoundwound

hammy

harmsclash class

curse

combs

enjoy

ephod

spumysorry

dorky

hoots hoist

slogs

sworddomes

tomes

voteddatesdatedbaton

tumortutor

keyerhayey

holesboxer

yokel

yours

slugsplumy

altaracned

mixer

mirth

techy

pianopique

peeks

teaks ceils civil cluck

pouch

pouts

pours

douseslash

shakyshaft snuff

kiwis

gilts

touts

gouty

youth

yourn

lemmaleantclunkclubshommehomosshmooscrod

stamp

swarmloyal

lootsowethdiets

divvy

dimer

dovey

dovesdeism

gutsy

autos

futon

muggy

mujikfungonones

bones

young

mount

gouge

sours

total

tones

fires

yurts

lepta leafs

beauxbends

seccoyecch

sicks

zincs

punch

poets

hoerszombiblast chainchars

snafu

knave

mists

truth

totty

tecum

teddy

teems

leaps

quays

curie

human

polos

snoopscoop

stubs lacks local locos

potty

ditty

rites

dimes

givengives

demit

vitas visas

sushi

aught

mungemungy

manic

manna

bluntbruntbrawl

torsi

torah

toter

burls

realm

leaky

leaks nerds

perduvervewacky

socko

suets

tuplekappahappy

buxom

bugle

chasethane

staff quaff fisty fasts

testy

tests terns teens

deepsfusty furorhurly rally razor

kazoo

pacer

lacer

vacuo

lotsa

bitsy

ritzy

rived

mimes

gimpy

ghoti

thorn

views

velds

noddy

lordsmarks

marge

unhit

unmet

blendbrinebrawnbaric

paras

refry refly

ceder leachweeks

worse

wired

wives

wombsbooze

sooty

tooth

tapis

macawmuckybumpychaps

thanxstank

suing

ousts

radiozebusrebut

typos

capescaper

gustsquote

pavan

canal

rangy

vault

paverpayeepayer

outer

oiler rille

piker

piety

wieldwhosewhoso

winos

venomforay

dorks

hanky

tangs

fichu fiche flunk feuar

bazar

nares rarer refer defer

dozenloams

worms

moray

miredweirdcobraboorsrooks

looky tepid

pruta

lusts

rusts

excel licit nudietubas

tusky

revet

rebusdebut

cutie

batik

cause

gaunt

kelpy

peppycarpsramps

rants

rajahrayed

oaredother idler wiled

rices

cigar

dwelldoest

phasepinchdandypardsgarde

gangs

tanks

miffs tiffs

exurb

resay

rusks

raven

ravel

fares

pores

mommy

momma

wormy

porks jerky

dears

leery

chertshush

plums pffft

pause

writs

edits exult louis

squib

recap

degas

metermetre

catty

cater

satin

cabindaunt

sappypappy

sylphlymph

gents

rents

ogler

owlet tiler idled

piles

vicar

cycad

chockwoosh

witty

manta

manly

mania

mafia

warpsvamps

vivid

vivre vitro

yanks

caskscaredcored

fonts forts

sorta soots

glomsglovememos

demosdemonwhorlrhumb

plumpplace palsy

wrest

exist

exert

twerp

shuntdecksdeuce leechwreak

cadge

cavilohmicexalt

means

awake

poppy

pylonleggy

yenta

mints

oxeye

obeys

ideas ideal

items

vacua

clout chore

wiser

winey

manes

malls

matzo

mazeswaxerfakir

avoid atoll

viers varia

karat

farts forte forth forty

scrub

lofts

grows

browsbeats besotbeautchurn

ovate

platspeachpaths

wherewhirl

spire twirp

chirppucksprude

wreckcreak clerk

clefs

ileus blats blaze

swagsporgy

profs

wraps

waftswifey

skeet

sneerocean offal

tarot

taupe

tweakwheal

wryer

wakesmaned

fable

jazzy

fuzzy

nixes nixie azoic

atone

memes

named

gazed fores

morel

morphforgo

scrumoffer

bractbradsbeadsbelowbeaus

hasps

orals blahsdeads

dogma

doors

flier flies flics flirt

lucre

padre

watch

grove

drovedrool

along

boats

gonzogongs

brigs

trick

erupt

waste

wiperwipes

umpty

nobbycabby

tarts

tared taels blear

flees

lakes

hayer

lames

tamer

seize

dizzymezzo

jimmygimps

gimel

gamer

greet

totes

mores

loves locus

offen offed

torch

toady

meads

bayoucagedpasha

kneeskneelevade

downydowryflukyplugs

snugs

salsa salvo

sally filch frock drops

drownabovecooed

coped

covet

brace brick

oomph

wimps

wizen

wiped

gouts

count

crink

tawnypaten

rates

leeks leers lores

hugerbeget

bries skits

vests zests

disks kivas

files gulesgreek

treed

moors

goons

focus

ocher

macer

march

hoagy

coxedcaved

cages

cacti

snailundidunbar

apersspurs

flungcanna

sagas

false

halve

dally folly

howlsdooms

frown

about

joker

cokes

coven

soaps

toads

soars

imagopyxie

vouchtouch

cling

spinespina

navel

nates

later

lorry

looks

hooeyjoked

askedikonskeens

zesty

dinky

divas

agley

abler

steer

steed

stoas

goofy coifs

valesmaleskales

homey

comic

comasalgaeproud

snout

under

unsewunsex

apsos

alloy

janes

jawed

datum

ennui

snubs

shyly

bowlscoolscrowd

aroma

tokenhoard

moansscans

inane trait

claim

immix

eruct

trump

chinoskunk

sever

seder revel rakedrowedhoodshomed

gapedtykesdykes

irked

dynes

dinerdivan

shlep

toper

hoses

steps

stock

stops

culpa

gales yules

muleshoned

cynic

chair

organ

grout

odourundue

unset

fusesmusosbigot lager

wager

datereducescudishads

fordsforum

north

normsbongs

braveswank

slangplasmplash plein

penis

peace

teams

thong

shoer

osier

ousel

revueroamsrowdycaddyjaded

gayergyves

riled rated

mates

mires

mixed

coxes

boned

posessoapy

stool stole culls

marsh

dupes

ducesdunksdents

frats

gracegrass

graft toffs toffyhumps

humid

vigor

sight sighs

raths

flash

scamp

scads

foodsformacores

xoredbonerbravabwana

plansplaya

paint

puffy befit

yeast

blankbonne

pones

oozes

oozed rolls

prayspreyscarny

laded

yawedfiver

ticksmaced

miter

aimed

yipes

ropesmoseypooey

pooch softs

doers

darky

farce firer

pipet

dineddints

fifty

orate

grave

grill

tripe

toque

humpflungslingo

liest liers clave

clasp

elate slats

flute ftped

idles islet

mower

unwed

unate

nimbinumbs

pawns

hocusbonusbrashbland

roans

ranks

jammy

mould

polls frets

prest

parchmares

dares

fresh

wicks

mayst

mimsy

asset

assed

apses yeses

posit

podgy

corgi

borne

barky

thrum

fired finds

zings

tints

dictu

meatygoats

cycle

truce

talus tulle

lungelings

liens sherd

civvy

bravobrats brute

flits plies

incur

klugy

knurl

unary

uncut

tombsbombs

cover

hoverdonut

menusvinyl

rises

rands

randymaple

cribs

write

whimsthick

narcoerror

treks

packs

harshevoke

estop

ester

vases

basis

conic

codes

cozen

broke

trout

thous biers

niece

dinardoeth ditto

misty

moots

occurmyths

talcs colds

conga

czarsaware

shardcasedbraeswrathbouts

quits

icily

ileum

gleamglare

bearddelvemelba

movie

covey

poset

modalmedal

visit risen

jakes

maxis

mails crickwhirr

wharf

charmcrack

grand

grams

palms

haledkneed

envoi

ensue

endue

opiumcoqui

cheer

green

brook

group

limps

lieth dieth loner

doffs

omits

lists cloth ochre

myrrh

worry

wordsworth

wanta

awaittwain

waves

whack

whops

wouldtoile voila

pleat glean gloat

gears

leave

lefts lefty paved

pavespumas

pupalpunks

quiet

label

magic

maces

sakes

satyr

shade

grantgrate

grail

grimy

preencreep

creed

frisk frizz fries

odiumroids

reedyweedy

beech bolts

limit

piton

igloo

ionic

dogie

nastypants

plaza fatly

larch

carry

nards

curve

panes

tagua

tabuswanedwhams

whomp

tools veils voile

glyphslurp

slumsshamsreals

recta texts

puked

miked

micas

dryadjunky

juice

fairemauve

waded

waxenwaxesgnarlglary

grata

grabs

grazeprexy

creek

crepe

crept

chips align sniff knife servo

nervy

meritmonic

finif

picot

aglow

wagon

legit fugit pupil

papas

rapid

raper

banjo

bared

curvypenes

terry

threwthere thesetheme

trews

reels

poesy

goeth

soulsshuck

space

peaty

welts

texas

pikes

liker

ixnay

drearurbanskims

spits

slyly flyby flues

gases

ebbedechos

warty

webby

dribs

argue

armorgloomclogs blips

alias

swift surfs

verge

peril

mimicminis

feuds fells

allot oleos deals dealt

repay

reman

racks

rapes

rondorobed

fibre

lines three throb

rotor

break

poemsomega

omensovensgofer golfs

juror

sprue

coats coots

toker tokes tided tidal areal axial shits

snits

suave flabs glueyglued

elves ethos

wareswaver

cairn

algin

alert

gloss flogsbunnyhubby

lulus

luvyaverso

eerie

aegis

argon

feats

zeals

axiom

oxbow

peaks

neato

kebabrebox

recur

tepee

topic

toxic

tibia lived liras

wires

yoyos

bowedwiderwidth

plantplankgored

torus

nurbscurbs

cocky

conkstoked

torts

timidtrunkthunkshins shoal

snots

snare fiordgluonglebeblowy

slows slotswhoaschide

magna

algalmynah

mynas

ounce

lunar

layup

hutch

mercy

merse

segue

setup

spats

abate

angry

piers

preps

natchmatch

savor

suits twixt

toped

toric

tikis lisle

light

tired

toyer

newer

viper

firth

tinny

loamyloafs

lotus

dirge

nicks kicks

dickyyukkystudy

attic

stunkshunsshnorshootsnook

snore

snort

flubs

blebs blots slobs slate

suite

chits

masts

marrymerrysyncs

hunch

sunny

lupus

kudos

meows

meets

seeps

sepia

spays

abackdress

freak

breambotch bitch sails slide

plodsplows

panic

davit habit labia

tyres

sorer vexes

vises

ninth lints lochs

loper lofty dirty

diest didst

diddy

kudzu

soups

bound

saunaspook

spoon

scone

scout

smoky

scold blurb bliss

bhangshoji

spots

musts

posts paste pests

rente

helps huffsguardmuftimuddy

mumps

jeeps

sense

swash

spree

slabsdream

ureas

dread dolls

gills

rails abideinode indie acrid

kyriesynodmanorgyved

sages

sexednosedlinks

linty

limbo

limby lifts fifth

dixit

dodgypudgyjudge

house

rouse

taunt

lawns

sigmasigns

actor

amuse

mauls

laughlucky

shakoshawl

spiky

husks

pasty

easts wests

delis

yells furlsquark

bunch

buzzybumphheaps

swapsspasm

stunt

stabs

dyads

kraal

dregspolypgolds

twill

owingicing

infer

unrig

auric

sings

mungs

guest

ruing

pomps

loses

lifer

linen lined hints

hefts sifts

dirts

dough

panga

point

louts

rouge

grunt

loons

forge

soggy

screw

scrim

early largelawnyswans

khanskhakitusks thats

nitty

hilts delta

fella

lulls

quals

luaus

furze

trail

traps

swart

swarf

stint

sting

skill

frigsdoggy

posse

lossyahoysozoneamensafter

adzes

fuzes

jingojunco

super

ruins

nonce

niseiminesminer

mined

minim

musta

molts built bairn

rainy

rains ratio

roofsphony

icons

foggydoggoheighwhipt

wholedhowsdownsdolesmouth

moats

toddythyme

tilts lilts

depth telly

world

qualm

guanogunny

guise gripe

sways

sward

skins

shiny

laird liked

leggododge

nodal

amouraxons

amend

agree

cakedcukes

jukes

jutes

rupee

runes

wonks

wines

wiles

finer

pinespinup

tutus

hulls build

flick

clank

twang

shankshownchokewhore

woolyloggyweigh

whirs

whangasana

using

dosermonth

motto

mendskindsmindsdived

diceytodaywoman

guppy

gulps

geese

geoid

genii

swung

sahib

hymen

lazed lazes liner lobedcodon

nobly

aquas

atlas abled hares hired hires

jives

lites lunesmunch

wonky

winks

tines

fined

vines

piney

cutup

cuffs

cuing

flameglans

thankslant

spawn

spoke

epoxy

logos logic

noireweirs

abortabash

seine

mesnemornsmoron

minkskites cited bideswined

tonic

yogis

expos

riper

resew

nasal basalbaudsbahts

hymns

wages

laser loath

coati

corms

cowls

cowry

condodotes eared

sires airer

dicks

bilgy

rinse

honerworkswhist

thief

zoned

annasswear

sleet sleek

smearelegy

blest blare

crane craft groks

proxygroom

cried

crispamigo

abodeabaca

seamy

pesto

meant

moper

mikes

mites inter nines

dines

zowie

yogic

dipso

ripen

reset

basedbaserbatedbacks

weeny

waged

laseswhatschums

chump

route

ioctl

rocky

doter

purer

burpspulps

dulse

bully hilly

hells walls talonladenracedbroadshoatshore sabre shear

exeat

bleat bleak

crate

cravecrowsfroth

grips prise

brisk

arise

ukaseroads solid colts

howdymovesmover

motelanteddried dries

clips

cuppysoppysumps

lubes lobes bolls

bogusgeeks

weepy

waits

lasts death

delay

cells dolts

jocks pocks

docks

psoaspupaspupae

papal

idols

pally

waltzwalkssalon laves

races frogs

slosh close shish

whiny

wheatclean

rests

heady

chawscrawl

irate

bribe tribe

russefussy

slushroach

johnsfernybegun

negro

tenonouten

mutedstied

spivs

slimy

stump

stuns

supra

curlscured

yella

getup

germs

skies skids deeds

deityderby

dells voltsvodkavocal

decayrelayresaw

papaw

podia

irons

frondwrenswarns

salve

paper

pawed

ducts

music

pussy

sambawhinewhooo

tyros

teatsmeats

plate plane

slamscrabs tried towel

auger

skulk skull

joule fernsbeing

heirs heist ouzel

buyer

blued

spurt

squaw

squat

squab

slurs clues

cures

exile skint

skimp

spiel

acidsweedswends

debugvenue

vents

tenth

kenaf

pecan

refit

resin

redip

iodic kronabronc

brungcarne

calks

polka polar

ducks

duskygushygamba

gains

gyros

giros gists giant

ebony

elans

swamp

swabssober

tower

anger

skirt smirk

friar fraudbelay gelds

veldt bares basic

safesspued

stung

stuff

stirs

sluff glues

older elder

sties

spiff

bakerbands

tense

densedenim

renew

tenchwench

madly

whelmshrewchoir chose

cruse

trows

droid

grubs

cauls

falls folks

doledduvet

dogesguyed

goosy

gronk

rayon

throw

gismo

bibbs block

slays

stile

slily

slier

greed

skied

skiff gruff

groangrown

gonadfonduloops

basil basin

sawersower

sternstemsstrum

ilium elide aldermodesmodel

hokey

pokes

boredtonal

tunas

penal

genet

windswinchwadiswheeeshredshoed

story

trots stows

okaysokapijambs

iambsinkerdukes

duperdoyenjoyed

gorgeemery

slice slime blitz bloke

epochsynchstyle

socle

duckygunky

sonic

scuff scurf

storkwrotheclatsolum lolls

scuzz

sluesslunk

soupy

steak steal

strep

bless elect

allay

soles

jokespokey

biked

biped

buretbuncobench

genes

wildswilcowidowchewscheekackedstark

state stove

swain

rhyme

damns

issue inset

andedlodes coderoodlewhile evils

guild

naiad nails

rawly

range

ranch

liege

hubbacubed

coney

topaz

sofas

spume

stomp

wrote

nylon

solon

polly

scuba

scums

sleds seeds

pedal

debar

deary

etext

plead

rigorgigue

diked

yikes

feued

bites baler

bally kelly

joeys

wands

wanescanon

clews

cresssumac

cuppa

huffy

stoop

spoil rigidnexusannum

anole

angst

logincomma

moult

frill

trill

quiff daisy

naive

rawerpawky

banksrinks

cubby

cuber

copes

topos

cocoa

duomodiems

jinns

vizor

bisonlimbsbimbo

icers

suede

noise

deist

equal

stare

execs

obeah

yield

lilac

legal feces

slued

azuremalty

hallo

jolly dollydaddy

dazed

junta

costa

goest

fangs

nappy

muffsghost

gamin

tacit

sects

axman

awoke

rooms

magma

climeuvula drill

trips snipsunity

koinelowed

forkyforms

rings

rindscinch

cheep theft

swell

dilly

dinksdonorbozos

bluff

inure inert uteri

quest

worstwurst

gland

stand

specs

skews

tiers

livre litre ulcer

prune

trust

orbed

sully

silks sills audit their

turfs

torte

girly narcscaron gaffs ghoul

gamut

fauna facts fatal

copse

codexclamsllama

plaitplumb

prims

prink

urine

joins

dodos

folky forks

zingy

windydingyscene sheaf shelf silly

kills dolce

pondspends

injun

knout

avers

cusps

wassa

watsa

gowns

stone

sitar

sibyl tight

litho lithe

pound

truck

trulypubes

ruled

rivet river

tunedthees

turfy

tilth

civet

paren

cafes wafer

warts

hames

faker faced

hated

hoped

coach

foams

blame

plaidplushproof

prier

swiss

stick sodas

folds

wolds

wanna

wants

dungssuras

sneakstead bills villi kilns

pennypease

glass glorygamed

gapes

gaylywanly

ginny

bight eight

kilts ruche

itchydishynouns

psychwrylydryer

piper

rider tides

tuner

image

ikats

bitty

civic

radii

razer

baste bests

bumpsfumesfames

hawedhordeloads

abaft

abeam

assay

pssst

phlox piled scaly styli mollymoldy

colic

cantocants

canoe

vivas

viral okras bulls villa

kelps

vealsweald

gulls

gropecamps

womengolly jolts

miens

title

titty

kittymucus

jujus

sidle

slung

queen

glees

tweed

piped

rides ruderdadosdrain

drape

ditch

pitch

ratty

razes

remix

wetly

witch

limey

times

haddahands

dowdy

tzars

assai

asses

absit avail

trace

wrackcaulk

foils foamylongs

tangy

mango

landslends

terce terms

teals

beamyleafy begot

cello

jells hemps

campy

bogey

vogue

aorta

mitts

putts

outta

tuftyjumbo

cumin

sedgyslags

piece

fiend

twine

ownedoldendudesradonbrainbransbutchaitch

abyss

oboes

kefir

astir

kiths liter diode

geode

mondobonds

quart

copra

apply

again

aways

poachprick pails fails flair royalkayakmaybe

lance

lynchnerveweavewears

hearslemur

legos

jetty

weldslemon

pampa

paged

jaggy

rafts batty

purty

mutts

gutta

humushumorradix balsa

boils

feels

ankle

annex

antes

rodeo roles cache cablekabobnabob

abbey

abuzzlimns

hyingthigh

twigs

twirl

awing

monte

bongoburry

curry

avert

agars

amaze

pence

perch peels

valor

folic folio

crimp

chimechick

vinca

ninja

neath

rearsreams

lemme

peonspeony

stoma

sprogparse

harps

sarge

barge

barksdarts

jilts

axled haler hazel rabid balls

bails shill aholdknotsanodeborer

caves

cagercagey

fagot

tabor labor

epsom

eland

plink phial

twins

twinyaxing

afore

blondburnscubic

avows

avast

amass

trios trier

pairs

valve

vague

vapid

combo

swigs

swill

kingshinge

veins

deans

beady

leads

neons

smogs

stogy

hoboscarol carobcards lards larks

filth gilds

apnea

hazesdazesrazedbabes

bylaw

child

gaols

snoot

nerdypared

pawerpages

makesmazed

mutesrunts

abets

glens cleft

wills mills

lisps

pious

afoul

cloud

clangacorn

aport

awashcrash troll

trees

jades

valet

vagus

radar

romps

swipe

swims

beefs

deems

veiny

leans reads selah relax

shags

stags

hobbygabby

gator

baldy

hilum

mixup

fixit

anviladmit

tacky

tacos

bocci bocce

breadbrims

bebop

kebob

ferry

parryparerpagan

mazermuses

muter

runty

asker alibi colon

billy

bilks

wispssissy

noosecoons

yogas

hapaxcasas

obese

tress

tramp

trite

jails

calls cabal

rowan

moral

porch

berms

nerfs

herosvenal

vigil

nihil

splat sulfa

stagy

slapsbobbybagel

miles tilde

lilty

pixie

fixes

terra

tempo

tacks

yachtmotifmecca

meltsmoltomelds

feted

hates bates betas

petty

melee

muxesmuleyrugby

bubbablobs kilos biles stoke stoodsmashbootsboonsboobsbacon

canst

abuse

trims

trike

twice

coils

cocas

codashodad

morts

porkyberry

hertz hurls

farad feral serif splay

spacy

stack slave babelbanes

mimeo

viler hilar

picas

peter

genre

thetathumbovule orbitmebbe

hokumhorse

angleangel

hades

rater

rheas

peeve

pekoe

scoot

acres

armedbrevebrood

croon

ceded

strew

strop

boric

bogieboozydoozy facie

tunic

aspic

enemy

tread lurch

lordy

colasmolalbolasboronborax

beryl

berthhurts

hardyforce

serge

scram

sprayspurn

vails baulkbanns

tizzy

eiderahhhhashesusher isles whits

whiff

obits

stets smote

warmshornyfever fixed

vixen

retro

beers

veeps

vetch

sudsy

coded

corer

crest

cross

crook celeb

jests

nests

toyon

booth

woofsploys fruit

train

adopt

greps

great

mural

aurae

lulab

inlay

adlib

spoor

broombiome

beefy biffs

birds boule

anion

drubsdrunkround

badly

bawls

bawdy

gizmo

exams

shave

usage

usual

usurp

tours

whizz

prize

putty

smuts

wardslurid devil

nitro mitre

ultra

beeryveers

ohhhh

oughtchewy

chess

amiss

antsy

snows

belts

bustymusky

nookshooksclown

flops fluid frail

argot

arborrobot

burlypurls pullspalmy

admix

sloop floorzooms

goopy

thwap

cheatdwelt alive

briny

drink

lying

lavas

beganbegin

agate

psalm

twatstrams

fecal

ducat

hoary

woozygauzegauss

barfs

yards

livid levis liars shark

scary

suerssquid

lauds

paddy

reeds

feeds

amideamucksmock

empty

hostsmusedbooks bloat cloak clove aloha

miaowminas

molar

yobbo

turbo

surge

schwascudoscowl

scows floss foals goadscheap

aheaddreck abaci

printoring

laity laxly

heels herds

reaps

rials

tears

tummy

wedgy

demurheals

weans

gaugegassy

balky

buddy

swede

owest start

scarp

scare

opera

crudslaude

duddy

sends

serfs seemsfemmefinch

zilch discs

busby

blurtblowsblown

plots pleas fiery final pined

aioli stela

stoic

scrip

scent

score scoff

smokeseals

guava

ameba

adept

keels aleck

front

brinkbaths

washyfishy lyric rifle

rills mulls

tuxes

wrong

dross slake

snaky

sweat

bassobasks

ardor

arena

axels

input

infra

extol

matey

caned

gaudy

gyppy

kepis biffy blimpflume

since

silts silos

sears

houri

flown

whews

spewspeeps

titanvitam

panel

styes

stein

steam

strip

straw

sugar

quoit

guess

leash

agaveagape

aleph

wells

fulls funny

prongwrung

mucho

mushy

lucid

lolly

hullo rublerubes

vroom

broil lucks sulks

swept

inept

ankhs

globegrebe

hails

gappy

intra

extra eaten

sated

gawks

japan

refix boffs boffo framefrays

share stake

stats

skateswathshawm

stews

pelts

peats

petal

pates

scabs

scams

scats stoae

strap

curio curia

pulse

welsh

arose

adobeaddlewelch

felon

hunts

cysts

clung

quota

quoth

quipu

chefs

wheel

fumerfaxer

taxer taxes

balks bulksknowsknownsnobs

gooky

groatgusty

gulchgulfs

enrol earth

sates

gawky

lamas leastbeams

braysgraph

grays

swats

stage

stave

stain

stays

scalp

scald

scrap

perks

zetas

speak

skoal

treap

frost frosh

kronecurds

curlyyelps keepsscour

scops

schmo

selfs

sportpunts

cunts

fluke pluck

blush

aniseanima

unseeunfedfamed

tames

tamed

talky

sells knoll

knopsgooks

youse

brush

gustogutty

grift excon

circa

slack

yawpsgamma

gulagchompcrams

grasp

grads

seats

stalk

stair

staid stash stall stale

surlyquads

newsyspear

ephah

treat

prosyprose

irony

upend

quint

ships

sedumshout

scope

spell

smelt sloth

booty

roots

corkypoufs

abuts anile

avian

upset

udderadderlades

lanky

sinks

spelt

shell knish

mouse

lousy

spermspare

titre

fiefs fluff

snuckshack calla

calyxgalasclamp

crime

cruet

urgeddraft

tract

tommy

mammamanse

musty

juste

dustyquashgnashevens

erect

tryst

crush loose

goonyopens

spins

spilt spill

shale

sprat

lowly

roblemoola

moony

muonscorns

scuds

acute

amity

velar

vegan

edger

added

sanersonar finks field

sheik

beeps

louse

fossespendspudsmiddyfacto fount fault sadly

cadrecamel

gamey

casescushy

cubes

urger

erred

rumen

rummymummy

masks

tardyturdyhurrynurse

gurus

exact

drawl

erase crass ligne

loins

doing

spiny

shirksnark

shape

stray

lobar noblewools

loony

rutty

curdy

bunds

auntstents

vends

egger

edges rifer

spies

sonnygonna

going

split

belie bossa

savvy

spent

bandy

binds

fancyfavor

havoc

canny

cameo

cawed

gages

busesbused

cuter

fumedfused fully

ouija

olios

lapel

laced

lacey

lunch

nudge

pansy

nearsdwarf

drake dales luredkernsdonna

soyas

smart

snarfshady

strut

qophslobby

libel lutes lutedburrs

dungygunkspinkopinky

vined

jiffs jiffy

sizes

sounddrums

tough

equip

bruinbarms

saver

savedsandssabra

seams

helixhelms relic relet

rasae

rages

ruses

vised video

fadesfudge fuels fugal

onion

laxer luxes likenmusks

badge

bassi

tasty

dustsduetsdweeb

vireo

jerks

herbsbombeboarskoala

coast

sirup

hippy

hiker hived liven lurer

queuequery

suety

pitas

pinks

ninny

niche tills cills

cruft

crump

moths

ethyl

exude

egret

sewed

sevensexes

shoveshameheaveheathreach

redly

rebar riles

riser

risks dusks

funds

aural

auras

hulasoakummaker

kapok

gasps

busks

baddy

balds

tacts

ducal dices dicer

vires

jerry

parks

ports

wortswonts

cocci

picksdippy

nixed

titer

tweet

curer

weest

shedsshews

pukka

pumps

nudernudes ville hills

yolksyolkymothyegads

enact

ender

sheep

sheen

supes

shoosshook

meany

heatsbeachreeks

reify reeve fears

teary

quire

quids

quirt

array

rajas

madam

maize

vaporwasps

banal

fawns

valid value

paean

daily

dills

jello jelly parka

partspartypanty

lycra

licks

lippy

tippy

thawsthewswhets

seest

seedy

shake

purrspuppy

julepjunksjudos

optic

vomit

goyim

moxie

doxie sixth

sweep

sheer steel

stony

swoop

snood

mesonhefty leapt reeky

heerd

heavy

heard

weary

furryquickquirk afire

maths

mashy

machohalos calve cleat

float

stoup

stoat

salad kaiak baize voidsmilch

milkyfilms firms

tromp

orcas

gypsy

gipsyzippy

chaos

chafe

duels dullsbunkobrakedramadrawsaxles

augur

audio

actin toxin

girds digit finis

sinew

sweet

sheet

utero

teeny

sepoy

swoonbefogxenon

learn

seers

peers

heedsbearsaward

astro

aside

hyposhippoharpy

tarps

damps

hallshalma

flows froze

stoutstorm

sassy

lairs

hairyhandy

gigas

vitae

fitly firma

karma

yahoo

capon

lipid

nippy

sixes sines

dunce

dully

bunks

brags

drabs

grape

cilia cubit

cupid

rosin

torso

gorse

divot limos

pixel frees

wheys

steno

swing

swine

songs

sinusminor

henna

henry

hoarshours

gluts alkyl

althoachooichor hitchhatch

rasps

lamps

earls

barmy

bromo

fools flout

store

ladle latin nadirbride

grist grits

krill

arrascacaocapedcaner

cites sites

sited

canes

dunesbuena

beakybinge

kinda

jihad

milkslurks

roman

rebid

roust roast

didos didot

shyer

rhino

temps

inapt

olive

swive

zookszonalmonad

jenny

heremhonkscookscouth

alkyd

alums

arumsgruel

oinks

oinky

raspycampozappy

tails

taxon

fjord flood

sloes

quell

quaisquoin

erode

cries

grump

grime

triad clear creel cruel

cotes votes

wales calix

fugue

buenolubra

bungsbingo

rival

filar

hulks

remap

remit

reuse

ricer

aides dicedshoesrheum

tempt

inked

oncet

inner

monkszonks

bonnyownerkeyed

rockshocks

cough

coupe

adult

aquae

ruddy

kiddo

vista

wispy

cuspywaspy

taint

taxol

faery fleck slips quill

quips

ovoidodors

tiger

mightnight

niter

foxed

boxedtrued

cower

coyer

poled folia feign

jeans

zebra

bulgybulky

rural

pilaf pilau filly fetor

reins

ribby

ailed bikes bikerrimed

vibes

muser

modem

envoy

expat

bosky

bases easelsawed

jacks

wacko

poser

filer

biblemedicredidbedimmidis

pilot pulpy tally

tamps

taboo

tabby fleas elope

quite

quilt polio poler

pigmy

fight

orthonoted

goner

toner trues

nosey

hopes

pewee

fermi

merge

metro

mourn

molasmoles

ruffs filmy

miler

fills fetid

petit

right filet

divesdomed

rimer

onsdag 12 oktober 11

share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

k specified vertices, n vertices

onsdag 12 oktober 11

share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

k specified vertices, n vertices

•k=n: Hamilton path

onsdag 12 oktober 11

share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

k specified vertices, n vertices

•k=n: Hamilton path
•no poly(k)-algorithm under P vs NP

onsdag 12 oktober 11

share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

k specified vertices, n vertices

•k=n: Hamilton path
•no poly(k)-algorithm under P vs NP
•no exp(o(k))-algorithm under ETH

onsdag 12 oktober 11

share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

k specified vertices, n vertices

•k=n: Hamilton path
•no poly(k)-algorithm under P vs NP
•no exp(o(k))-algorithm under ETH
•Brute force: O(n!) (note: not nk)

onsdag 12 oktober 11

share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

k specified vertices, n vertices

•k=n: Hamilton path
•no poly(k)-algorithm under P vs NP
•no exp(o(k))-algorithm under ETH
•Brute force: O(n!) (note: not nk)
•Disjoint paths: f(k)·poly(n)

Robertson–Seymour

onsdag 12 oktober 11

share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

k specified vertices, n vertices

•k=n: Hamilton path
•no poly(k)-algorithm under P vs NP
•no exp(o(k))-algorithm under ETH
•Brute force: O(n!) (note: not nk)
•Disjoint paths: f(k)·poly(n)
•Algorithms for k=1,2,3.

Robertson–Seymour

onsdag 12 oktober 11

share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

k specified vertices, n vertices

•k=n: Hamilton path
•no poly(k)-algorithm under P vs NP
•no exp(o(k))-algorithm under ETH
•Brute force: O(n!) (note: not nk)
•Disjoint paths: f(k)·poly(n)
•Algorithms for k=1,2,3.
•Algorithm in exp(exp(k10))

Kawarabayashi

Robertson–Seymour

onsdag 12 oktober 11

share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

New result [SODA12]:
randomised algorithm in time

exp(k)poly(n)

k specified vertices, n vertices

Taslaman Björklund
onsdag 12 oktober 11

share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

New result [SODA12]:
randomised algorithm in time

exp(k)poly(n)

k specified vertices, n vertices

Taslaman Björklund

Thm: Shortest(!) cycle
through k given vertices or
edges in time 2kpoly(n) with
exponentially small one-
sided error.

onsdag 12 oktober 11

a c

b

d

e
f

g

h

Trick: Look at Polynomials Instead

Koutis Williams

onsdag 12 oktober 11

a c

b

d

e
f

g

h

Trick: Look at Polynomials Instead

Koutis Williams

Björklund et al.

onsdag 12 oktober 11

a c

b

d

e
f

g

h

Trick: Look at Polynomials Instead

Koutis Williams

Björklund et al.
Tutte

onsdag 12 oktober 11

a c

b

d

e
f

g

h

Trick: Look at Polynomials Instead

onsdag 12 oktober 11

a c

b

d

e
f

g

h

a·b·f·g·h·d

monomial for every walk

Trick: Look at Polynomials Instead

onsdag 12 oktober 11

a c

b

d

e
f

g

h

a·b·f·g·h·d

monomial for every walk

a·b·c·e·f·g·h

sum over all walks

Trick: Look at Polynomials Instead

onsdag 12 oktober 11

a c

b

d

e
f

g

h

a·b·f·g·h·d

monomial for every walk

a·b·c·e·f·g·ha·b·c·e·f·g·h

sum over all walks

Trick: Look at Polynomials Instead

onsdag 12 oktober 11

a c

b

d

e
f

g

h

a·b·f·g·h·d

monomial for every walk

a·b·c·e·f·g·ha·b·c·e·f·g·h

sum over all walks

Trick: Look at Polynomials Instead

mod 2

onsdag 12 oktober 11

a c

b

d

e
f

g

h

Trick: Look at Polynomials Instead

(Not really. Look at random
numbers and interpret them as

polynomial evaluations.)

onsdag 12 oktober 11

a c

b

d

e
f

g

h

Trick: Look at Polynomials Instead

(Not really. Look at random
numbers and interpret them as

polynomial evaluations.)

3·2·9·6·3·2 3·7·6·9·2·5·23·2·9·6·7·5·2

2

3
2

9

6

5 3

7

onsdag 12 oktober 11

Constructing all Walks:
Dynamic Programming for Sequencing Problems

W(r,S,v) = walks s.t.
length: r
end in v
visit all in S exactly once
no other in K

S ✓ K
K = specifed vertices

K

S

v

onsdag 12 oktober 11

W(r, S, v) =

(S
uv2E W(r � 1, S, u) v /2 S

S
uv2E W(r � 1, S � v, u) v 2 S

Time: 2Kpoly(n)

onsdag 12 oktober 11

Constructing all Walks:
Dynamic Programming for Sequencing Problems

onsdag 12 oktober 11

Constructing all Walks:
Dynamic Programming for Sequencing Problems

Bellman

Held–Karp

onsdag 12 oktober 11

Some pitfalls…

x
y

z

xy2z

does not cancel

onsdag 12 oktober 11

Some pitfalls…

x
y

z

xy2z

does not cancel

(solved in the dynamic
program: just avoid “digons”)

onsdag 12 oktober 11

Some pitfalls…

onsdag 12 oktober 11

Some pitfalls…

onsdag 12 oktober 11

Some pitfalls…

(solve shorter lengths first)
onsdag 12 oktober 11

share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

k specified vertices, n vertices

1. Associate random value from GF(2q) to each
edge

2. Use dynamic programming to count the
contribution of all sufficiently well-behaved
walks

3. Return “Found one!” if the result is nonzero
onsdag 12 oktober 11

share

scare

scars sears

tears

smile smite

spite

suite

quite

quire

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

prime

pride

price

prickcrick

crock

crook

grook
groom

gloom
bloomblood

brood
broad bread

dread

tread

treed

trees

trews

trows
trots

toots torts

worts
words

wordy

worry

wormy

worms

forms

foams

flams

slamsshams

shame

crime

k specified vertices, n vertices

Theorem: Shortest cycle through k given vertices or
edges in time 2kpoly(n) with exponentially small
one-sided error.

1. Associate random value from GF(2q) to each
edge

2. Use dynamic programming to count the
contribution of all sufficiently well-behaved
walks

3. Return “Found one!” if the result is nonzero
onsdag 12 oktober 11

Edge Colouring

onsdag 12 oktober 11

Edge Colouring

onsdag 12 oktober 11

k: # colours
d: degree
Vizing: k = d or k = d+1

Brute force: check all dm possibilities

Vertex colour the line graph: time 2m=2nd/2

onsdag 12 oktober 11

k: # colours
d: degree

Brute force dm

Vertex colour the line graph 2m=2nd/2

“Narrow sieves” [BHKK] 2n(d-1)/2

Under ETH: not in exp(o(n))

onsdag 12 oktober 11

Edge Colouring takes

exp(n)
dn = exp(nlog d)
exp(m) = exp(nd)

onsdag 12 oktober 11

Tak fordi I kom

onsdag 12 oktober 11

