Exponential Time Algorithms

Thore Husfeldt

IT University of Copenhagen
Lund University

Perfect Matchings

Perfect Matchings in Bipartite Graphs

110
111
110
011
011

All ways of placing 1 rook per row

All ways of placing 1 rook per row

All ways of placing 1 rook per row

All ways of placing 1 rook per row

All ways of placing 1 rook per row

88888
$\%$
8
$\stackrel{2}{8}$

\%

${ }_{8}^{\circ}$
8
8
8
8

8
8

Vertex colouring

Picking 3 independent sets

A	B	C	D	AB	AC	AD	BC	BD	CD	ABC	ABD	ACD	BCD	ABCD
I	I	I	I	0	0	0	0	I	I	0	0	0	0	0

\# ways pick 3 indep. sets actually useful ones

\# ways pick 3 indep. sets actually useful ones

vertex subsets
© ${ }_{8}^{8}$ ® $^{3}=27$

$\stackrel{B}{C}_{(C)}$
\# ways pick 3 indep. sets actually useful ones
$\left.\int_{\text {(C) }}^{(A)}\right)^{(A)} 6^{3}=216$

$\stackrel{B}{C}_{(}$

vertex subsets

$\stackrel{B}{C}_{(}^{B}$
(A) $4^{3}=64$

(c)
\# ways pick 3 indep. sets actually useful ones
$\underbrace{\text { B) }}_{\text {(C) }}{ }_{-}^{(\mathrm{A})} 6^{3}=216$

vertex subsets

${ }_{(C)}^{(A)} 3^{3}=27$

(A) $4^{3}=64$

Vertex subset S \# indep. subsets, $g(S) \quad(g(S))^{3}$

A	1	1
B	1	1
C	1	1
D	1	1
AB	2	8
AC	2	8
AD	2	8
BC	2	8
BD	3	27
CD	3	27
ABC	4	27
ABD	4	64
ACD	5	64
BCD	6	125
ABCD		216

Vertex subset S	\# indep.subsets, $g(S)$	$(8(s))^{3}$
A	1	1
B	1	1
C	1	1
D	1	1
AB	2	8
AC	2	8
AD	2	8
BC	2	8
BD	3	27
CD	3	27
ABC	3	27
ABD	4	64
ACD	4	64
BCD	5	125
ABCD	6	216

(D)

$$
\sum_{S \subseteq N} 2^{|S|}=\sum_{i=1}^{n}\binom{n}{i} 2^{i}=3^{n}
$$

polynomial space

Graph colouring

Compute $\sum_{S \subseteq N}(-1)^{n-|S|}(g(S))^{k}$

$O^{*}\left(3^{n}\right)$ time
polynomial space
$O *\left(2^{n}\right)$ time
$O^{*}\left(2^{n}\right)$ space

Björklund

Exponential Time Hypothesis

Exponential Time Hypothesis

Can do 3-Sat in time 1.308^{n}

Exponential Time Hypothesis

Hertli

Can do 3-Sat in time 1.308^{n}

Can't do 3-Sat in time $\exp (o(n))$

$$
(x \vee y \vee z) \wedge(\bar{x} \vee \bar{y} \vee z) \wedge(x \vee \bar{y} \vee \bar{z})
$$

$$
(x \vee y \vee z) \wedge(\bar{x} \vee \bar{y} \vee z) \wedge(x \vee \bar{y} \vee \bar{z})
$$

n vars
 m clauses
 $3 m=O\left(n^{3}\right)$ verts $O\left(m^{2}\right)$ edges

$\exp (o(n))$ alg for 3-SAT
$\exp \left(o\left(n^{1 / 3}\right)\right)$ alg for I.S.
$\exp \left(o\left(m^{1 / 2}\right)\right)$ alg for I.S.

$$
(x \vee y \vee z) \wedge(\bar{x} \vee \bar{y} \vee z) \wedge(x \vee \bar{y} \vee \bar{z})
$$

n vars
 m clauses

$3 m=O\left(n^{3}\right)$ verts $O(m)$ edges
$\exp (o(n))$ alg for $3-$ SAT
$\exp \left(o\left(n^{1 / 3}\right)\right)$ alg for I.S.
$\exp (o(m))$ alg for I.S.

Independent set n vertices m edges

Clique

 n vertices m edges1.1888^{n}
1.1888^{n}
c^{m}
$2^{\sqrt{m} \log n}$

Sparsification

Hitting Set

Hitting Set

Hitting Set

Sparsifying a Hitting Set Instance

Sparsifying a Hitting Set Instance

Sparsifying a Hitting Set Instance

$\exp (o(n)) \cdot 2^{n}=\exp (n)$

2^{n} leaves

$\exp (o(n)) \cdot \exp (H(1 / r) n)=$ $\exp (o(n))$

$C(n, 1)+\ldots+C(n, n / r)$
leaves

Exponential Time Hypothesis

Can't do 3-Sat in time $\exp (o(n))$

Why No Dependency on \# Colours is Surprising

$\operatorname{CSP}(q, 2)$

q states, pairwise constraints

Traxler

n verts $n / 2$ verts
d states $\quad d^{2}$ states

Must have $d^{n}=\left(d^{2}\right)^{n / 2}$

Path through specified vertices

,DEAR VANITY,-Just a year ago last Christmas, two young ladies - smarting under that sorest scourge of feminine humanity, the having " nothing to do"-besought me to send them "some riddles." But riddles ${ }^{T}$ had none at hand, and therefore set muacle A. Torige some

HEAD
heal
t a 1
t ell
tall
TAIL

April 5.-Dip PEN into INK.
 Touch CHIN with NOSE. Change TEARS into SMILE.

Path through specified vertices

k specified vertices, n vertices

k specified vertices, n vertices

- $k=n$: Hamilton path

k specified vertices, n vertices
$\bullet k=n$: Hamilton path

- no poly (k)-algorithm under P vs NP
k specified vertices, n vertices
$\bullet k=n$: Hamilton path

- no poly (k)-algorithm under P vs NP
\bullet no $\exp (o(k))$-algorithm under ETH
k specified vertices, n vertices
$\bullet k=n$: Hamilton path

\bullet no poly (k)-algorithm under P vs NP
- no $\exp (o(k))$-algorithm under ETH
- Brute force: $O(n!)\left(\right.$ note: not $\left.n^{k}\right)$
k specified vertices, n vertices
$\bullet k=n$: Hamilton path

- no poly (k)-algorithm under P vs NP
- no $\exp (o(k))$-algorithm under ETH
- Brute force: $O(n!)$ (note: not n^{k})
- Disjoint paths: $f(k) \cdot$ poly (n)

Robertson-Seymour
k specified vertices, n vertices
$\bullet k=n$: Hamilton path

- no poly (k)-algorithm under P vs NP
- no $\exp (o(k))$-algorithm under ETH
- Brute force: $O(n!)$ (note: not n^{k})
- Disjoint paths: $f(k) \cdot$ poly (n)
- Algorithms for $k=1,2,3$.

Robertson-Seymour

k specified vertices, n vertices

$\bullet k=n$: Hamilton path

- no poly (k)-algorithm under P vs NP
- no $\exp (o(k))$-algorithm under ETH
- Brute force: $O(n!)$ (note: not $\left.n^{k}\right)$
- Disjoint paths: $f(k) \cdot$ poly (n)
- Algorithms for $k=1,2,3$.
- Algorithm in $\exp \left(\exp \left(k^{10}\right)\right)$

Robertson-Seymour

Kawarabayashi
k specified vertices, n vertices

New result [SODA12]: randomised algorithm in time $\exp (k) \operatorname{poly}(n)$

k specified vertices, n vertices

New result [SODA12]: randomised algorithm in time $\exp (k)$ poly (n)

Thm: Shortest(!) cycle through k given vertices or edges in time 2^{k} poly (n) with exponentially small onesided error.

Trick: Look at Polynomials Instead

Koutis

Williams

Trick: Look at Polynomials Instead

Koutis

Williams

Trick: Look at Polynomials Instead

Koutis

Williams

Björklund et al

Trick: Look at Polynomials Instead

Trick: Look at Polynomials Instead

monomial for every walk

$$
a \cdot b \cdot f \cdot g \cdot h \cdot d
$$

Trick: Look at Polynomials Instead

monomial for every walk sum over all walks

$$
a \cdot b \cdot f \cdot g \cdot h \cdot d \quad a \cdot b \cdot c \cdot e \cdot f \cdot g \cdot h
$$

Trick: Look at Polynomials Instead

monomial for every walk sum over all walks

$$
a \cdot b \cdot f \cdot g \cdot h \cdot d
$$

$$
a \cdot b \cdot c \cdot e \cdot f \cdot g \cdot h
$$

$$
a \cdot b \cdot c \cdot e \cdot f \cdot g \cdot h
$$

Trick: Look at Polynomials Instead

monomial for every walk sum over all walks mod 2

$$
a \cdot b \cdot f \cdot g \cdot h \cdot d
$$

$a \cdot b \cdot c \cdot e \cdot f \cdot g \cdot h$
$a \cdot b \cdot c \cdot e \cdot f \cdot g \cdot h$

Trick: Look at Polynomials Instead

(Not really. Look at random numbers and interpret them as polynomial evaluations.)

Trick: Look at Polynomials Instead

(Not really. Look at random numbers and interpret them as polynomial evaluations.)

Constructing all Walks:

Dynamic Programming for Sequencing Problems

$$
W(r, S, v)= \begin{cases}\bigcup_{u v \in E} W(r-1, S, u) & v \notin S \\ \bigcup_{u v \in E} W(r-1, S-v, u) & v \in S\end{cases}
$$

Time: $2^{K} p o l y(n)$

Constructing all Walks:

Dynamic Programming for Sequencing Problems

BRUTE-FORCE SOLUTION:
$O(n!)$

SELUNG ON EBAY:

$$
0(1)
$$

STIL WORKING ON YOUR ROUTE?

Constructing all Walks:

Dynamic Programming for Sequencing Problems

BRUTE-FORCE SOLUTION: $O(n!)$

SELING ON EBAY:

$$
0(1)
$$

STIL WORKING ON YOUR ROUTE?

Held-Karp
Bellman

Some pitfalls...

does not cancel

$$
x y^{2} z
$$

Some pitfalls...

does not cancel

$$
x y^{2} z
$$

(solved in the dynamic program: just avoid "digons")

Some pitfalls...

$$
x^{2} x+x
$$

$$
\triangle \text { ser }
$$

k specified vertices, n vertices

1. Associate random value from $\mathrm{GF}\left(2^{9}\right)$ to each edge
2. Use dynamic programming to count the contribution of all sufficiently well-behaved walks
3. Return "Found one!" if the result is nonzero
k specified vertices, n vertices

Theorem: Shortest cycle through k given vertices or edges in time $2^{k} \operatorname{poly}(n)$ with exponentially small one-sided error.

1. Associate random value from $\mathrm{GF}\left(2^{q}\right)$ to each edge
2. Use dynamic programming to count the contribution of all sufficiently well-behaved walks
3. Return "Found one!" if the result is nonzero

Edge Colouring

Edge Colouring

k: \# colours
d: degree
Vizing: $k=d$ or $k=d+1$

Brute force: check all d^{m} possibilities
Vertex colour the line graph: time $2^{m}=2^{n d} / 2$

k: \# colours d : degree

Brute force	d^{m}
Vertex colour the line graph	$2^{m}=2^{\text {nd/2 }}$
"Narrow sieves" $[B H K K]$	$2^{n(d-1) / 2}$

Under ETH: not in $\exp (o(n))$

OPEN

Edge Colouring takes

$$
\begin{array}{ll}
\square & \exp (n) \\
\square & d^{n}=\exp (n \log d) \\
\square & \exp (m)=\exp (n d)
\end{array}
$$

Tak fordi I kom

