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I Simple and reliable pseudo-random hashing.

I Providing algorithmically important probabilisitic
guarantees akin to those of truly random hashing, yet easy
to implement.

I Bridging theory (assuming truly random hashing) with
practice (needing something implementable).
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Applications of Hashing 
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers.
I linear probing: sequential search in one array
I cuckoo hashing: search≤ 2 locations, complex updates

Sketching, streaming, and sampling:
I second moment estimation: F2(x̄) =

∑
i x2

i

I sketch A and B to later find |A ∩ B|/|A ∪ B|

|A ∩ B|/|A ∪ B| = Pr
h

[min h(A) = min h(B)]

We need h to be ε-minwise independent:

(∀)x 6∈ S : Pr[h(x) < min h(S)] =
1± ε
|S|+ 1
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Applications of Hashing 
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers.
I linear probing: sequential search in one array

Important outside theory. These simple practical hash tables
often bottlenecks in the processing of data—substantial fraction
of worlds computational resources spent here.



Carter & Wegman (1977)
We do not have space for truly random hash functions, but

Family H = {h : [u]→ [b]} k -independent iff for random h ∈ H:
I (∀)x ∈ [u], h(x) is uniform in [b];
I (∀)x1, . . . , xk ∈ [u], h(x1), . . . ,h(xk ) are independent.

Prototypical example: degree k − 1 polynomial
I u = b prime;
I choose a0,a1, . . . ,ak−1 randomly in [u];
I h(x) =

(
a0 + a1x + · · ·+ ak−1xk−1) mod u.

Many solutions for k -independent hashing proposed, but
generally slow for k > 3 and too slow for k > 5.
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Independence has been the ruling measure for quality of hash
functions for 30+ years, but is it right?
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Simple tabulation
I Simple tabulation goes back to Carter and Wegman’77.

I Key x divided into c = O(1) characters x1, ..., xc ,
e.g., 32-bit key as 4 × 8-bit characters.

I For i = 1, ..., c, we have truly random hash table:
Ri : char→ hash values (bit strings)

I Hash value

h(x) = R1[x1]⊕ · · · ⊕ Rc[xc]

I Space cN1/c and time O(c). With 8-bit characters, each Ri
has 256 entries and fit in L1 cache.

I Simple tabulation is the fastest 3-independent hashing
scheme. Speed like 2 multiplications.

I Not 4-independent: h(a1a2)⊕ h(a1b2)⊕ h(b1a2)⊕ h(b1b2)

= (R1[a1]⊕ R2[a2])⊕ (R1[a1]⊕ R2[b2])⊕
(R1[b1]⊕ R2[a2])⊕ (R1[b1]⊕ R2[b2]) = 0.
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How much independence needed? Wrong question
Chaining E[t ] = O(1) 2

E[tk ] = O(1) 2k + 1
t = O( lg n

lg lg n ) w.h.p. Θ(
lg n

lg lg n ) Celis yesterday
Linear probing ≤ 5 [Pagh2, Ružić’07] ≥ 5 [PT ICALP’10]

Cuckoo hashing O(lg n) ≥ 6 [Cohen, Kane’05]

F2 estimation 4 [Alon, Mathias, Szegedy’99]

ε-minwise indep. O(lg 1
ε ) [Indyk’99] Ω(lg 1

ε ) [PT ICALP’10]

New result: Despite its 4-dependence, simple tabulation
suffices for all the above applications:

One simple and fast hashing scheme for almost all
your needs.

Knuth recommends simple tabulation but cites only
3-independence as mathematical quality.
We prove that dependence of simple tabulation is not harmful in
any of the above applications.
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Chaining/hashing into bins
Theorem Consider hashing n balls into m ≥ n1−1/(2c) bins by
simple tabulation. Let q be an additional query ball, and define
Xq as the number of regular balls that hash into a bin chosen
as a function of h(q). Let µ = E[Xq] = n

m . The following
probability bounds hold for any constant γ:

Pr[Xq ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)Ω(µ)

+ m−γ

Pr[Xq ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)Ω(µ)

+ m−γ

With m ≤ n bins, every bin gets

n/m ±O
(√

n/m logc n
)
.

keys with probability 1− n−γ .



Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.

Nothing like this lemma holds if we instead of simple tabulation
assumed k -independent hashing with k = O(1).
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Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into
m bins and n ≤ m1−ε, then all bins get less than d = 2(1+γ)/ε

keys with probability ≥ 1−m−γ .

Claim 1 Any set T contains a subset U of log2 |T | keys that
hash independently.

I Let i be character position where keys in T differ.
I Let a be least common character in position i and pick

x ∈ T with xi = a
I Reduce T to T ′ removing all keys y from T with yi = a.
I The hash of x is independent of the hash of T ′ as only

h(x) depends on Ri [a].
I Return {x} ∪ U ′ where U ′ independent subset of T ′.
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Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into
m bins and n ≤ m1−ε, then all bins get less than d = 2(1+γ)/ε

keys with probability ≥ 1−m−γ .
Claim 1 Any set T contains a subset U of log2 |T | keys that
hash independently—if |T | ≥ d then |U| ≥ (1 + γ)/ε. �

Claim 2 The probability that there exists u = (1 + γ)/ε keys
hashing independently to the same bin is m−γ .

I There are
(n

u

)
< nu sets U of u keys to consider.

I Each such U hash to one bin with probability 1/mu−1.
I Propability bound over all U is

numu−1 ≤ m(1−ε)u+1−u = m1−εu = m−γ .
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Short of time?



Basic proof pattern with m ≥ n1−1/(2c) bins

I Deterministic partition key set S into groups G that are
mutually “independent”, each of size ≤ n1−1/c ≤ m1−ε.

I By lemma, w.h.p., each G distributes with ≤ d in each bin.
I Let XG ≤ d be contribution to fixed bin, and X =

∑
G XG.

I If the XG were really independent, by Chernoff

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ/d

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ/d
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Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.

Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c .

I For each position i ∈ [c], we have < n1/c characters used
by > n1−1/c keys.

I So claim false implies S in hypercube of size
<
(
n1/c)c

= n.



Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.

Claim |G(i,a)| ≤ n1−1/c .

I For each position i ∈ [c], we have < n1/c characters used
by > n1−1/c keys.

I So claim false implies S in hypercube of size
<
(
n1/c)c

= n.



Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c .

I For each position i ∈ [c], we have < n1/c characters used
by > n1−1/c keys.

I So claim false implies S in hypercube of size
<
(
n1/c)c

= n.



Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c .

I For each position i ∈ [c], we have < n1/c characters used
by > n1−1/c keys.

I So claim false implies S in hypercube of size
<
(
n1/c)c

= n.



Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c .

I For each position i ∈ [c], we have < n1/c characters used
by > n1−1/c keys.

I So claim false implies S in hypercube of size
<
(
n1/c)c

= n.



Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c . �

Recursively, we group S \G(i,a) and hash all position
characters in S excluding (i ,a). This fixes

I the hash of all keys in S \G(i,a)

I the hash of keys in G(i,a) except Ri [a] which is a common
“shift” moving bin h to h ⊕ Ri [a].

I Particularly, it is fixed which keys from G(i,a) end in same
bin. By Lemma, w.h.p., at most d in every bin.

Now we randomly pick Ri [a] finalizing hashing of group G(i,a).
I The contribution XG(i,a)

to our bin is random variable.
I The distribution of XG(i,a)

depends on previous fixings.
I But always E[XG(i,a)

] = |XG(i,a)
|/m. MoreoverXG(i,a)

≤ d .
I Good enough for Chernoff bounds.
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Chernoff with m ≥ n1−1/(2c) bins
W.h.p., the contribution X to given obeys Chernoff

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ/d

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ/d

Thus, from perspective of chaining, simple tabulation has same
type of tail bounds as with truly random hash functions, modulo
a constant factor loss and down to polynomially small
probabilities.

Similar story for linear probing.
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Cuckoo hashing
Each key placed in one of two hash locations.

z •
• s
• w
y f

x  x •
• a
r x  b

Theorem With simple tabulation Cuckoo hashing works with
probability 1− Θ̃(n−1/3).

I For chaining and linear probing, we did not care about a
constant loss, but obstructions to cuckoo hashing may be
of just constant size, e.g., 3 keys sharing same two hash
locations.

I Very delicate proof showing that obstruction can be used
to code random tables Ri with few bits.
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Speed

Hashing random keys 32-bit computer 64-bit computer
bits hashing scheme hashing time (ns)
32 univ-mult-shift (a*x)>>s 1.87 2.33
32 2-indep-mult-shift 5.78 2.88
32 5-indep-Mersenne-prime 99.70 45.06
32 5-indep-TZ-table 10.12 12.66
32 simple-table 4.98 4.61
64 univ-mult-shift 7.05 3.14
64 2-indep-mult-shift 22.91 5.90
64 5-indep-Mersenne-prime 241.99 68.67
64 5-indep-TZ-table 75.81 59.84
64 simple-table 15.54 11.40

Experiments with help from Yin Zhang.



Robustness in linear probing for dense interval
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Pitch for theory in case of linear probing
I Multiplicative hashing used in practice, but turns out to be

very unreliable under typical denial-of-service (DoS)
attacks based on consecutive IP addresses: systematic
good performance 95% of the time, but systematic terrible
performance 5% of the time [TZ’10].

I Problems in randomized algorithms like hashing hard to
detect for practitioners. Hard for them to know if bad
performance is from being unlucky, or because of
systematic problems.

I Linear probing had gotten a reputation for being fastest in
practice, but sometimes unreliable needing special
protection against bad cases.

I Here we proved linear probing safe with good probabilistic
performance for all input if we use simple tabulation.

I Simple tabulation also powerful for chaining, cuckoo
hashing, and min-wise hashing:

one simple and fast scheme for (almost) all your needs.
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Work in progress: twisted tabulation
I With chaining and linear probing, each operation takes

expected constant time, but out of
√

n operations, some
are expected to take Ω̃(log n) time.

I With truly random hash function, we handle every window
of log n operations in O(log n) time w.h.p.

I Hence, with small buffer (as in Internet routers), we do get
down to constant time per operation!

I Simple tabulation does not achieve this: may often spend
Ω̃(log2 n) time on log n consecutive operations.

I Twisted tabulation:

(h, α) = R1[x1]⊕ · · · ⊕ Rc−1[xc−1];

h(x) = h ⊕ Rc[α⊕xc]

I With twisted tabulation, we handle every window of log n
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Implenting Chernoff bounds with twisted tabulation
I 0-1 variables Xi where Xi = 1 with probability pi .

I Exponential concentration of X =
∑

i Xi around mean.
I Application: trust polynomial number of logarithmic

estimates with high probability
—the log factor in many randomized algorithm.

I With hashing into [0,1], set Xi = 1 if h(i) < pi .
I With bounded dependence only polynomial concentration.
I With twisted tabulation: for any constant γ,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)Ω(µ)

+ Σ−γ

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)Ω(µ)

+ Σ−γ

I With simple tabulation, additive term (maxi pi)
γ

—in the hash tables we had p ≈ 1/n.
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Open problems
I Take any application using abstract truly random hash

function, and prove that simple/twisted tabulation works.

I Could this be the first implementable hash function/RNG
making classic quick sort work directly: using hash of i to
generate index of i th pivot?

I Hash tables are used to look up keys in a dynamic set of
stored keys. Can this be done without randomization?

I Can we both insert and look up keys in constant
deterministic time? (not just with high probability)

I Currently, the best answer is that we can do both in
O(
√

log n/ log log n) worst-case time [Andersson Thorup
STOC’00] —tight for more general predecessor problem.

I Most people believe that deterministic constant time is not
possible without randomization, but nobody can prove it.

I So far, no technique is known that can make any such
separation between deterministic and randomized
solutions for any data structure problem.
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