The Power of Tabulation Hashing

Mikkel Thorup

University of Copenhagen
AT\&T

The Power of Tabulation Hashing

Mikkel Thorup

University of Copenhagen
AT\&T

Thank you for inviting me to China Theory Week.

The Power of Tabulation Hashing

Mikkel Thorup

University of Copenhagen
AT\&T

Thank you for inviting me to China Theory Week.

Joint work with Mihai Pǎtraşcu. Some of it found in Proc. STOC'11.

Target

- Simple and reliable pseudo-random hashing.

Target

- Simple and reliable pseudo-random hashing.
- Providing algorithmically important probabilisitic guarantees akin to those of truly random hashing, yet easy to implement.

Target

- Simple and reliable pseudo-random hashing.
- Providing algorithmically important probabilisitic guarantees akin to those of truly random hashing, yet easy to implement.
- Bridging theory (assuming truly random hashing) with practice (needing something implementable).

Applications of Hashing \rightsquigarrow

Hash tables (n keys and $2 n$ hashes: expect $1 / 2$ keys per hash)

- chaining: follow pointers

Applications of Hashing \rightsquigarrow

Hash tables (n keys and $2 n$ hashes: expect $1 / 2$ keys per hash)

- chaining: follow pointers

Applications of Hashing \rightsquigarrow

Hash tables (n keys and $2 n$ hashes: expect 1/2 keys per hash)

- chaining: follow pointers
- linear probing: sequential search in one array

Applications of Hashing \rightsquigarrow

Hash tables (n keys and $2 n$ hashes: expect 1/2 keys per hash)

- chaining: follow pointers
- linear probing: sequential search in one array

$X \rightsquigarrow$	\bullet
	q
	a
\rightarrow	g
\rightarrow	c
\rightarrow	x
	\bullet
	t

Applications of Hashing \rightsquigarrow

Hash tables (n keys and $2 n$ hashes: expect 1/2 keys per hash)

- chaining: follow pointers
- linear probing: sequential search in one array
- cuckoo hashing: search ≤ 2 locations, complex updates

Applications of Hashing \rightsquigarrow

Hash tables (n keys and $2 n$ hashes: expect 1/2 keys per hash)

- chaining: follow pointers
- linear probing: sequential search in one array
- cuckoo hashing: search ≤ 2 locations, complex updates

Applications of Hashing \rightsquigarrow

Hash tables (n keys and $2 n$ hashes: expect 1/2 keys per hash)

- chaining: follow pointers
- linear probing: sequential search in one array
- cuckoo hashing: search ≤ 2 locations, complex updates

Applications of Hashing \rightsquigarrow

Hash tables (n keys and $2 n$ hashes: expect 1/2 keys per hash)

- chaining: follow pointers
- linear probing: sequential search in one array
- cuckoo hashing: search ≤ 2 locations, complex updates

Applications of Hashing \rightsquigarrow

Hash tables (n keys and $2 n$ hashes: expect 1/2 keys per hash)

- chaining: follow pointers
- linear probing: sequential search in one array
- cuckoo hashing: search ≤ 2 locations, complex updates

Applications of Hashing \rightsquigarrow

Hash tables (n keys and $2 n$ hashes: expect 1/2 keys per hash)

- chaining: follow pointers
- linear probing: sequential search in one array
- cuckoo hashing: search ≤ 2 locations, complex updates

Applications of Hashing \rightsquigarrow

Hash tables (n keys and $2 n$ hashes: expect 1/2 keys per hash)

- chaining: follow pointers.
- linear probing: sequential search in one array
- cuckoo hashing: search ≤ 2 locations, complex updates

Applications of Hashing \rightsquigarrow

Hash tables (n keys and $2 n$ hashes: expect 1/2 keys per hash)

- chaining: follow pointers.
- linear probing: sequential search in one array
- cuckoo hashing: search ≤ 2 locations, complex updates

Sketching, streaming, and sampling:

- second moment estimation: $F_{2}(\bar{x})=\sum_{i} x_{i}^{2}$

Applications of Hashing \rightsquigarrow

Hash tables (n keys and $2 n$ hashes: expect 1/2 keys per hash)

- chaining: follow pointers.
- linear probing: sequential search in one array
- cuckoo hashing: search ≤ 2 locations, complex updates

Sketching, streaming, and sampling:

- second moment estimation: $F_{2}(\bar{x})=\sum_{i} x_{i}^{2}$
- sketch A and B to later find $|A \cap B| /|A \cup B|$

$$
|A \cap B| /|A \cup B|=\operatorname{Pr}_{h}[\min h(A)=\min h(B)]
$$

We need h to be ε-minwise independent:

$$
(\forall) x \notin S: \quad \operatorname{Pr}[h(x)<\min h(S)]=\frac{1 \pm \varepsilon}{|S|+1}
$$

Applications of Hashing \rightsquigarrow

Hash tables (n keys and $2 n$ hashes: expect 1/2 keys per hash)

- chaining: follow pointers.
- linear probing: sequential search in one array

Important outside theory. These simple practical hash tables often bottlenecks in the processing of data-substantial fraction of worlds computational resources spent here.

Carter \& Wegman (1977)

We do not have space for truly random hash functions, but
Family $\mathcal{H}=\{h:[u] \rightarrow[b]\} k$-independent iff for random $h \in \mathcal{H}:$

- $(\forall) x \in[u], h(x)$ is uniform in $[b]$;
- $(\forall) x_{1}, \ldots, x_{k} \in[u], h\left(x_{1}\right), \ldots, h\left(x_{k}\right)$ are independent.

Carter \& Wegman (1977)

We do not have space for truly random hash functions, but
Family $\mathcal{H}=\{h:[u] \rightarrow[b]\} k$-independent iff for random $h \in \mathcal{H}:$

- $(\forall) x \in[u], h(x)$ is uniform in $[b]$;
- $(\forall) x_{1}, \ldots, x_{k} \in[u], h\left(x_{1}\right), \ldots, h\left(x_{k}\right)$ are independent.

Prototypical example: degree $k-1$ polynomial

- $u=b$ prime;
- choose $a_{0}, a_{1}, \ldots, a_{k-1}$ randomly in $[u]$;
- $h(x)=\left(a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}\right) \bmod u$.

Carter \& Wegman (1977)

We do not have space for truly random hash functions, but
Family $\mathcal{H}=\{h:[u] \rightarrow[b]\} k$-independent iff for random $h \in \mathcal{H}$:

- $(\forall) x \in[u], h(x)$ is uniform in $[b]$;
- $(\forall) x_{1}, \ldots, x_{k} \in[u], h\left(x_{1}\right), \ldots, h\left(x_{k}\right)$ are independent.

Prototypical example: degree $k-1$ polynomial

- $u=b$ prime;
- choose $a_{0}, a_{1}, \ldots, a_{k-1}$ randomly in [u];
- $h(x)=\left(a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}\right) \bmod u$.

Many solutions for k-independent hashing proposed, but generally slow for $k>3$ and too slow for $k>5$.

How much independence needed?

$\begin{array}{r} \text { Chaining } \mathrm{E}[t]=O(1) \\ \mathrm{E}\left[t^{k}\right]=O(1) \\ t=O\left(\frac{\lg n}{\lg n}\right) \text { w.h.p. } \end{array}$	$\begin{gathered} 2 \\ 2 k+1 \\ \Theta\left(\frac{\lg n}{\lg \lg n}\right) \\ \hline \end{gathered}$	
Linear probing	$\leq 5 \quad\left[\mathrm{Pagh}^{2}\right.$, Ruziécor]	$\geq 5 \quad$ [PTICALP'10]
Cuckoo hashing	$O(\lg n)$	≥ 6 [Cohen, Kane'05]
F_{2} estimation	4 [Alon, Mathias, Szegedy'99]	
ε-minwise indep.	$O\left(\lg \frac{1}{8}\right) \quad$ [Indyk'99]	$\Omega\left(\lg \frac{1}{\varepsilon}\right)_{\text {[PTICALP'10] }}$

How much independence needed?

$\begin{array}{r} \text { Chaining } \mathbf{E}[t]=O(1) \\ \mathbf{E}\left[t^{k}\right]=O(1) \\ t=O\left(\frac{\ln n}{\lg \lg n}\right) \text { w.h.p. } \end{array}$	$\begin{gathered} 2 \\ 2 k+1 \\ \Theta\left(\frac{\lg n}{\lg \lg n}\right) \end{gathered}$			
Linear probing	≤ 5	[Pagh', Ruzuicio 7]	≥ 5	[PT ICALP'10]
Cuckoo hashing	$O(\lg n)$		≥ 6	[Cohen, Kane 05]
F_{2} estimation	4 [Alon, Mathias, Szegedy'99]			
ε-minwise indep.	$O\left(\lg \frac{1}{\varepsilon}\right)$	[Indyk'99]	$\Omega\left(\lg \frac{1}{\varepsilon}\right.$	[PT icalp ${ }^{\text {10] }}$

Independence has been the ruling measure for quality of hash functions for $30+$ years, but is it right?

Simple tabulation

- Simple tabulation goes back to Carter and Wegman'77.

Simple tabulation

- Simple tabulation goes back to Carter and Wegman'77.
- Key x divided into $c=O(1)$ characters x_{1}, \ldots, x_{c}, e.g., 32-bit key as 4×8-bit characters.

Simple tabulation

- Simple tabulation goes back to Carter and Wegman'77.
- Key x divided into $c=O(1)$ characters x_{1}, \ldots, x_{c}, e.g., 32-bit key as 4×8-bit characters.
- For $i=1, \ldots, c$, we have truly random hash table:
$R_{i}:$ char \rightarrow hash values (bit strings)

Simple tabulation

- Simple tabulation goes back to Carter and Wegman'77.
- Key x divided into $c=O(1)$ characters x_{1}, \ldots, x_{c}, e.g., 32-bit key as 4×8-bit characters.
- For $i=1, \ldots, c$, we have truly random hash table:
$R_{i}:$ char \rightarrow hash values (bit strings)
- Hash value

$$
h(x)=R_{1}\left[x_{1}\right] \oplus \cdots \oplus R_{c}\left[x_{c}\right]
$$

Simple tabulation

- Simple tabulation goes back to Carter and Wegman'77.
- Key x divided into $c=O(1)$ characters x_{1}, \ldots, x_{C}, e.g., 32-bit key as 4×8-bit characters.
- For $i=1, \ldots, c$, we have truly random hash table:
$R_{i}:$ char \rightarrow hash values (bit strings)
- Hash value

$$
h(x)=R_{1}\left[x_{1}\right] \oplus \cdots \oplus R_{c}\left[x_{c}\right]
$$

- Space $c N^{1 / c}$ and time $O(c)$. With 8-bit characters, each R_{i} has 256 entries and fit in L1 cache.

Simple tabulation

- Simple tabulation goes back to Carter and Wegman'77.
- Key x divided into $c=O(1)$ characters x_{1}, \ldots, x_{c}, e.g., 32-bit key as 4×8-bit characters.
- For $i=1, \ldots, c$, we have truly random hash table:
R_{i} : char \rightarrow hash values (bit strings)
- Hash value

$$
h(x)=R_{1}\left[x_{1}\right] \oplus \cdots \oplus R_{C}\left[x_{c}\right]
$$

- Space $c N^{1 / c}$ and time $O(c)$. With 8-bit characters, each R_{i} has 256 entries and fit in L1 cache.
- Simple tabulation is the fastest 3-independent hashing scheme. Speed like 2 multiplications.

Simple tabulation

- Simple tabulation goes back to Carter and Wegman'77.
- Key x divided into $c=O(1)$ characters x_{1}, \ldots, x_{c}, e.g., 32-bit key as 4×8-bit characters.
- For $i=1, \ldots, c$, we have truly random hash table:
$R_{i}:$ char \rightarrow hash values (bit strings)
- Hash value

$$
h(x)=R_{1}\left[x_{1}\right] \oplus \cdots \oplus R_{c}\left[x_{c}\right]
$$

- Space $c N^{1 / c}$ and time $O(c)$. With 8-bit characters, each R_{i} has 256 entries and fit in L1 cache.
- Simple tabulation is the fastest 3-independent hashing scheme. Speed like 2 multiplications.
- Not 4-independent: $h\left(a_{1} a_{2}\right) \oplus h\left(a_{1} b_{2}\right) \oplus h\left(b_{1} a_{2}\right) \oplus h\left(b_{1} b_{2}\right)$

$$
\begin{aligned}
= & \left(R_{1}\left[a_{1}\right] \oplus R_{2}\left[a_{2}\right]\right) \oplus\left(R_{1}\left[a_{1}\right] \oplus R_{2}\left[b_{2}\right]\right) \oplus \\
& \left(R_{1}\left[b_{1}\right] \oplus R_{2}\left[a_{2}\right]\right) \oplus\left(R_{1}\left[b_{1}\right] \oplus R_{2}\left[b_{2}\right]\right)=0
\end{aligned}
$$

How much independence needed? Wrong question

$\begin{array}{r} \text { Chaining } \mathbf{E}[t]=O(1) \\ \mathrm{E}\left[t^{k}\right]=O(1) \\ t=O\left(\frac{\lg n}{\lg \lg n}\right) \text { w.h.p. } \end{array}$	$\begin{gathered} 2 \\ 2 k+1 \\ \Theta\left(\frac{\lg n}{\lg n}\right) \end{gathered}$		Celis yesterday	
Linear probing	≤ 5	[Pagh', Ruziécor]	≥ 5	[PTICALP'10]
Cuckoo hashing	$O(\lg n)$		≥ 6	[Cohen, Kane'05]
F_{2} estimation	4 [Alo	Ithias, Szegedy'99]		
ε-minwise indep.	$O\left(\lg \frac{1}{\varepsilon}\right)$	[Indyk99]	$\Omega\left(\lg \frac{1}{\varepsilon}\right)$	[PTICALP'10]

How much independence needed? Wrong question

$\begin{array}{r} \text { Chaining } \mathrm{E}[t]=O(1) \\ \mathrm{E}\left[t^{k}\right]=O(1) \\ t=O\left(\frac{\lg n}{\lg n}\right) \text { w.h.p. } \end{array}$	$\begin{gathered} 2 \\ 2 k+1 \\ \Theta\left(\frac{\lg n}{\ln n}\right) \\ \hline \end{gathered}$		Celis yesterday	
Linear probing	≤ 5	[Pagh', Rüzic'07]	≥ 5	[PT ICALP'10]
Cuckoo hashing	$O(\lg n)$		≥ 6	[Cohen, Kane'05]
F_{2} estimation	4 [Alon	athias, Szegedy'99]		
ε-minwise indep.	$O\left(\lg \frac{1}{\varepsilon}\right)$	[1ndyk'99]	$\Omega\left(\lg \frac{1}{\varepsilon}\right)$	[PT ICALP'10]

New result: Despite its 4-dependence, simple tabulation suffices for all the above applications:

One simple and fast hashing scheme for almost all your needs.

How much independence needed? Wrong question

$\begin{array}{r} \text { Chaining } \mathbf{E}[t]=O(1) \\ \mathrm{E}\left[t^{k}\right]=O(1) \\ t=O\left(\frac{\lg n}{\lg \lg n}\right) \text { w.h.p. } \end{array}$	$\begin{gathered} 2 \\ 2 k+1 \\ \Theta\left(\frac{\lg n}{\lg n}\right) \end{gathered}$		Celis yesterday	
Linear probing	≤ 5	[Pagh', Ruzicicor]	≥ 5	[PTICALP'10]
Cuckoo hashing	$O(\lg n)$		≥ 6	[Cohen, Kane'05]
F_{2} estimation	4 [Alon,	athias, Szegedy'99]		
ε-minwise indep.	$O\left(\lg \frac{1}{\varepsilon}\right)$	[1ndyk'99]	$\Omega\left(\lg \frac{1}{\varepsilon}\right)$	[PTICALP'10]

New result: Despite its 4-dependence, simple tabulation suffices for all the above applications:

One simple and fast hashing scheme for almost all your needs.

Knuth recommends simple tabulation but cites only 3 -independence as mathematical quality.

How much independence needed? Wrong question

$\begin{array}{r} \text { Chaining } \mathbf{E}[t]=O(1) \\ \mathrm{E}\left[t^{k}\right]=O(1) \\ t=O\left(\frac{\lg n}{\lg \lg n}\right) \text { w.h.p. } \end{array}$	$\begin{gathered} 2 \\ 2 k+1 \\ \Theta\left(\frac{\lg n}{\lg n}\right) \end{gathered}$		Celis yesterday	
Linear probing	≤ 5	[Pagh', Ruzicicor]	≥ 5	[PTICALP'10]
Cuckoo hashing	$O(\lg n)$		≥ 6	[Cohen, Kane'05]
F_{2} estimation	4 [Alon,	athias, Szegedy'99]		
ε-minwise indep.	$O\left(\lg \frac{1}{\varepsilon}\right)$	[1ndyk'99]	$\Omega\left(\lg \frac{1}{\varepsilon}\right)$	[PTICALP'10]

New result: Despite its 4-dependence, simple tabulation suffices for all the above applications:

One simple and fast hashing scheme for almost all your needs.

Knuth recommends simple tabulation but cites only 3 -independence as mathematical quality.
We prove that dependence of simple tabulation is not harmful in any of the above applications.

Chaining/hashing into bins

Theorem Consider hashing n balls into $m \geq n^{1-1 /(2 c)}$ bins by simple tabulation. Let q be an additional query ball, and define X_{q} as the number of regular balls that hash into a bin chosen as a function of $h(q)$. Let $\mu=\mathbf{E}\left[X_{q}\right]=\frac{n}{m}$. The following probability bounds hold for any constant γ :

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{q} \geq(1+\delta) \mu\right] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\Omega(\mu)}+m^{-\gamma} \\
& \operatorname{Pr}\left[X_{q} \leq(1-\delta) \mu\right] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\Omega(\mu)}+m^{-\gamma}
\end{aligned}
$$

With $m \leq n$ bins, every bin gets

$$
n / m \pm O\left(\sqrt{n / m} \log ^{c} n\right)
$$

keys with probability $1-n^{-\gamma}$.

Hashing into many bins

Lemma If we hash n keys into $n^{1+\Omega(1)}$ bins, then all bins get $O(1)$ keys w.h.p.

Hashing into many bins

Lemma If we hash n keys into $n^{1+\Omega(1)}$ bins, then all bins get $O(1)$ keys w.h.p.

Nothing like this lemma holds if we instead of simple tabulation assumed k-independent hashing with $k=O(1)$.

Hashing into many bins

Lemma If we hash n keys into $n^{1+\Omega(1)}$ bins, then all bins get $O(1)$ keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into m bins and $n \leq m^{1-\varepsilon}$, then all bins get less than $d=2^{(1+\gamma) / \varepsilon}$ keys with probability $\geq 1-m^{-\gamma}$.

Hashing into many bins

Lemma If we hash n keys into $n^{1+\Omega(1)}$ bins, then all bins get $O(1)$ keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into m bins and $n \leq m^{1-\varepsilon}$, then all bins get less than $d=2^{(1+\gamma) / \varepsilon}$ keys with probability $\geq 1-m^{-\gamma}$.
Claim 1 Any set T contains a subset U of $\log _{2}|T|$ keys that hash independently.

Hashing into many bins

Lemma If we hash n keys into $n^{1+\Omega(1)}$ bins, then all bins get $O(1)$ keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into m bins and $n \leq m^{1-\varepsilon}$, then all bins get less than $d=2^{(1+\gamma) / \varepsilon}$ keys with probability $\geq 1-m^{-\gamma}$.
Claim 1 Any set T contains a subset U of $\log _{2}|T|$ keys that hash independently.

- Let i be character position where keys in T differ.

Hashing into many bins

Lemma If we hash n keys into $n^{1+\Omega(1)}$ bins, then all bins get $O(1)$ keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into m bins and $n \leq m^{1-\varepsilon}$, then all bins get less than $d=2^{(1+\gamma) / \varepsilon}$ keys with probability $\geq 1-m^{-\gamma}$.
Claim 1 Any set T contains a subset U of $\log _{2}|T|$ keys that hash independently.

- Let i be character position where keys in T differ.
- Let a be least common character in position i and pick $x \in T$ with $x_{i}=a$

Hashing into many bins

Lemma lf we hash n keys into $n^{1+\Omega(1)}$ bins, then all bins get $O(1)$ keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into m bins and $n \leq m^{1-\varepsilon}$, then all bins get less than $d=2^{(1+\gamma) / \varepsilon}$ keys with probability $\geq 1-m^{-\gamma}$.
Claim 1 Any set T contains a subset U of $\log _{2}|T|$ keys that hash independently.

- Let i be character position where keys in T differ.
- Let a be least common character in position i and pick $x \in T$ with $x_{i}=a$
- Reduce T to T^{\prime} removing all keys y from T with $y_{i}=a$.

Hashing into many bins

Lemma If we hash n keys into $n^{1+\Omega(1)}$ bins, then all bins get $O(1)$ keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into m bins and $n \leq m^{1-\varepsilon}$, then all bins get less than $d=2^{(1+\gamma) / \varepsilon}$ keys with probability $\geq 1-m^{-\gamma}$.
Claim 1 Any set T contains a subset U of $\log _{2}|T|$ keys that hash independently.

- Let i be character position where keys in T differ.
- Let a be least common character in position i and pick $x \in T$ with $x_{i}=a$
- Reduce T to T^{\prime} removing all keys y from T with $y_{i}=a$.
- The hash of x is independent of the hash of T^{\prime} as only $h(x)$ depends on $R_{i}[a]$.

Hashing into many bins

Lemma If we hash n keys into $n^{1+\Omega(1)}$ bins, then all bins get $O(1)$ keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into m bins and $n \leq m^{1-\varepsilon}$, then all bins get less than $d=2^{(1+\gamma) / \varepsilon}$ keys with probability $\geq 1-m^{-\gamma}$.
Claim 1 Any set T contains a subset U of $\log _{2}|T|$ keys that hash independently.

- Let i be character position where keys in T differ.
- Let a be least common character in position i and pick $x \in T$ with $x_{i}=a$
- Reduce T to T^{\prime} removing all keys y from T with $y_{i}=a$.
- The hash of x is independent of the hash of T^{\prime} as only $h(x)$ depends on $R_{i}[a]$.
- Return $\{x\} \cup U^{\prime}$ where U^{\prime} independent subset of T^{\prime}.

Hashing into many bins

Lemma If we hash n keys into $n^{1+\Omega(1)}$ bins, then all bins get $O(1)$ keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into m bins and $n \leq m^{1-\varepsilon}$, then all bins get less than $d=2^{(1+\gamma) / \varepsilon}$ keys with probability $\geq 1-m^{-\gamma}$.
Claim 1 Any set T contains a subset U of $\log _{2}|T|$ keys that hash independently-if $|T| \geq d$ then $|U| \geq(1+\gamma) / \varepsilon$. \square

Hashing into many bins

Lemma If we hash n keys into $n^{1+\Omega(1)}$ bins, then all bins get $O(1)$ keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into m bins and $n \leq m^{1-\varepsilon}$, then all bins get less than $d=2^{(1+\gamma) / \varepsilon}$ keys with probability $\geq 1-m^{-\gamma}$.
Claim 1 Any set T contains a subset U of $\log _{2}|T|$ keys that hash independently-if $|T| \geq d$ then $|U| \geq(1+\gamma) / \varepsilon$. \square Claim 2 The probability that there exists $u=(1+\gamma) / \varepsilon$ keys hashing independently to the same bin is $m^{-\gamma}$.

Hashing into many bins

Lemma If we hash n keys into $n^{1+\Omega(1)}$ bins, then all bins get $O(1)$ keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into m bins and $n \leq m^{1-\varepsilon}$, then all bins get less than $d=2^{(1+\gamma) / \varepsilon}$ keys with probability $\geq 1-m^{-\gamma}$.
Claim 1 Any set T contains a subset U of $\log _{2}|T|$ keys that hash independently—if $|T| \geq d$ then $|U| \geq(1+\gamma) / \varepsilon$. \square Claim 2 The probability that there exists $u=(1+\gamma) / \varepsilon$ keys hashing independently to the same bin is $m^{-\gamma}$.

- There are $\binom{n}{u}<n^{u}$ sets U of u keys to consider.

Hashing into many bins

Lemma If we hash n keys into $n^{1+\Omega(1)}$ bins, then all bins get $O(1)$ keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into m bins and $n \leq m^{1-\varepsilon}$, then all bins get less than $d=2^{(1+\gamma) / \varepsilon}$ keys with probability $\geq 1-m^{-\gamma}$.
Claim 1 Any set T contains a subset U of $\log _{2}|T|$ keys that hash independently—if $|T| \geq d$ then $|U| \geq(1+\gamma) / \varepsilon$. \square Claim 2 The probability that there exists $u=(1+\gamma) / \varepsilon$ keys hashing independently to the same bin is $m^{-\gamma}$.

- There are $\binom{n}{u}<n^{u}$ sets U of u keys to consider.
- Each such U hash to one bin with probability $1 / m^{u-1}$.

Hashing into many bins

Lemma If we hash n keys into $n^{1+\Omega(1)}$ bins, then all bins get $O(1)$ keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into m bins and $n \leq m^{1-\varepsilon}$, then all bins get less than $d=2^{(1+\gamma) / \varepsilon}$ keys with probability $\geq 1-m^{-\gamma}$.
Claim 1 Any set T contains a subset U of $\log _{2}|T|$ keys that hash independently-if $|T| \geq d$ then $|U| \geq(1+\gamma) / \varepsilon$. \square Claim 2 The probability that there exists $u=(1+\gamma) / \varepsilon$ keys hashing independently to the same bin is $m^{-\gamma}$.

- There are $\binom{n}{u}<n^{u}$ sets U of u keys to consider.
- Each such U hash to one bin with probability $1 / m^{u-1}$.
- Propability bound over all U is

$$
n^{u} m^{u-1} \leq m^{(1-\varepsilon) u+1-u}=m^{1-\varepsilon u}=m^{-\gamma} .
$$

Hashing into many bins

Lemma If we hash n keys into $n^{1+\Omega(1)}$ bins, then all bins get $O(1)$ keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into m bins and $n \leq m^{1-\varepsilon}$, then all bins get less than $d=2^{(1+\gamma) / \varepsilon}$ keys with probability $\geq 1-m^{-\gamma}$.
Claim 1 Any set T contains a subset U of $\log _{2}|T|$ keys that hash independently—if $|T| \geq d$ then $|U| \geq(1+\gamma) / \varepsilon$. \square Claim 2 The probability that there exists $u=(1+\gamma) / \varepsilon$ keys hashing independently to the same bin is $m^{-\gamma} . \square$

Basic proof pattern with $m \geq n^{1-1 /(2 c)}$ bins

Basic proof pattern with $m \geq n^{1-1 /(2 c)}$ bins

- Deterministic partition key set S into groups G that are mutually "independent", each of size $\leq n^{1-1 / c} \leq m^{1-\varepsilon}$.

Basic proof pattern with $m \geq n^{1-1 /(2 c)}$ bins

- Deterministic partition key set S into groups G that are mutually "independent", each of size $\leq n^{1-1 / c} \leq m^{1-\varepsilon}$.
- By lemma, w.h.p., each G distributes with $\leq d$ in each bin.

Basic proof pattern with $m \geq n^{1-1 /(2 c)}$ bins

- Deterministic partition key set S into groups G that are mutually "independent", each of size $\leq n^{1-1 / c} \leq m^{1-\varepsilon}$.
- By lemma, w.h.p., each G distributes with $\leq d$ in each bin.
- Let $X_{G} \leq d$ be contribution to fixed bin, and $X=\sum_{G} X_{G}$.

Basic proof pattern with $m \geq n^{1-1 /(2 c)}$ bins

- Deterministic partition key set S into groups G that are mutually "independent", each of size $\leq n^{1-1 / c} \leq m^{1-\varepsilon}$.
- By lemma, w.h.p., each G distributes with $\leq d$ in each bin.
- Let $X_{G} \leq d$ be contribution to fixed bin, and $X=\sum_{G} X_{G}$.
- If the X_{G} were really independent, by Chernoff

$$
\begin{aligned}
& \operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu / d} \\
& \operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu / d}
\end{aligned}
$$

Recursive partition into "independent" groups

Define position character (i, a) in key x iff $x_{i}=a$.

Recursive partition into "independent" groups

Define position character (i, a) in key x iff $x_{i}=a$. Let (i, a) be least common position character among keys in S and $G_{(i, a)} \subseteq S$ be the group of keys using it.

Recursive partition into "independent" groups

Define position character (i, a) in key x iff $x_{i}=a$.
Let (i, a) be least common position character among keys in S and $G_{(i, a)} \subseteq S$ be the group of keys using it.
Claim $\left|G_{(i, a)}\right| \leq n^{1-1 / c}$.

Recursive partition into "independent" groups

Define position character (i, a) in key x iff $x_{i}=a$.
Let (i, a) be least common position character among keys in S and $G_{(i, a)} \subseteq S$ be the group of keys using it.
Claim $\left|G_{(i, a)}\right| \leq n^{1-1 / c}$.

- For each position $i \in[c]$, we have $<n^{1 / c}$ characters used by $>n^{1-1 / c}$ keys.

Recursive partition into "independent" groups

Define position character (i, a) in key x iff $x_{i}=a$.
Let (i, a) be least common position character among keys in S and $G_{(i, a)} \subseteq S$ be the group of keys using it.
Claim $\left|G_{(i, a)}\right| \leq n^{1-1 / c}$.

- For each position $i \in[c]$, we have $<n^{1 / c}$ characters used by $>n^{1-1 / c}$ keys.
- So claim false implies S in hypercube of size

$$
<\left(n^{1 / c}\right)^{c}=n
$$

Recursive partition into "independent" groups

Define position character (i, a) in key x iff $x_{i}=a$.
Let (i, a) be least common position character among keys in S and $G_{(i, a)} \subseteq S$ be the group of keys using it.
Claim $\left|G_{(i, a)}\right| \leq n^{1-1 / c} . \square$

Recursive partition into "independent" groups

Define position character (i, a) in key x iff $x_{i}=a$.
Let (i, a) be least common position character among keys in S and $G_{(i, a)} \subseteq S$ be the group of keys using it.
Claim $\left|G_{(i, a)}\right| \leq n^{1-1 / c}$. \square
Recursively, we group $S \backslash G_{(i, a)}$ and hash all position characters in S excluding ($i, a)$.

Recursive partition into "independent" groups

Define position character (i, a) in key x iff $x_{i}=a$.
Let (i, a) be least common position character among keys in S and $G_{(i, a)} \subseteq S$ be the group of keys using it.
Claim $\left|G_{(i, a)}\right| \leq n^{1-1 / c}$. \square
Recursively, we group $S \backslash G_{(i, a)}$ and hash all position characters in S excluding (i, a). This fixes

- the hash of all keys in $S \backslash G_{(i, a)}$

Recursive partition into "independent" groups

Define position character (i, a) in key x iff $x_{i}=a$.
Let (i, a) be least common position character among keys in S and $G_{(i, a)} \subseteq S$ be the group of keys using it.
Claim $\left|G_{(i, a)}\right| \leq n^{1-1 / c}$. \square
Recursively, we group $S \backslash G_{(i, a)}$ and hash all position characters in S excluding (i, a). This fixes

- the hash of all keys in $S \backslash G_{(i, a)}$
- the hash of keys in $G_{(i, a)}$ except $R_{i}[a]$ which is a common "shift" moving bin h to $h \oplus R_{i}[a]$.

Recursive partition into "independent" groups

Define position character (i, a) in key x iff $x_{i}=a$.
Let (i, a) be least common position character among keys in S and $G_{(i, a)} \subseteq S$ be the group of keys using it.
Claim $\left|G_{(i, a)}\right| \leq n^{1-1 / c}$. \square
Recursively, we group $S \backslash G_{(i, a)}$ and hash all position characters in S excluding (i, a). This fixes

- the hash of all keys in $S \backslash G_{(i, a)}$
- the hash of keys in $G_{(i, a)}$ except $R_{i}[a]$ which is a common "shift" moving bin h to $h \oplus R_{i}[a]$.
- Particularly, it is fixed which keys from $G_{(i, a)}$ end in same bin. By Lemma, w.h.p., at most d in every bin.

Recursive partition into "independent" groups

Define position character (i, a) in key x iff $x_{i}=a$.
Let (i, a) be least common position character among keys in S and $G_{(i, a)} \subseteq S$ be the group of keys using it.
Claim $\left|G_{(i, a)}\right| \leq n^{1-1 / c}$. \square
Recursively, we group $S \backslash G_{(i, a)}$ and hash all position characters in S excluding (i, a). This fixes

- the hash of all keys in $S \backslash G_{(i, a)}$
- the hash of keys in $G_{(i, a)}$ except $R_{i}[a]$ which is a common "shift" moving bin h to $h \oplus R_{i}[a]$.
- Particularly, it is fixed which keys from $G_{(i, a)}$ end in same bin. By Lemma, w.h.p., at most d in every bin.
Now we randomly pick $R_{i}[a]$ finalizing hashing of group $G_{(i, a)}$.

Recursive partition into "independent" groups

Define position character (i, a) in key x iff $x_{i}=a$.
Let (i, a) be least common position character among keys in S and $G_{(i, a)} \subseteq S$ be the group of keys using it.
Claim $\left|G_{(i, a)}\right| \leq n^{1-1 / c}$. \square
Recursively, we group $S \backslash G_{(i, a)}$ and hash all position characters in S excluding (i, a). This fixes

- the hash of all keys in $S \backslash G_{(i, a)}$
- the hash of keys in $G_{(i, a)}$ except $R_{i}[a]$ which is a common "shift" moving bin h to $h \oplus R_{i}[a]$.
- Particularly, it is fixed which keys from $G_{(i, a)}$ end in same bin. By Lemma, w.h.p., at most d in every bin.
Now we randomly pick $R_{i}[a]$ finalizing hashing of group $G_{(i, a)}$.
- The contribution $X_{G_{(i, a)}}$ to our bin is random variable.

Recursive partition into "independent" groups

Define position character (i, a) in key x iff $x_{i}=a$.
Let (i, a) be least common position character among keys in S and $G_{(i, a)} \subseteq S$ be the group of keys using it.
Claim $\left|G_{(i, a)}\right| \leq n^{1-1 / c} . \square$
Recursively, we group $S \backslash G_{(i, a)}$ and hash all position characters in S excluding (i, a). This fixes

- the hash of all keys in $S \backslash G_{(i, a)}$
- the hash of keys in $G_{(i, a)}$ except $R_{i}[a]$ which is a common "shift" moving bin h to $h \oplus R_{i}[a]$.
- Particularly, it is fixed which keys from $G_{(i, a)}$ end in same bin. By Lemma, w.h.p., at most d in every bin.
Now we randomly pick $R_{i}[a]$ finalizing hashing of group $G_{(i, a)}$.
- The contribution $X_{G_{(i, a)}}$ to our bin is random variable.
- The distribution of $X_{G_{(i, a)}}$ depends on previous fixings.

Recursive partition into "independent" groups

Define position character (i, a) in key x iff $x_{i}=a$.
Let (i, a) be least common position character among keys in S and $G_{(i, a)} \subseteq S$ be the group of keys using it.
Claim $\left|G_{(i, a)}\right| \leq n^{1-1 / c} . \square$
Recursively, we group $S \backslash G_{(i, a)}$ and hash all position characters in S excluding (i, a). This fixes

- the hash of all keys in $S \backslash G_{(i, a)}$
- the hash of keys in $G_{(i, a)}$ except $R_{i}[a]$ which is a common "shift" moving bin h to $h \oplus R_{i}[a]$.
- Particularly, it is fixed which keys from $G_{(i, a)}$ end in same bin. By Lemma, w.h.p., at most d in every bin.
Now we randomly pick $R_{i}[a]$ finalizing hashing of group $G_{(i, a)}$.
- The contribution $X_{G_{(, a)}}$ to our bin is random variable.
- The distribution of $X_{G_{(, a)}}$ depends on previous fixings.
- But always $\mathbf{E}\left[X_{G_{(i, a)}}\right]=\left|X_{G_{(i, a)}}\right| / m$. Moreover $X_{G_{(l, a)}} \leq d$.

Recursive partition into "independent" groups

Define position character (i, a) in key x iff $x_{i}=a$.
Let (i, a) be least common position character among keys in S and $G_{(i, a)} \subseteq S$ be the group of keys using it.
Claim $\left|G_{(i, a)}\right| \leq n^{1-1 / c}$. \square
Recursively, we group $S \backslash G_{(i, a)}$ and hash all position characters in S excluding (i, a). This fixes

- the hash of all keys in $S \backslash G_{(i, a)}$
- the hash of keys in $G_{(i, a)}$ except $R_{i}[a]$ which is a common "shift" moving bin h to $h \oplus R_{i}[a]$.
- Particularly, it is fixed which keys from $G_{(i, a)}$ end in same bin. By Lemma, w.h.p., at most d in every bin.
Now we randomly pick $R_{i}[a]$ finalizing hashing of group $G_{(i, a)}$.
- The contribution $X_{G_{(, a)}}$ to our bin is random variable.
- The distribution of $X_{G_{(, a)}}$ depends on previous fixings.
- But always $\mathbf{E}\left[X_{G_{(i, a)}}\right]=\left|X_{G_{(i, a)}}\right| / m$. Moreover $X_{G_{(i, a)}} \leq d$.
- Good enough for Chernoff bounds.

Chernoff with $m \geq n^{1-1 /(2 c)}$ bins

W.h.p., the contribution X to given obeys Chernoff

$$
\begin{aligned}
& \operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu / d} \\
& \operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu / d}
\end{aligned}
$$

Chernoff with $m \geq n^{1-1 /(2 c)}$ bins

W.h.p., the contribution X to given obeys Chernoff

$$
\begin{aligned}
& \operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu / d} \\
& \operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu / d}
\end{aligned}
$$

Thus, from perspective of chaining, simple tabulation has same type of tail bounds as with truly random hash functions, modulo a constant factor loss and down to polynomially small probabilities.

Chernoff with $m \geq n^{1-1 /(2 c)}$ bins

W.h.p., the contribution X to given obeys Chernoff

$$
\begin{aligned}
& \operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu / d} \\
& \operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu / d}
\end{aligned}
$$

Thus, from perspective of chaining, simple tabulation has same type of tail bounds as with truly random hash functions, modulo a constant factor loss and down to polynomially small probabilities.

Similar story for linear probing.

Cuckoo hashing

Each key placed in one of two hash locations.

Theorem With simple tabulation Cuckoo hashing works with probability $1-\tilde{\Theta}\left(n^{-1 / 3}\right)$.

Cuckoo hashing

Each key placed in one of two hash locations.

Theorem With simple tabulation Cuckoo hashing works with probability $1-\tilde{\Theta}\left(n^{-1 / 3}\right)$.

- For chaining and linear probing, we did not care about a constant loss, but obstructions to cuckoo hashing may be of just constant size, e.g., 3 keys sharing same two hash locations.

Cuckoo hashing

Each key placed in one of two hash locations.

Theorem With simple tabulation Cuckoo hashing works with probability $1-\tilde{\Theta}\left(n^{-1 / 3}\right)$.

- For chaining and linear probing, we did not care about a constant loss, but obstructions to cuckoo hashing may be of just constant size, e.g., 3 keys sharing same two hash locations.
- Very delicate proof showing that obstruction can be used to code random tables R_{i} with few bits.

Speed

Hashing random keys		32-bit computer	64-bit computer	
bits	hashing scheme	hashing time (ns)		
32	univ-mult-shift $(a \star x) \gg$ s	1.87	2.33	
32	2-indep-mult-shift	5.78	2.88	
32	5-indep-Mersenne-prime	99.70	45.06	
32	5-indep-TZ-table	10.12	12.66	
32	simple-table	4.98	4.61	
64	univ-mult-shift	7.05	3.14	
64	2-indep-mult-shift	22.91	5.90	
64	5-indep-Mersenne-prime	241.99	68.67	
64	5-indep-TZ-table	75.81	59.84	
64	simple-table	15.54	11.40	

Experiments with help from Yin Zhang.

Robustness in linear probing for dense interval

Pitch for theory in case of linear probing

- Multiplicative hashing used in practice, but turns out to be very unreliable under typical denial-of-service (DoS) attacks based on consecutive IP addresses: systematic good performance 95\% of the time, but systematic terrible performance 5% of the time [TZ'10].

Pitch for theory in case of linear probing

- Multiplicative hashing used in practice, but turns out to be very unreliable under typical denial-of-service (DoS) attacks based on consecutive IP addresses: systematic good performance 95\% of the time, but systematic terrible performance 5\% of the time [TZ'10].
- Problems in randomized algorithms like hashing hard to detect for practitioners. Hard for them to know if bad performance is from being unlucky, or because of systematic problems.

Pitch for theory in case of linear probing

- Multiplicative hashing used in practice, but turns out to be very unreliable under typical denial-of-service (DoS) attacks based on consecutive IP addresses: systematic good performance 95\% of the time, but systematic terrible performance 5\% of the time [TZ'10].
- Problems in randomized algorithms like hashing hard to detect for practitioners. Hard for them to know if bad performance is from being unlucky, or because of systematic problems.
- Linear probing had gotten a reputation for being fastest in practice, but sometimes unreliable needing special protection against bad cases.

Pitch for theory in case of linear probing

- Multiplicative hashing used in practice, but turns out to be very unreliable under typical denial-of-service (DoS) attacks based on consecutive IP addresses: systematic good performance 95\% of the time, but systematic terrible performance 5\% of the time [TZ'10].
- Problems in randomized algorithms like hashing hard to detect for practitioners. Hard for them to know if bad performance is from being unlucky, or because of systematic problems.
- Linear probing had gotten a reputation for being fastest in practice, but sometimes unreliable needing special protection against bad cases.
- Here we proved linear probing safe with good probabilistic performance for all input if we use simple tabulation.

Pitch for theory in case of linear probing

- Multiplicative hashing used in practice, but turns out to be very unreliable under typical denial-of-service (DoS) attacks based on consecutive IP addresses: systematic good performance 95\% of the time, but systematic terrible performance 5\% of the time [TZ'10].
- Problems in randomized algorithms like hashing hard to detect for practitioners. Hard for them to know if bad performance is from being unlucky, or because of systematic problems.
- Linear probing had gotten a reputation for being fastest in practice, but sometimes unreliable needing special protection against bad cases.
- Here we proved linear probing safe with good probabilistic performance for all input if we use simple tabulation.
- Simple tabulation also powerful for chaining, cuckoo hashing, and min-wise hashing:
one simple and fast scheme for (almost) all your needs.

Work in progress: twisted tabulation

- With chaining and linear probing, each operation takes expected constant time, but out of \sqrt{n} operations, some are expected to take $\tilde{\Omega}(\log n)$ time.

Work in progress: twisted tabulation

- With chaining and linear probing, each operation takes expected constant time, but out of \sqrt{n} operations, some are expected to take $\tilde{\Omega}(\log n)$ time.
- With truly random hash function, we handle every window of $\log n$ operations in $O(\log n)$ time w.h.p.

Work in progress: twisted tabulation

- With chaining and linear probing, each operation takes expected constant time, but out of \sqrt{n} operations, some are expected to take $\tilde{\Omega}(\log n)$ time.
- With truly random hash function, we handle every window of $\log n$ operations in $O(\log n)$ time w.h.p.
- Hence, with small buffer (as in Internet routers), we do get down to constant time per operation!

Work in progress: twisted tabulation

- With chaining and linear probing, each operation takes expected constant time, but out of \sqrt{n} operations, some are expected to take $\tilde{\Omega}(\log n)$ time.
- With truly random hash function, we handle every window of $\log n$ operations in $O(\log n)$ time w.h.p.
- Hence, with small buffer (as in Internet routers), we do get down to constant time per operation!
- Simple tabulation does not achieve this: may often spend $\tilde{\Omega}\left(\log ^{2} n\right)$ time on $\log n$ consecutive operations.

Work in progress: twisted tabulation

- With chaining and linear probing, each operation takes expected constant time, but out of \sqrt{n} operations, some are expected to take $\tilde{\Omega}(\log n)$ time.
- With truly random hash function, we handle every window of $\log n$ operations in $O(\log n)$ time w.h.p.
- Hence, with small buffer (as in Internet routers), we do get down to constant time per operation!
- Simple tabulation does not achieve this: may often spend $\tilde{\Omega}\left(\log ^{2} n\right)$ time on $\log n$ consecutive operations.
- Twisted tabulation:

$$
\begin{aligned}
(h, \alpha) & =R_{1}\left[x_{1}\right] \oplus \cdots \oplus R_{C-1}\left[x_{c-1}\right] \\
h(x) & =h \oplus R_{c}\left[\alpha \oplus x_{c}\right]
\end{aligned}
$$

Work in progress: twisted tabulation

- With chaining and linear probing, each operation takes expected constant time, but out of \sqrt{n} operations, some are expected to take $\tilde{\Omega}(\log n)$ time.
- With truly random hash function, we handle every window of $\log n$ operations in $O(\log n)$ time w.h.p.
- Hence, with small buffer (as in Internet routers), we do get down to constant time per operation!
- Simple tabulation does not achieve this: may often spend $\tilde{\Omega}\left(\log ^{2} n\right)$ time on $\log n$ consecutive operations.
- Twisted tabulation:

$$
\begin{aligned}
(h, \alpha) & =R_{1}\left[x_{1}\right] \oplus \cdots \oplus R_{c-1}\left[x_{c-1}\right] \\
h(x) & =h \oplus R_{c}\left[\alpha \oplus x_{C}\right]
\end{aligned}
$$

- With twisted tabulation, we handle every window of $\log n$ operations in $O(\log n)$ time w.h.p.

Implenting Chernoff bounds with twisted tabulation

- 0-1 variables X_{i} where $X_{i}=1$ with probability p_{i}.

Implenting Chernoff bounds with twisted tabulation

- 0-1 variables X_{i} where $X_{i}=1$ with probability p_{i}.
- Exponential concentration of $X=\sum_{i} X_{i}$ around mean.

Implenting Chernoff bounds with twisted tabulation

- 0-1 variables X_{i} where $X_{i}=1$ with probability p_{i}.
- Exponential concentration of $X=\sum_{i} X_{i}$ around mean.
- Application: trust polynomial number of logarithmic estimates with high probability
-the log factor in many randomized algorithm.

Implenting Chernoff bounds with twisted tabulation

- 0-1 variables X_{i} where $X_{i}=1$ with probability p_{i}.
- Exponential concentration of $X=\sum_{i} X_{i}$ around mean.
- Application: trust polynomial number of logarithmic estimates with high probability
-the log factor in many randomized algorithm.
- With hashing into [0, 1], set $X_{i}=1$ if $h(i)<p_{i}$.

Implenting Chernoff bounds with twisted tabulation

- 0-1 variables X_{i} where $X_{i}=1$ with probability p_{i}.
- Exponential concentration of $X=\sum_{i} X_{i}$ around mean.
- Application: trust polynomial number of logarithmic estimates with high probability
-the log factor in many randomized algorithm.
- With hashing into [0, 1], set $X_{i}=1$ if $h(i)<p_{i}$.
- With bounded dependence only polynomial concentration.

Implenting Chernoff bounds with twisted tabulation

- 0-1 variables X_{i} where $X_{i}=1$ with probability p_{i}.
- Exponential concentration of $X=\sum_{i} X_{i}$ around mean.
- Application: trust polynomial number of logarithmic estimates with high probability
-the log factor in many randomized algorithm.
- With hashing into [0, 1], set $X_{i}=1$ if $h(i)<p_{i}$.
- With bounded dependence only polynomial concentration.
- With twisted tabulation: for any constant γ,

$$
\begin{aligned}
& \operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\Omega(\mu)}+\Sigma^{-\gamma} \\
& \operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\Omega(\mu)}+\Sigma^{-\gamma}
\end{aligned}
$$

Implenting Chernoff bounds with twisted tabulation

- 0-1 variables X_{i} where $X_{i}=1$ with probability p_{i}.
- Exponential concentration of $X=\sum_{i} X_{i}$ around mean.
- Application: trust polynomial number of logarithmic estimates with high probability
-the log factor in many randomized algorithm.
- With hashing into $[0,1]$, set $X_{i}=1$ if $h(i)<p_{i}$.
- With bounded dependence only polynomial concentration.
- With twisted tabulation: for any constant γ,

$$
\begin{aligned}
& \operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\Omega(\mu)}+\Sigma^{-\gamma} \\
& \operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\Omega(\mu)}+\Sigma^{-\gamma}
\end{aligned}
$$

- With simple tabulation, additive term $\left(\max _{i} p_{i}\right)^{\gamma}$
-in the hash tables we had $p \approx 1 / n$.

Open problems

- Take any application using abstract truly random hash function, and prove that simple/twisted tabulation works.

Open problems

- Take any application using abstract truly random hash function, and prove that simple/twisted tabulation works.
- Could this be the first implementable hash function/RNG making classic quick sort work directly: using hash of i to generate index of ith pivot?

Open problems

- Take any application using abstract truly random hash function, and prove that simple/twisted tabulation works.
- Could this be the first implementable hash function/RNG making classic quick sort work directly: using hash of i to generate index of ith pivot?
- Hash tables are used to look up keys in a dynamic set of stored keys. Can this be done without randomization?

Open problems

- Take any application using abstract truly random hash function, and prove that simple/twisted tabulation works.
- Could this be the first implementable hash function/RNG making classic quick sort work directly: using hash of i to generate index of ith pivot?
- Hash tables are used to look up keys in a dynamic set of stored keys. Can this be done without randomization?
- Can we both insert and look up keys in constant deterministic time? (not just with high probability)

Open problems

- Take any application using abstract truly random hash function, and prove that simple/twisted tabulation works.
- Could this be the first implementable hash function/RNG making classic quick sort work directly: using hash of i to generate index of ith pivot?
- Hash tables are used to look up keys in a dynamic set of stored keys. Can this be done without randomization?
- Can we both insert and look up keys in constant deterministic time? (not just with high probability)
- Currently, the best answer is that we can do both in $O(\sqrt{\log n / \log \log n})$ worst-case time [Andersson Thorup STOC'00] -tight for more general predecessor problem.

Open problems

- Take any application using abstract truly random hash function, and prove that simple/twisted tabulation works.
- Could this be the first implementable hash function/RNG making classic quick sort work directly: using hash of i to generate index of ith pivot?
- Hash tables are used to look up keys in a dynamic set of stored keys. Can this be done without randomization?
- Can we both insert and look up keys in constant deterministic time? (not just with high probability)
- Currently, the best answer is that we can do both in $O(\sqrt{\log n / \log \log n})$ worst-case time [Andersson Thorup STOC'00] -tight for more general predecessor problem.
- Most people believe that deterministic constant time is not possible without randomization, but nobody can prove it.

Open problems

- Take any application using abstract truly random hash function, and prove that simple/twisted tabulation works.
- Could this be the first implementable hash function/RNG making classic quick sort work directly: using hash of i to generate index of ith pivot?
- Hash tables are used to look up keys in a dynamic set of stored keys. Can this be done without randomization?
- Can we both insert and look up keys in constant deterministic time? (not just with high probability)
- Currently, the best answer is that we can do both in $O(\sqrt{\log n / \log \log n})$ worst-case time [Andersson Thorup STOC'00] -tight for more general predecessor problem.
- Most people believe that deterministic constant time is not possible without randomization, but nobody can prove it.
- So far, no technique is known that can make any such separation between deterministic and randomized solutions for any data structure problem.

