
The Power of Tabulation Hashing

Mikkel Thorup

University of Copenhagen

AT&T

Thank you for inviting me to China Theory Week.

Joint work with Mihai Pǎtraşcu. Some of it found in Proc.
STOC’11.

The Power of Tabulation Hashing

Mikkel Thorup

University of Copenhagen

AT&T

Thank you for inviting me to China Theory Week.

Joint work with Mihai Pǎtraşcu. Some of it found in Proc.
STOC’11.

The Power of Tabulation Hashing

Mikkel Thorup

University of Copenhagen

AT&T

Thank you for inviting me to China Theory Week.

Joint work with Mihai Pǎtraşcu. Some of it found in Proc.
STOC’11.

Target
I Simple and reliable pseudo-random hashing.

I Providing algorithmically important probabilisitic
guarantees akin to those of truly random hashing, yet easy
to implement.

I Bridging theory (assuming truly random hashing) with
practice (needing something implementable).

Target
I Simple and reliable pseudo-random hashing.
I Providing algorithmically important probabilisitic

guarantees akin to those of truly random hashing, yet easy
to implement.

I Bridging theory (assuming truly random hashing) with
practice (needing something implementable).

Target
I Simple and reliable pseudo-random hashing.
I Providing algorithmically important probabilisitic

guarantees akin to those of truly random hashing, yet easy
to implement.

I Bridging theory (assuming truly random hashing) with
practice (needing something implementable).

Applications of Hashing
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers

•
x • → a → t

•
• → v
•
• → f → s → r

Applications of Hashing
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers

•
x • → a → t → x

•
• → v
•
• → f → s → r

Applications of Hashing
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers
I linear probing: sequential search in one array

•
q

x a
→ g
→ c
→ •

•
t

Applications of Hashing
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers
I linear probing: sequential search in one array

•
q

x a
→ g
→ c
→ x

•
t

Applications of Hashing
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers
I linear probing: sequential search in one array
I cuckoo hashing: search≤ 2 locations, complex updates

a •
• s
• z
y f

x w •
• r
• x b

Applications of Hashing
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers
I linear probing: sequential search in one array
I cuckoo hashing: search≤ 2 locations, complex updates

a •
• s
• z
y f

x w •
• r
• x b

Applications of Hashing
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers
I linear probing: sequential search in one array
I cuckoo hashing: search≤ 2 locations, complex updates

a •
• s
• z
y f

x w •
• r
• x b

Applications of Hashing
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers
I linear probing: sequential search in one array
I cuckoo hashing: search≤ 2 locations, complex updates

a •
• s
• z
y f

x w •
• r
• x b

Applications of Hashing
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers
I linear probing: sequential search in one array
I cuckoo hashing: search≤ 2 locations, complex updates

a •
• s
• z
y f

x w •
• r
• x b

Applications of Hashing
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers
I linear probing: sequential search in one array
I cuckoo hashing: search≤ 2 locations, complex updates

z •
• s
• w
y f

x x •
• a
r x b

Applications of Hashing
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers.
I linear probing: sequential search in one array
I cuckoo hashing: search≤ 2 locations, complex updates

Sketching, streaming, and sampling:
I second moment estimation: F2(x̄) =

∑
i x2

i

I sketch A and B to later find |A ∩ B|/|A ∪ B|

|A ∩ B|/|A ∪ B| = Pr
h

[min h(A) = min h(B)]

We need h to be ε-minwise independent:

(∀)x 6∈ S : Pr[h(x) < min h(S)] =
1± ε
|S|+ 1

Applications of Hashing
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers.
I linear probing: sequential search in one array
I cuckoo hashing: search≤ 2 locations, complex updates

Sketching, streaming, and sampling:
I second moment estimation: F2(x̄) =

∑
i x2

i

I sketch A and B to later find |A ∩ B|/|A ∪ B|

|A ∩ B|/|A ∪ B| = Pr
h

[min h(A) = min h(B)]

We need h to be ε-minwise independent:

(∀)x 6∈ S : Pr[h(x) < min h(S)] =
1± ε
|S|+ 1

Applications of Hashing
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers.
I linear probing: sequential search in one array
I cuckoo hashing: search≤ 2 locations, complex updates

Sketching, streaming, and sampling:
I second moment estimation: F2(x̄) =

∑
i x2

i
I sketch A and B to later find |A ∩ B|/|A ∪ B|

|A ∩ B|/|A ∪ B| = Pr
h

[min h(A) = min h(B)]

We need h to be ε-minwise independent:

(∀)x 6∈ S : Pr[h(x) < min h(S)] =
1± ε
|S|+ 1

Applications of Hashing
Hash tables (n keys and 2n hashes: expect 1/2 keys per hash)

I chaining: follow pointers.
I linear probing: sequential search in one array

Important outside theory. These simple practical hash tables
often bottlenecks in the processing of data—substantial fraction
of worlds computational resources spent here.

Carter & Wegman (1977)
We do not have space for truly random hash functions, but

Family H = {h : [u]→ [b]} k -independent iff for random h ∈ H:
I (∀)x ∈ [u], h(x) is uniform in [b];
I (∀)x1, . . . , xk ∈ [u], h(x1), . . . ,h(xk) are independent.

Prototypical example: degree k − 1 polynomial
I u = b prime;
I choose a0,a1, . . . ,ak−1 randomly in [u];
I h(x) =

(
a0 + a1x + · · ·+ ak−1xk−1) mod u.

Many solutions for k -independent hashing proposed, but
generally slow for k > 3 and too slow for k > 5.

Carter & Wegman (1977)
We do not have space for truly random hash functions, but

Family H = {h : [u]→ [b]} k -independent iff for random h ∈ H:
I (∀)x ∈ [u], h(x) is uniform in [b];
I (∀)x1, . . . , xk ∈ [u], h(x1), . . . ,h(xk) are independent.

Prototypical example: degree k − 1 polynomial
I u = b prime;
I choose a0,a1, . . . ,ak−1 randomly in [u];
I h(x) =

(
a0 + a1x + · · ·+ ak−1xk−1) mod u.

Many solutions for k -independent hashing proposed, but
generally slow for k > 3 and too slow for k > 5.

Carter & Wegman (1977)
We do not have space for truly random hash functions, but

Family H = {h : [u]→ [b]} k -independent iff for random h ∈ H:
I (∀)x ∈ [u], h(x) is uniform in [b];
I (∀)x1, . . . , xk ∈ [u], h(x1), . . . ,h(xk) are independent.

Prototypical example: degree k − 1 polynomial
I u = b prime;
I choose a0,a1, . . . ,ak−1 randomly in [u];
I h(x) =

(
a0 + a1x + · · ·+ ak−1xk−1) mod u.

Many solutions for k -independent hashing proposed, but
generally slow for k > 3 and too slow for k > 5.

How much independence needed?
Chaining E[t] = O(1) 2

E[tk] = O(1) 2k + 1
t = O

(
lg n

lg lg n

)
w.h.p. Θ

(
lg n

lg lg n

)
Linear probing ≤ 5 [Pagh2, Ružić’07] ≥ 5 [PT ICALP’10]

Cuckoo hashing O(lg n) ≥ 6 [Cohen, Kane’05]

F2 estimation 4 [Alon, Mathias, Szegedy’99]

ε-minwise indep. O
(
lg 1

ε

)
[Indyk’99] Ω

(
lg 1

ε

)
[PT ICALP’10]

Independence has been the ruling measure for quality of hash
functions for 30+ years, but is it right?

How much independence needed?
Chaining E[t] = O(1) 2

E[tk] = O(1) 2k + 1
t = O

(
lg n

lg lg n

)
w.h.p. Θ

(
lg n

lg lg n

)
Linear probing ≤ 5 [Pagh2, Ružić’07] ≥ 5 [PT ICALP’10]

Cuckoo hashing O(lg n) ≥ 6 [Cohen, Kane’05]

F2 estimation 4 [Alon, Mathias, Szegedy’99]

ε-minwise indep. O
(
lg 1

ε

)
[Indyk’99] Ω

(
lg 1

ε

)
[PT ICALP’10]

Independence has been the ruling measure for quality of hash
functions for 30+ years, but is it right?

Simple tabulation
I Simple tabulation goes back to Carter and Wegman’77.

I Key x divided into c = O(1) characters x1, ..., xc ,
e.g., 32-bit key as 4 × 8-bit characters.

I For i = 1, ..., c, we have truly random hash table:
Ri : char→ hash values (bit strings)

I Hash value

h(x) = R1[x1]⊕ · · · ⊕ Rc[xc]

I Space cN1/c and time O(c). With 8-bit characters, each Ri
has 256 entries and fit in L1 cache.

I Simple tabulation is the fastest 3-independent hashing
scheme. Speed like 2 multiplications.

I Not 4-independent: h(a1a2)⊕ h(a1b2)⊕ h(b1a2)⊕ h(b1b2)

= (R1[a1]⊕ R2[a2])⊕ (R1[a1]⊕ R2[b2])⊕
(R1[b1]⊕ R2[a2])⊕ (R1[b1]⊕ R2[b2]) = 0.

Simple tabulation
I Simple tabulation goes back to Carter and Wegman’77.
I Key x divided into c = O(1) characters x1, ..., xc ,

e.g., 32-bit key as 4 × 8-bit characters.

I For i = 1, ..., c, we have truly random hash table:
Ri : char→ hash values (bit strings)

I Hash value

h(x) = R1[x1]⊕ · · · ⊕ Rc[xc]

I Space cN1/c and time O(c). With 8-bit characters, each Ri
has 256 entries and fit in L1 cache.

I Simple tabulation is the fastest 3-independent hashing
scheme. Speed like 2 multiplications.

I Not 4-independent: h(a1a2)⊕ h(a1b2)⊕ h(b1a2)⊕ h(b1b2)

= (R1[a1]⊕ R2[a2])⊕ (R1[a1]⊕ R2[b2])⊕
(R1[b1]⊕ R2[a2])⊕ (R1[b1]⊕ R2[b2]) = 0.

Simple tabulation
I Simple tabulation goes back to Carter and Wegman’77.
I Key x divided into c = O(1) characters x1, ..., xc ,

e.g., 32-bit key as 4 × 8-bit characters.
I For i = 1, ..., c, we have truly random hash table:

Ri : char→ hash values (bit strings)

I Hash value

h(x) = R1[x1]⊕ · · · ⊕ Rc[xc]

I Space cN1/c and time O(c). With 8-bit characters, each Ri
has 256 entries and fit in L1 cache.

I Simple tabulation is the fastest 3-independent hashing
scheme. Speed like 2 multiplications.

I Not 4-independent: h(a1a2)⊕ h(a1b2)⊕ h(b1a2)⊕ h(b1b2)

= (R1[a1]⊕ R2[a2])⊕ (R1[a1]⊕ R2[b2])⊕
(R1[b1]⊕ R2[a2])⊕ (R1[b1]⊕ R2[b2]) = 0.

Simple tabulation
I Simple tabulation goes back to Carter and Wegman’77.
I Key x divided into c = O(1) characters x1, ..., xc ,

e.g., 32-bit key as 4 × 8-bit characters.
I For i = 1, ..., c, we have truly random hash table:

Ri : char→ hash values (bit strings)
I Hash value

h(x) = R1[x1]⊕ · · · ⊕ Rc[xc]

I Space cN1/c and time O(c). With 8-bit characters, each Ri
has 256 entries and fit in L1 cache.

I Simple tabulation is the fastest 3-independent hashing
scheme. Speed like 2 multiplications.

I Not 4-independent: h(a1a2)⊕ h(a1b2)⊕ h(b1a2)⊕ h(b1b2)

= (R1[a1]⊕ R2[a2])⊕ (R1[a1]⊕ R2[b2])⊕
(R1[b1]⊕ R2[a2])⊕ (R1[b1]⊕ R2[b2]) = 0.

Simple tabulation
I Simple tabulation goes back to Carter and Wegman’77.
I Key x divided into c = O(1) characters x1, ..., xc ,

e.g., 32-bit key as 4 × 8-bit characters.
I For i = 1, ..., c, we have truly random hash table:

Ri : char→ hash values (bit strings)
I Hash value

h(x) = R1[x1]⊕ · · · ⊕ Rc[xc]

I Space cN1/c and time O(c). With 8-bit characters, each Ri
has 256 entries and fit in L1 cache.

I Simple tabulation is the fastest 3-independent hashing
scheme. Speed like 2 multiplications.

I Not 4-independent: h(a1a2)⊕ h(a1b2)⊕ h(b1a2)⊕ h(b1b2)

= (R1[a1]⊕ R2[a2])⊕ (R1[a1]⊕ R2[b2])⊕
(R1[b1]⊕ R2[a2])⊕ (R1[b1]⊕ R2[b2]) = 0.

Simple tabulation
I Simple tabulation goes back to Carter and Wegman’77.
I Key x divided into c = O(1) characters x1, ..., xc ,

e.g., 32-bit key as 4 × 8-bit characters.
I For i = 1, ..., c, we have truly random hash table:

Ri : char→ hash values (bit strings)
I Hash value

h(x) = R1[x1]⊕ · · · ⊕ Rc[xc]

I Space cN1/c and time O(c). With 8-bit characters, each Ri
has 256 entries and fit in L1 cache.

I Simple tabulation is the fastest 3-independent hashing
scheme. Speed like 2 multiplications.

I Not 4-independent: h(a1a2)⊕ h(a1b2)⊕ h(b1a2)⊕ h(b1b2)

= (R1[a1]⊕ R2[a2])⊕ (R1[a1]⊕ R2[b2])⊕
(R1[b1]⊕ R2[a2])⊕ (R1[b1]⊕ R2[b2]) = 0.

Simple tabulation
I Simple tabulation goes back to Carter and Wegman’77.
I Key x divided into c = O(1) characters x1, ..., xc ,

e.g., 32-bit key as 4 × 8-bit characters.
I For i = 1, ..., c, we have truly random hash table:

Ri : char→ hash values (bit strings)
I Hash value

h(x) = R1[x1]⊕ · · · ⊕ Rc[xc]

I Space cN1/c and time O(c). With 8-bit characters, each Ri
has 256 entries and fit in L1 cache.

I Simple tabulation is the fastest 3-independent hashing
scheme. Speed like 2 multiplications.

I Not 4-independent: h(a1a2)⊕ h(a1b2)⊕ h(b1a2)⊕ h(b1b2)

= (R1[a1]⊕ R2[a2])⊕ (R1[a1]⊕ R2[b2])⊕
(R1[b1]⊕ R2[a2])⊕ (R1[b1]⊕ R2[b2]) = 0.

How much independence needed? Wrong question
Chaining E[t] = O(1) 2

E[tk] = O(1) 2k + 1
t = O(lg n

lg lg n) w.h.p. Θ(
lg n

lg lg n) Celis yesterday
Linear probing ≤ 5 [Pagh2, Ružić’07] ≥ 5 [PT ICALP’10]

Cuckoo hashing O(lg n) ≥ 6 [Cohen, Kane’05]

F2 estimation 4 [Alon, Mathias, Szegedy’99]

ε-minwise indep. O(lg 1
ε) [Indyk’99] Ω(lg 1

ε) [PT ICALP’10]

New result: Despite its 4-dependence, simple tabulation
suffices for all the above applications:

One simple and fast hashing scheme for almost all
your needs.

Knuth recommends simple tabulation but cites only
3-independence as mathematical quality.
We prove that dependence of simple tabulation is not harmful in
any of the above applications.

How much independence needed? Wrong question
Chaining E[t] = O(1) 2

E[tk] = O(1) 2k + 1
t = O(lg n

lg lg n) w.h.p. Θ(
lg n

lg lg n) Celis yesterday
Linear probing ≤ 5 [Pagh2, Ružić’07] ≥ 5 [PT ICALP’10]

Cuckoo hashing O(lg n) ≥ 6 [Cohen, Kane’05]

F2 estimation 4 [Alon, Mathias, Szegedy’99]

ε-minwise indep. O(lg 1
ε) [Indyk’99] Ω(lg 1

ε) [PT ICALP’10]

New result: Despite its 4-dependence, simple tabulation
suffices for all the above applications:

One simple and fast hashing scheme for almost all
your needs.

Knuth recommends simple tabulation but cites only
3-independence as mathematical quality.
We prove that dependence of simple tabulation is not harmful in
any of the above applications.

How much independence needed? Wrong question
Chaining E[t] = O(1) 2

E[tk] = O(1) 2k + 1
t = O(lg n

lg lg n) w.h.p. Θ(
lg n

lg lg n) Celis yesterday
Linear probing ≤ 5 [Pagh2, Ružić’07] ≥ 5 [PT ICALP’10]

Cuckoo hashing O(lg n) ≥ 6 [Cohen, Kane’05]

F2 estimation 4 [Alon, Mathias, Szegedy’99]

ε-minwise indep. O(lg 1
ε) [Indyk’99] Ω(lg 1

ε) [PT ICALP’10]

New result: Despite its 4-dependence, simple tabulation
suffices for all the above applications:

One simple and fast hashing scheme for almost all
your needs.

Knuth recommends simple tabulation but cites only
3-independence as mathematical quality.

We prove that dependence of simple tabulation is not harmful in
any of the above applications.

How much independence needed? Wrong question
Chaining E[t] = O(1) 2

E[tk] = O(1) 2k + 1
t = O(lg n

lg lg n) w.h.p. Θ(
lg n

lg lg n) Celis yesterday
Linear probing ≤ 5 [Pagh2, Ružić’07] ≥ 5 [PT ICALP’10]

Cuckoo hashing O(lg n) ≥ 6 [Cohen, Kane’05]

F2 estimation 4 [Alon, Mathias, Szegedy’99]

ε-minwise indep. O(lg 1
ε) [Indyk’99] Ω(lg 1

ε) [PT ICALP’10]

New result: Despite its 4-dependence, simple tabulation
suffices for all the above applications:

One simple and fast hashing scheme for almost all
your needs.

Knuth recommends simple tabulation but cites only
3-independence as mathematical quality.
We prove that dependence of simple tabulation is not harmful in
any of the above applications.

Chaining/hashing into bins
Theorem Consider hashing n balls into m ≥ n1−1/(2c) bins by
simple tabulation. Let q be an additional query ball, and define
Xq as the number of regular balls that hash into a bin chosen
as a function of h(q). Let µ = E[Xq] = n

m . The following
probability bounds hold for any constant γ:

Pr[Xq ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)Ω(µ)

+ m−γ

Pr[Xq ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)Ω(µ)

+ m−γ

With m ≤ n bins, every bin gets

n/m ±O
(√

n/m logc n
)
.

keys with probability 1− n−γ .

Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.

Nothing like this lemma holds if we instead of simple tabulation
assumed k -independent hashing with k = O(1).

Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.

Nothing like this lemma holds if we instead of simple tabulation
assumed k -independent hashing with k = O(1).

Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into
m bins and n ≤ m1−ε, then all bins get less than d = 2(1+γ)/ε

keys with probability ≥ 1−m−γ .

Claim 1 Any set T contains a subset U of log2 |T | keys that
hash independently.

I Let i be character position where keys in T differ.
I Let a be least common character in position i and pick

x ∈ T with xi = a
I Reduce T to T ′ removing all keys y from T with yi = a.
I The hash of x is independent of the hash of T ′ as only

h(x) depends on Ri [a].
I Return {x} ∪ U ′ where U ′ independent subset of T ′.

Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into
m bins and n ≤ m1−ε, then all bins get less than d = 2(1+γ)/ε

keys with probability ≥ 1−m−γ .
Claim 1 Any set T contains a subset U of log2 |T | keys that
hash independently.

I Let i be character position where keys in T differ.
I Let a be least common character in position i and pick

x ∈ T with xi = a
I Reduce T to T ′ removing all keys y from T with yi = a.
I The hash of x is independent of the hash of T ′ as only

h(x) depends on Ri [a].
I Return {x} ∪ U ′ where U ′ independent subset of T ′.

Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into
m bins and n ≤ m1−ε, then all bins get less than d = 2(1+γ)/ε

keys with probability ≥ 1−m−γ .
Claim 1 Any set T contains a subset U of log2 |T | keys that
hash independently.

I Let i be character position where keys in T differ.

I Let a be least common character in position i and pick
x ∈ T with xi = a

I Reduce T to T ′ removing all keys y from T with yi = a.
I The hash of x is independent of the hash of T ′ as only

h(x) depends on Ri [a].
I Return {x} ∪ U ′ where U ′ independent subset of T ′.

Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into
m bins and n ≤ m1−ε, then all bins get less than d = 2(1+γ)/ε

keys with probability ≥ 1−m−γ .
Claim 1 Any set T contains a subset U of log2 |T | keys that
hash independently.

I Let i be character position where keys in T differ.
I Let a be least common character in position i and pick

x ∈ T with xi = a

I Reduce T to T ′ removing all keys y from T with yi = a.
I The hash of x is independent of the hash of T ′ as only

h(x) depends on Ri [a].
I Return {x} ∪ U ′ where U ′ independent subset of T ′.

Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into
m bins and n ≤ m1−ε, then all bins get less than d = 2(1+γ)/ε

keys with probability ≥ 1−m−γ .
Claim 1 Any set T contains a subset U of log2 |T | keys that
hash independently.

I Let i be character position where keys in T differ.
I Let a be least common character in position i and pick

x ∈ T with xi = a
I Reduce T to T ′ removing all keys y from T with yi = a.

I The hash of x is independent of the hash of T ′ as only
h(x) depends on Ri [a].

I Return {x} ∪ U ′ where U ′ independent subset of T ′.

Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into
m bins and n ≤ m1−ε, then all bins get less than d = 2(1+γ)/ε

keys with probability ≥ 1−m−γ .
Claim 1 Any set T contains a subset U of log2 |T | keys that
hash independently.

I Let i be character position where keys in T differ.
I Let a be least common character in position i and pick

x ∈ T with xi = a
I Reduce T to T ′ removing all keys y from T with yi = a.
I The hash of x is independent of the hash of T ′ as only

h(x) depends on Ri [a].

I Return {x} ∪ U ′ where U ′ independent subset of T ′.

Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into
m bins and n ≤ m1−ε, then all bins get less than d = 2(1+γ)/ε

keys with probability ≥ 1−m−γ .
Claim 1 Any set T contains a subset U of log2 |T | keys that
hash independently.

I Let i be character position where keys in T differ.
I Let a be least common character in position i and pick

x ∈ T with xi = a
I Reduce T to T ′ removing all keys y from T with yi = a.
I The hash of x is independent of the hash of T ′ as only

h(x) depends on Ri [a].
I Return {x} ∪ U ′ where U ′ independent subset of T ′.

Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into
m bins and n ≤ m1−ε, then all bins get less than d = 2(1+γ)/ε

keys with probability ≥ 1−m−γ .
Claim 1 Any set T contains a subset U of log2 |T | keys that
hash independently—if |T | ≥ d then |U| ≥ (1 + γ)/ε. �

Claim 2 The probability that there exists u = (1 + γ)/ε keys
hashing independently to the same bin is m−γ .

I There are
(n

u

)
< nu sets U of u keys to consider.

I Each such U hash to one bin with probability 1/mu−1.
I Propability bound over all U is

numu−1 ≤ m(1−ε)u+1−u = m1−εu = m−γ .

Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into
m bins and n ≤ m1−ε, then all bins get less than d = 2(1+γ)/ε

keys with probability ≥ 1−m−γ .
Claim 1 Any set T contains a subset U of log2 |T | keys that
hash independently—if |T | ≥ d then |U| ≥ (1 + γ)/ε. �
Claim 2 The probability that there exists u = (1 + γ)/ε keys
hashing independently to the same bin is m−γ .

I There are
(n

u

)
< nu sets U of u keys to consider.

I Each such U hash to one bin with probability 1/mu−1.
I Propability bound over all U is

numu−1 ≤ m(1−ε)u+1−u = m1−εu = m−γ .

Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into
m bins and n ≤ m1−ε, then all bins get less than d = 2(1+γ)/ε

keys with probability ≥ 1−m−γ .
Claim 1 Any set T contains a subset U of log2 |T | keys that
hash independently—if |T | ≥ d then |U| ≥ (1 + γ)/ε. �
Claim 2 The probability that there exists u = (1 + γ)/ε keys
hashing independently to the same bin is m−γ .

I There are
(n

u

)
< nu sets U of u keys to consider.

I Each such U hash to one bin with probability 1/mu−1.
I Propability bound over all U is

numu−1 ≤ m(1−ε)u+1−u = m1−εu = m−γ .

Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into
m bins and n ≤ m1−ε, then all bins get less than d = 2(1+γ)/ε

keys with probability ≥ 1−m−γ .
Claim 1 Any set T contains a subset U of log2 |T | keys that
hash independently—if |T | ≥ d then |U| ≥ (1 + γ)/ε. �
Claim 2 The probability that there exists u = (1 + γ)/ε keys
hashing independently to the same bin is m−γ .

I There are
(n

u

)
< nu sets U of u keys to consider.

I Each such U hash to one bin with probability 1/mu−1.

I Propability bound over all U is

numu−1 ≤ m(1−ε)u+1−u = m1−εu = m−γ .

Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into
m bins and n ≤ m1−ε, then all bins get less than d = 2(1+γ)/ε

keys with probability ≥ 1−m−γ .
Claim 1 Any set T contains a subset U of log2 |T | keys that
hash independently—if |T | ≥ d then |U| ≥ (1 + γ)/ε. �
Claim 2 The probability that there exists u = (1 + γ)/ε keys
hashing independently to the same bin is m−γ .

I There are
(n

u

)
< nu sets U of u keys to consider.

I Each such U hash to one bin with probability 1/mu−1.
I Propability bound over all U is

numu−1 ≤ m(1−ε)u+1−u = m1−εu = m−γ .

Hashing into many bins
Lemma If we hash n keys into n1+Ω(1) bins, then all bins get
O(1) keys w.h.p.
Proof that for any positive constants ε, γ, if we hash n keys into
m bins and n ≤ m1−ε, then all bins get less than d = 2(1+γ)/ε

keys with probability ≥ 1−m−γ .
Claim 1 Any set T contains a subset U of log2 |T | keys that
hash independently—if |T | ≥ d then |U| ≥ (1 + γ)/ε. �
Claim 2 The probability that there exists u = (1 + γ)/ε keys
hashing independently to the same bin is m−γ .�

Short of time?

Basic proof pattern with m ≥ n1−1/(2c) bins

I Deterministic partition key set S into groups G that are
mutually “independent”, each of size ≤ n1−1/c ≤ m1−ε.

I By lemma, w.h.p., each G distributes with ≤ d in each bin.
I Let XG ≤ d be contribution to fixed bin, and X =

∑
G XG.

I If the XG were really independent, by Chernoff

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ/d

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ/d

Basic proof pattern with m ≥ n1−1/(2c) bins
I Deterministic partition key set S into groups G that are

mutually “independent”, each of size ≤ n1−1/c ≤ m1−ε.

I By lemma, w.h.p., each G distributes with ≤ d in each bin.
I Let XG ≤ d be contribution to fixed bin, and X =

∑
G XG.

I If the XG were really independent, by Chernoff

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ/d

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ/d

Basic proof pattern with m ≥ n1−1/(2c) bins
I Deterministic partition key set S into groups G that are

mutually “independent”, each of size ≤ n1−1/c ≤ m1−ε.
I By lemma, w.h.p., each G distributes with ≤ d in each bin.

I Let XG ≤ d be contribution to fixed bin, and X =
∑

G XG.
I If the XG were really independent, by Chernoff

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ/d

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ/d

Basic proof pattern with m ≥ n1−1/(2c) bins
I Deterministic partition key set S into groups G that are

mutually “independent”, each of size ≤ n1−1/c ≤ m1−ε.
I By lemma, w.h.p., each G distributes with ≤ d in each bin.
I Let XG ≤ d be contribution to fixed bin, and X =

∑
G XG.

I If the XG were really independent, by Chernoff

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ/d

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ/d

Basic proof pattern with m ≥ n1−1/(2c) bins
I Deterministic partition key set S into groups G that are

mutually “independent”, each of size ≤ n1−1/c ≤ m1−ε.
I By lemma, w.h.p., each G distributes with ≤ d in each bin.
I Let XG ≤ d be contribution to fixed bin, and X =

∑
G XG.

I If the XG were really independent, by Chernoff

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ/d

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ/d

Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.

Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c .

I For each position i ∈ [c], we have < n1/c characters used
by > n1−1/c keys.

I So claim false implies S in hypercube of size
<
(
n1/c)c

= n.

Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.

Claim |G(i,a)| ≤ n1−1/c .

I For each position i ∈ [c], we have < n1/c characters used
by > n1−1/c keys.

I So claim false implies S in hypercube of size
<
(
n1/c)c

= n.

Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c .

I For each position i ∈ [c], we have < n1/c characters used
by > n1−1/c keys.

I So claim false implies S in hypercube of size
<
(
n1/c)c

= n.

Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c .

I For each position i ∈ [c], we have < n1/c characters used
by > n1−1/c keys.

I So claim false implies S in hypercube of size
<
(
n1/c)c

= n.

Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c .

I For each position i ∈ [c], we have < n1/c characters used
by > n1−1/c keys.

I So claim false implies S in hypercube of size
<
(
n1/c)c

= n.

Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c . �

Recursively, we group S \G(i,a) and hash all position
characters in S excluding (i ,a). This fixes

I the hash of all keys in S \G(i,a)

I the hash of keys in G(i,a) except Ri [a] which is a common
“shift” moving bin h to h ⊕ Ri [a].

I Particularly, it is fixed which keys from G(i,a) end in same
bin. By Lemma, w.h.p., at most d in every bin.

Now we randomly pick Ri [a] finalizing hashing of group G(i,a).
I The contribution XG(i,a)

to our bin is random variable.
I The distribution of XG(i,a)

depends on previous fixings.
I But always E[XG(i,a)

] = |XG(i,a)
|/m. MoreoverXG(i,a)

≤ d .
I Good enough for Chernoff bounds.

Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c . �
Recursively, we group S \G(i,a) and hash all position
characters in S excluding (i ,a).

This fixes
I the hash of all keys in S \G(i,a)

I the hash of keys in G(i,a) except Ri [a] which is a common
“shift” moving bin h to h ⊕ Ri [a].

I Particularly, it is fixed which keys from G(i,a) end in same
bin. By Lemma, w.h.p., at most d in every bin.

Now we randomly pick Ri [a] finalizing hashing of group G(i,a).
I The contribution XG(i,a)

to our bin is random variable.
I The distribution of XG(i,a)

depends on previous fixings.
I But always E[XG(i,a)

] = |XG(i,a)
|/m. MoreoverXG(i,a)

≤ d .
I Good enough for Chernoff bounds.

Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c . �
Recursively, we group S \G(i,a) and hash all position
characters in S excluding (i ,a). This fixes

I the hash of all keys in S \G(i,a)

I the hash of keys in G(i,a) except Ri [a] which is a common
“shift” moving bin h to h ⊕ Ri [a].

I Particularly, it is fixed which keys from G(i,a) end in same
bin. By Lemma, w.h.p., at most d in every bin.

Now we randomly pick Ri [a] finalizing hashing of group G(i,a).
I The contribution XG(i,a)

to our bin is random variable.
I The distribution of XG(i,a)

depends on previous fixings.
I But always E[XG(i,a)

] = |XG(i,a)
|/m. MoreoverXG(i,a)

≤ d .
I Good enough for Chernoff bounds.

Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c . �
Recursively, we group S \G(i,a) and hash all position
characters in S excluding (i ,a). This fixes

I the hash of all keys in S \G(i,a)

I the hash of keys in G(i,a) except Ri [a] which is a common
“shift” moving bin h to h ⊕ Ri [a].

I Particularly, it is fixed which keys from G(i,a) end in same
bin. By Lemma, w.h.p., at most d in every bin.

Now we randomly pick Ri [a] finalizing hashing of group G(i,a).
I The contribution XG(i,a)

to our bin is random variable.
I The distribution of XG(i,a)

depends on previous fixings.
I But always E[XG(i,a)

] = |XG(i,a)
|/m. MoreoverXG(i,a)

≤ d .
I Good enough for Chernoff bounds.

Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c . �
Recursively, we group S \G(i,a) and hash all position
characters in S excluding (i ,a). This fixes

I the hash of all keys in S \G(i,a)

I the hash of keys in G(i,a) except Ri [a] which is a common
“shift” moving bin h to h ⊕ Ri [a].

I Particularly, it is fixed which keys from G(i,a) end in same
bin. By Lemma, w.h.p., at most d in every bin.

Now we randomly pick Ri [a] finalizing hashing of group G(i,a).
I The contribution XG(i,a)

to our bin is random variable.
I The distribution of XG(i,a)

depends on previous fixings.
I But always E[XG(i,a)

] = |XG(i,a)
|/m. MoreoverXG(i,a)

≤ d .
I Good enough for Chernoff bounds.

Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c . �
Recursively, we group S \G(i,a) and hash all position
characters in S excluding (i ,a). This fixes

I the hash of all keys in S \G(i,a)

I the hash of keys in G(i,a) except Ri [a] which is a common
“shift” moving bin h to h ⊕ Ri [a].

I Particularly, it is fixed which keys from G(i,a) end in same
bin. By Lemma, w.h.p., at most d in every bin.

Now we randomly pick Ri [a] finalizing hashing of group G(i,a).

I The contribution XG(i,a)
to our bin is random variable.

I The distribution of XG(i,a)
depends on previous fixings.

I But always E[XG(i,a)
] = |XG(i,a)

|/m. MoreoverXG(i,a)
≤ d .

I Good enough for Chernoff bounds.

Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c . �
Recursively, we group S \G(i,a) and hash all position
characters in S excluding (i ,a). This fixes

I the hash of all keys in S \G(i,a)

I the hash of keys in G(i,a) except Ri [a] which is a common
“shift” moving bin h to h ⊕ Ri [a].

I Particularly, it is fixed which keys from G(i,a) end in same
bin. By Lemma, w.h.p., at most d in every bin.

Now we randomly pick Ri [a] finalizing hashing of group G(i,a).
I The contribution XG(i,a)

to our bin is random variable.

I The distribution of XG(i,a)
depends on previous fixings.

I But always E[XG(i,a)
] = |XG(i,a)

|/m. MoreoverXG(i,a)
≤ d .

I Good enough for Chernoff bounds.

Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c . �
Recursively, we group S \G(i,a) and hash all position
characters in S excluding (i ,a). This fixes

I the hash of all keys in S \G(i,a)

I the hash of keys in G(i,a) except Ri [a] which is a common
“shift” moving bin h to h ⊕ Ri [a].

I Particularly, it is fixed which keys from G(i,a) end in same
bin. By Lemma, w.h.p., at most d in every bin.

Now we randomly pick Ri [a] finalizing hashing of group G(i,a).
I The contribution XG(i,a)

to our bin is random variable.
I The distribution of XG(i,a)

depends on previous fixings.

I But always E[XG(i,a)
] = |XG(i,a)

|/m. MoreoverXG(i,a)
≤ d .

I Good enough for Chernoff bounds.

Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c . �
Recursively, we group S \G(i,a) and hash all position
characters in S excluding (i ,a). This fixes

I the hash of all keys in S \G(i,a)

I the hash of keys in G(i,a) except Ri [a] which is a common
“shift” moving bin h to h ⊕ Ri [a].

I Particularly, it is fixed which keys from G(i,a) end in same
bin. By Lemma, w.h.p., at most d in every bin.

Now we randomly pick Ri [a] finalizing hashing of group G(i,a).
I The contribution XG(i,a)

to our bin is random variable.
I The distribution of XG(i,a)

depends on previous fixings.
I But always E[XG(i,a)

] = |XG(i,a)
|/m. MoreoverXG(i,a)

≤ d .

I Good enough for Chernoff bounds.

Recursive partition into “independent” groups
Define position character (i ,a) in key x iff xi = a.
Let (i ,a) be least common position character among keys in S
and G(i,a) ⊆ S be the group of keys using it.
Claim |G(i,a)| ≤ n1−1/c . �
Recursively, we group S \G(i,a) and hash all position
characters in S excluding (i ,a). This fixes

I the hash of all keys in S \G(i,a)

I the hash of keys in G(i,a) except Ri [a] which is a common
“shift” moving bin h to h ⊕ Ri [a].

I Particularly, it is fixed which keys from G(i,a) end in same
bin. By Lemma, w.h.p., at most d in every bin.

Now we randomly pick Ri [a] finalizing hashing of group G(i,a).
I The contribution XG(i,a)

to our bin is random variable.
I The distribution of XG(i,a)

depends on previous fixings.
I But always E[XG(i,a)

] = |XG(i,a)
|/m. MoreoverXG(i,a)

≤ d .
I Good enough for Chernoff bounds.

Chernoff with m ≥ n1−1/(2c) bins
W.h.p., the contribution X to given obeys Chernoff

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ/d

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ/d

Thus, from perspective of chaining, simple tabulation has same
type of tail bounds as with truly random hash functions, modulo
a constant factor loss and down to polynomially small
probabilities.

Similar story for linear probing.

Chernoff with m ≥ n1−1/(2c) bins
W.h.p., the contribution X to given obeys Chernoff

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ/d

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ/d

Thus, from perspective of chaining, simple tabulation has same
type of tail bounds as with truly random hash functions, modulo
a constant factor loss and down to polynomially small
probabilities.

Similar story for linear probing.

Chernoff with m ≥ n1−1/(2c) bins
W.h.p., the contribution X to given obeys Chernoff

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ/d

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ/d

Thus, from perspective of chaining, simple tabulation has same
type of tail bounds as with truly random hash functions, modulo
a constant factor loss and down to polynomially small
probabilities.

Similar story for linear probing.

Cuckoo hashing
Each key placed in one of two hash locations.

z •
• s
• w
y f

x x •
• a
r x b

Theorem With simple tabulation Cuckoo hashing works with
probability 1− Θ̃(n−1/3).

I For chaining and linear probing, we did not care about a
constant loss, but obstructions to cuckoo hashing may be
of just constant size, e.g., 3 keys sharing same two hash
locations.

I Very delicate proof showing that obstruction can be used
to code random tables Ri with few bits.

Cuckoo hashing
Each key placed in one of two hash locations.

z •
• s
• w
y f

x x •
• a
r x b

Theorem With simple tabulation Cuckoo hashing works with
probability 1− Θ̃(n−1/3).

I For chaining and linear probing, we did not care about a
constant loss, but obstructions to cuckoo hashing may be
of just constant size, e.g., 3 keys sharing same two hash
locations.

I Very delicate proof showing that obstruction can be used
to code random tables Ri with few bits.

Cuckoo hashing
Each key placed in one of two hash locations.

z •
• s
• w
y f

x x •
• a
r x b

Theorem With simple tabulation Cuckoo hashing works with
probability 1− Θ̃(n−1/3).

I For chaining and linear probing, we did not care about a
constant loss, but obstructions to cuckoo hashing may be
of just constant size, e.g., 3 keys sharing same two hash
locations.

I Very delicate proof showing that obstruction can be used
to code random tables Ri with few bits.

Speed

Hashing random keys 32-bit computer 64-bit computer
bits hashing scheme hashing time (ns)
32 univ-mult-shift (a*x)>>s 1.87 2.33
32 2-indep-mult-shift 5.78 2.88
32 5-indep-Mersenne-prime 99.70 45.06
32 5-indep-TZ-table 10.12 12.66
32 simple-table 4.98 4.61
64 univ-mult-shift 7.05 3.14
64 2-indep-mult-shift 22.91 5.90
64 5-indep-Mersenne-prime 241.99 68.67
64 5-indep-TZ-table 75.81 59.84
64 simple-table 15.54 11.40

Experiments with help from Yin Zhang.

Robustness in linear probing for dense interval

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700

cu
m

ul
at

iv
e

fr
ac

tio
n

average time per insert+delete cycle (nanoseconds)

simple-table
univ-mult-shift

2-indep-mult-shift
5-indep-TZ-table

5-indep-Mersenne-prime

Pitch for theory in case of linear probing
I Multiplicative hashing used in practice, but turns out to be

very unreliable under typical denial-of-service (DoS)
attacks based on consecutive IP addresses: systematic
good performance 95% of the time, but systematic terrible
performance 5% of the time [TZ’10].

I Problems in randomized algorithms like hashing hard to
detect for practitioners. Hard for them to know if bad
performance is from being unlucky, or because of
systematic problems.

I Linear probing had gotten a reputation for being fastest in
practice, but sometimes unreliable needing special
protection against bad cases.

I Here we proved linear probing safe with good probabilistic
performance for all input if we use simple tabulation.

I Simple tabulation also powerful for chaining, cuckoo
hashing, and min-wise hashing:

one simple and fast scheme for (almost) all your needs.

Pitch for theory in case of linear probing
I Multiplicative hashing used in practice, but turns out to be

very unreliable under typical denial-of-service (DoS)
attacks based on consecutive IP addresses: systematic
good performance 95% of the time, but systematic terrible
performance 5% of the time [TZ’10].

I Problems in randomized algorithms like hashing hard to
detect for practitioners. Hard for them to know if bad
performance is from being unlucky, or because of
systematic problems.

I Linear probing had gotten a reputation for being fastest in
practice, but sometimes unreliable needing special
protection against bad cases.

I Here we proved linear probing safe with good probabilistic
performance for all input if we use simple tabulation.

I Simple tabulation also powerful for chaining, cuckoo
hashing, and min-wise hashing:

one simple and fast scheme for (almost) all your needs.

Pitch for theory in case of linear probing
I Multiplicative hashing used in practice, but turns out to be

very unreliable under typical denial-of-service (DoS)
attacks based on consecutive IP addresses: systematic
good performance 95% of the time, but systematic terrible
performance 5% of the time [TZ’10].

I Problems in randomized algorithms like hashing hard to
detect for practitioners. Hard for them to know if bad
performance is from being unlucky, or because of
systematic problems.

I Linear probing had gotten a reputation for being fastest in
practice, but sometimes unreliable needing special
protection against bad cases.

I Here we proved linear probing safe with good probabilistic
performance for all input if we use simple tabulation.

I Simple tabulation also powerful for chaining, cuckoo
hashing, and min-wise hashing:

one simple and fast scheme for (almost) all your needs.

Pitch for theory in case of linear probing
I Multiplicative hashing used in practice, but turns out to be

very unreliable under typical denial-of-service (DoS)
attacks based on consecutive IP addresses: systematic
good performance 95% of the time, but systematic terrible
performance 5% of the time [TZ’10].

I Problems in randomized algorithms like hashing hard to
detect for practitioners. Hard for them to know if bad
performance is from being unlucky, or because of
systematic problems.

I Linear probing had gotten a reputation for being fastest in
practice, but sometimes unreliable needing special
protection against bad cases.

I Here we proved linear probing safe with good probabilistic
performance for all input if we use simple tabulation.

I Simple tabulation also powerful for chaining, cuckoo
hashing, and min-wise hashing:

one simple and fast scheme for (almost) all your needs.

Pitch for theory in case of linear probing
I Multiplicative hashing used in practice, but turns out to be

very unreliable under typical denial-of-service (DoS)
attacks based on consecutive IP addresses: systematic
good performance 95% of the time, but systematic terrible
performance 5% of the time [TZ’10].

I Problems in randomized algorithms like hashing hard to
detect for practitioners. Hard for them to know if bad
performance is from being unlucky, or because of
systematic problems.

I Linear probing had gotten a reputation for being fastest in
practice, but sometimes unreliable needing special
protection against bad cases.

I Here we proved linear probing safe with good probabilistic
performance for all input if we use simple tabulation.

I Simple tabulation also powerful for chaining, cuckoo
hashing, and min-wise hashing:

one simple and fast scheme for (almost) all your needs.

Work in progress: twisted tabulation
I With chaining and linear probing, each operation takes

expected constant time, but out of
√

n operations, some
are expected to take Ω̃(log n) time.

I With truly random hash function, we handle every window
of log n operations in O(log n) time w.h.p.

I Hence, with small buffer (as in Internet routers), we do get
down to constant time per operation!

I Simple tabulation does not achieve this: may often spend
Ω̃(log2 n) time on log n consecutive operations.

I Twisted tabulation:

(h, α) = R1[x1]⊕ · · · ⊕ Rc−1[xc−1];

h(x) = h ⊕ Rc[α⊕xc]

I With twisted tabulation, we handle every window of log n
operations in O(log n) time w.h.p.

Work in progress: twisted tabulation
I With chaining and linear probing, each operation takes

expected constant time, but out of
√

n operations, some
are expected to take Ω̃(log n) time.

I With truly random hash function, we handle every window
of log n operations in O(log n) time w.h.p.

I Hence, with small buffer (as in Internet routers), we do get
down to constant time per operation!

I Simple tabulation does not achieve this: may often spend
Ω̃(log2 n) time on log n consecutive operations.

I Twisted tabulation:

(h, α) = R1[x1]⊕ · · · ⊕ Rc−1[xc−1];

h(x) = h ⊕ Rc[α⊕xc]

I With twisted tabulation, we handle every window of log n
operations in O(log n) time w.h.p.

Work in progress: twisted tabulation
I With chaining and linear probing, each operation takes

expected constant time, but out of
√

n operations, some
are expected to take Ω̃(log n) time.

I With truly random hash function, we handle every window
of log n operations in O(log n) time w.h.p.

I Hence, with small buffer (as in Internet routers), we do get
down to constant time per operation!

I Simple tabulation does not achieve this: may often spend
Ω̃(log2 n) time on log n consecutive operations.

I Twisted tabulation:

(h, α) = R1[x1]⊕ · · · ⊕ Rc−1[xc−1];

h(x) = h ⊕ Rc[α⊕xc]

I With twisted tabulation, we handle every window of log n
operations in O(log n) time w.h.p.

Work in progress: twisted tabulation
I With chaining and linear probing, each operation takes

expected constant time, but out of
√

n operations, some
are expected to take Ω̃(log n) time.

I With truly random hash function, we handle every window
of log n operations in O(log n) time w.h.p.

I Hence, with small buffer (as in Internet routers), we do get
down to constant time per operation!

I Simple tabulation does not achieve this: may often spend
Ω̃(log2 n) time on log n consecutive operations.

I Twisted tabulation:

(h, α) = R1[x1]⊕ · · · ⊕ Rc−1[xc−1];

h(x) = h ⊕ Rc[α⊕xc]

I With twisted tabulation, we handle every window of log n
operations in O(log n) time w.h.p.

Work in progress: twisted tabulation
I With chaining and linear probing, each operation takes

expected constant time, but out of
√

n operations, some
are expected to take Ω̃(log n) time.

I With truly random hash function, we handle every window
of log n operations in O(log n) time w.h.p.

I Hence, with small buffer (as in Internet routers), we do get
down to constant time per operation!

I Simple tabulation does not achieve this: may often spend
Ω̃(log2 n) time on log n consecutive operations.

I Twisted tabulation:

(h, α) = R1[x1]⊕ · · · ⊕ Rc−1[xc−1];

h(x) = h ⊕ Rc[α⊕xc]

I With twisted tabulation, we handle every window of log n
operations in O(log n) time w.h.p.

Work in progress: twisted tabulation
I With chaining and linear probing, each operation takes

expected constant time, but out of
√

n operations, some
are expected to take Ω̃(log n) time.

I With truly random hash function, we handle every window
of log n operations in O(log n) time w.h.p.

I Hence, with small buffer (as in Internet routers), we do get
down to constant time per operation!

I Simple tabulation does not achieve this: may often spend
Ω̃(log2 n) time on log n consecutive operations.

I Twisted tabulation:

(h, α) = R1[x1]⊕ · · · ⊕ Rc−1[xc−1];

h(x) = h ⊕ Rc[α⊕xc]

I With twisted tabulation, we handle every window of log n
operations in O(log n) time w.h.p.

Implenting Chernoff bounds with twisted tabulation
I 0-1 variables Xi where Xi = 1 with probability pi .

I Exponential concentration of X =
∑

i Xi around mean.
I Application: trust polynomial number of logarithmic

estimates with high probability
—the log factor in many randomized algorithm.

I With hashing into [0,1], set Xi = 1 if h(i) < pi .
I With bounded dependence only polynomial concentration.
I With twisted tabulation: for any constant γ,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)Ω(µ)

+ Σ−γ

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)Ω(µ)

+ Σ−γ

I With simple tabulation, additive term (maxi pi)
γ

—in the hash tables we had p ≈ 1/n.

Implenting Chernoff bounds with twisted tabulation
I 0-1 variables Xi where Xi = 1 with probability pi .
I Exponential concentration of X =

∑
i Xi around mean.

I Application: trust polynomial number of logarithmic
estimates with high probability
—the log factor in many randomized algorithm.

I With hashing into [0,1], set Xi = 1 if h(i) < pi .
I With bounded dependence only polynomial concentration.
I With twisted tabulation: for any constant γ,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)Ω(µ)

+ Σ−γ

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)Ω(µ)

+ Σ−γ

I With simple tabulation, additive term (maxi pi)
γ

—in the hash tables we had p ≈ 1/n.

Implenting Chernoff bounds with twisted tabulation
I 0-1 variables Xi where Xi = 1 with probability pi .
I Exponential concentration of X =

∑
i Xi around mean.

I Application: trust polynomial number of logarithmic
estimates with high probability
—the log factor in many randomized algorithm.

I With hashing into [0,1], set Xi = 1 if h(i) < pi .
I With bounded dependence only polynomial concentration.
I With twisted tabulation: for any constant γ,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)Ω(µ)

+ Σ−γ

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)Ω(µ)

+ Σ−γ

I With simple tabulation, additive term (maxi pi)
γ

—in the hash tables we had p ≈ 1/n.

Implenting Chernoff bounds with twisted tabulation
I 0-1 variables Xi where Xi = 1 with probability pi .
I Exponential concentration of X =

∑
i Xi around mean.

I Application: trust polynomial number of logarithmic
estimates with high probability
—the log factor in many randomized algorithm.

I With hashing into [0,1], set Xi = 1 if h(i) < pi .

I With bounded dependence only polynomial concentration.
I With twisted tabulation: for any constant γ,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)Ω(µ)

+ Σ−γ

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)Ω(µ)

+ Σ−γ

I With simple tabulation, additive term (maxi pi)
γ

—in the hash tables we had p ≈ 1/n.

Implenting Chernoff bounds with twisted tabulation
I 0-1 variables Xi where Xi = 1 with probability pi .
I Exponential concentration of X =

∑
i Xi around mean.

I Application: trust polynomial number of logarithmic
estimates with high probability
—the log factor in many randomized algorithm.

I With hashing into [0,1], set Xi = 1 if h(i) < pi .
I With bounded dependence only polynomial concentration.

I With twisted tabulation: for any constant γ,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)Ω(µ)

+ Σ−γ

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)Ω(µ)

+ Σ−γ

I With simple tabulation, additive term (maxi pi)
γ

—in the hash tables we had p ≈ 1/n.

Implenting Chernoff bounds with twisted tabulation
I 0-1 variables Xi where Xi = 1 with probability pi .
I Exponential concentration of X =

∑
i Xi around mean.

I Application: trust polynomial number of logarithmic
estimates with high probability
—the log factor in many randomized algorithm.

I With hashing into [0,1], set Xi = 1 if h(i) < pi .
I With bounded dependence only polynomial concentration.
I With twisted tabulation: for any constant γ,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)Ω(µ)

+ Σ−γ

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)Ω(µ)

+ Σ−γ

I With simple tabulation, additive term (maxi pi)
γ

—in the hash tables we had p ≈ 1/n.

Implenting Chernoff bounds with twisted tabulation
I 0-1 variables Xi where Xi = 1 with probability pi .
I Exponential concentration of X =

∑
i Xi around mean.

I Application: trust polynomial number of logarithmic
estimates with high probability
—the log factor in many randomized algorithm.

I With hashing into [0,1], set Xi = 1 if h(i) < pi .
I With bounded dependence only polynomial concentration.
I With twisted tabulation: for any constant γ,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)Ω(µ)

+ Σ−γ

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)Ω(µ)

+ Σ−γ

I With simple tabulation, additive term (maxi pi)
γ

—in the hash tables we had p ≈ 1/n.

Open problems
I Take any application using abstract truly random hash

function, and prove that simple/twisted tabulation works.

I Could this be the first implementable hash function/RNG
making classic quick sort work directly: using hash of i to
generate index of i th pivot?

I Hash tables are used to look up keys in a dynamic set of
stored keys. Can this be done without randomization?

I Can we both insert and look up keys in constant
deterministic time? (not just with high probability)

I Currently, the best answer is that we can do both in
O(
√

log n/ log log n) worst-case time [Andersson Thorup
STOC’00] —tight for more general predecessor problem.

I Most people believe that deterministic constant time is not
possible without randomization, but nobody can prove it.

I So far, no technique is known that can make any such
separation between deterministic and randomized
solutions for any data structure problem.

Open problems
I Take any application using abstract truly random hash

function, and prove that simple/twisted tabulation works.
I Could this be the first implementable hash function/RNG

making classic quick sort work directly: using hash of i to
generate index of i th pivot?

I Hash tables are used to look up keys in a dynamic set of
stored keys. Can this be done without randomization?

I Can we both insert and look up keys in constant
deterministic time? (not just with high probability)

I Currently, the best answer is that we can do both in
O(
√

log n/ log log n) worst-case time [Andersson Thorup
STOC’00] —tight for more general predecessor problem.

I Most people believe that deterministic constant time is not
possible without randomization, but nobody can prove it.

I So far, no technique is known that can make any such
separation between deterministic and randomized
solutions for any data structure problem.

Open problems
I Take any application using abstract truly random hash

function, and prove that simple/twisted tabulation works.
I Could this be the first implementable hash function/RNG

making classic quick sort work directly: using hash of i to
generate index of i th pivot?

I Hash tables are used to look up keys in a dynamic set of
stored keys. Can this be done without randomization?

I Can we both insert and look up keys in constant
deterministic time? (not just with high probability)

I Currently, the best answer is that we can do both in
O(
√

log n/ log log n) worst-case time [Andersson Thorup
STOC’00] —tight for more general predecessor problem.

I Most people believe that deterministic constant time is not
possible without randomization, but nobody can prove it.

I So far, no technique is known that can make any such
separation between deterministic and randomized
solutions for any data structure problem.

Open problems
I Take any application using abstract truly random hash

function, and prove that simple/twisted tabulation works.
I Could this be the first implementable hash function/RNG

making classic quick sort work directly: using hash of i to
generate index of i th pivot?

I Hash tables are used to look up keys in a dynamic set of
stored keys. Can this be done without randomization?

I Can we both insert and look up keys in constant
deterministic time? (not just with high probability)

I Currently, the best answer is that we can do both in
O(
√

log n/ log log n) worst-case time [Andersson Thorup
STOC’00] —tight for more general predecessor problem.

I Most people believe that deterministic constant time is not
possible without randomization, but nobody can prove it.

I So far, no technique is known that can make any such
separation between deterministic and randomized
solutions for any data structure problem.

Open problems
I Take any application using abstract truly random hash

function, and prove that simple/twisted tabulation works.
I Could this be the first implementable hash function/RNG

making classic quick sort work directly: using hash of i to
generate index of i th pivot?

I Hash tables are used to look up keys in a dynamic set of
stored keys. Can this be done without randomization?

I Can we both insert and look up keys in constant
deterministic time? (not just with high probability)

I Currently, the best answer is that we can do both in
O(
√

log n/ log log n) worst-case time [Andersson Thorup
STOC’00] —tight for more general predecessor problem.

I Most people believe that deterministic constant time is not
possible without randomization, but nobody can prove it.

I So far, no technique is known that can make any such
separation between deterministic and randomized
solutions for any data structure problem.

Open problems
I Take any application using abstract truly random hash

function, and prove that simple/twisted tabulation works.
I Could this be the first implementable hash function/RNG

making classic quick sort work directly: using hash of i to
generate index of i th pivot?

I Hash tables are used to look up keys in a dynamic set of
stored keys. Can this be done without randomization?

I Can we both insert and look up keys in constant
deterministic time? (not just with high probability)

I Currently, the best answer is that we can do both in
O(
√

log n/ log log n) worst-case time [Andersson Thorup
STOC’00] —tight for more general predecessor problem.

I Most people believe that deterministic constant time is not
possible without randomization, but nobody can prove it.

I So far, no technique is known that can make any such
separation between deterministic and randomized
solutions for any data structure problem.

Open problems
I Take any application using abstract truly random hash

function, and prove that simple/twisted tabulation works.
I Could this be the first implementable hash function/RNG

making classic quick sort work directly: using hash of i to
generate index of i th pivot?

I Hash tables are used to look up keys in a dynamic set of
stored keys. Can this be done without randomization?

I Can we both insert and look up keys in constant
deterministic time? (not just with high probability)

I Currently, the best answer is that we can do both in
O(
√

log n/ log log n) worst-case time [Andersson Thorup
STOC’00] —tight for more general predecessor problem.

I Most people believe that deterministic constant time is not
possible without randomization, but nobody can prove it.

I So far, no technique is known that can make any such
separation between deterministic and randomized
solutions for any data structure problem.

