# Grothendieck inequalities for semidefinite programs with rank constraints 

Jop Briët<br>CWI

Joint work with Fernando de Oliveira-Filho (TU Berlin) and Frank Vallentin (TU Delft)

China Theory Week 2011
Aarhus, Denmark

## The plain-vanilla-flavor SDP problem

Given: symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $\operatorname{diag}(A)=0$
Find: unit vectors $x_{1}, \ldots, x_{n}$ that maximize the sum

$$
\sum_{1 \leq i<j \leq n} A(i, j) \cdot\left\langle x_{i}, x_{j}\right\rangle
$$

Can be solved in poly-time

## SDPs with rank* constraint

Adding a little more structure...

Given: symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $\operatorname{diag}(A)=0$ and positive integer $r$

Find: $\quad r$-dimensional unit vectors $x_{1}, \ldots, x_{n}$ that maximize the sum

$$
\sum_{1 \leq i<j \leq n} A(i, j) \cdot\left\langle x_{i}, x_{j}\right\rangle
$$

Denote this problem by $\operatorname{SDP}_{r}$ and its optimum by $\operatorname{SDP}_{r}(A)$ $\mathrm{SDP}_{\infty}$ is the SDP relaxation of $\mathrm{SDP}_{r}$ : "drop the rank constraint"
*The word rank appears because the matrix $X(i, j)=\left\langle x_{i}, x_{j}\right\rangle$ has rank $r$

## A tiny example: $n=2$

## Given: $\quad a \in \mathbb{R}$ and $r \in \mathbb{N}$

Find: $\quad x, y \in S^{r-1}$ that maximize $a \cdot\langle x, y\rangle$
The rank-1 case has a combinatorial nature


Higher ranks have a more geometric flavor


## Applications of SDPs with rank constraint

- Combinatorial cases (rank-1):
- MAX CUT
- cut-norm of a matrix
- statistical physics (Ising spin glasses)
- communication complexity
- Geometrical cases (ranks $\geq 2$ ):
- quantum information theory
- statistical physics (planar and Heisenberg spin glasses)


## MAIN QUESTION

## How close are $\operatorname{SDP}_{\infty}(A)$ and $\operatorname{SDP}_{r}(A)$ ?



Inapproximability results are known for all ranks $r \geq 1$

## "Hyperplane rounding" does not work

- Obvious strategy to approximate $\mathrm{SDP}_{1}$ by $\mathrm{SDP}_{\infty}$

1. Solve $\mathrm{SDP}_{\infty}$, get vectors $x_{1}, \ldots, x_{n} \in S^{n-1}$
2. Sample vector $z \in \mathbb{R}^{n}$ with iid $N(0,1)$ entries
3. Round: Set $y_{i}=\operatorname{sign}\left\langle x_{i}, z\right\rangle$

- Grothendieck identity: $\mathbb{E}_{z}\left[y_{i} y_{j}\right]=\frac{2}{\pi} \arcsin \left(\left\langle x_{i}, x_{j}\right\rangle\right)$


- Coefficients $A(i, j)$ of $y_{i} y_{j}$ give bad cancellations


## Approximation results for the rank-1 case

## Positive result

- [N98, NRT99, Meg01, CW04]: $O(\log n)$-approximation


Negative results

- [KO'D09]: Matching $\Omega(\log n)$ lower bound
- [ABKHS05, KO'D09]: Hardness-of-approximation results

Better results hold for "bipartite matrices"...

## Matrices with bipartite support graph



- For graph $G=(V, E)$ and $W=\operatorname{diag}(\operatorname{deg}(V))-\operatorname{Adj}(G)$,

$$
\operatorname{SDP}_{1}\left(\left[\begin{array}{cc}
0 & W \\
W^{T} & 0
\end{array}\right]\right)=4|\operatorname{MAX} \operatorname{CUT}(\mathrm{G})|
$$

- [GW95]: .878-approximation for these types of matrices



## Grothendieck's inequality

- [AN04]: $O(1)$-approximation of $\operatorname{SDP}_{1}(A)$ for bipartite $A$
- Based on an algorithmic proof of Grothendieck's inequality:

for universal constant $K_{G}$ and bipartite $A$ [Grothendieck53]
- Exact value of $K_{G}$ : unknown
- [Krivine79]: $K_{G} \leq 1.78 \ldots,[B M M N 11]: K_{G}<1.78 \ldots$
- [RS09]: Assuming UGC, $\nexists\left(K_{G}-\delta\right)$-approximation for $\delta>0$


## Other support graphs? Higher ranks?

- Big contrast between complete and bipartite support graphs
- Better approximation results for other support graphs??
- What about higher ranks??

The graphical Grothendieck problem with rank-r contstraint

Given: graph $G=(V, E)$,
symmetric matrix $A$ with support graph $G$ and positive integer $r$

Find: r-dimensional unit vectors $x_{i}$ that maximize the sum

$$
\sum_{i, j} A(i, j) \cdot\left\langle x_{i}, x_{j}\right\rangle
$$

## Application: spin glasses

## Model of interacting particles introduced by Stanley (1968)

```
PHYSICAL REVIEW VOLUME 176, NUMBER 2 10 DECEMBER 196最
    Spherical Model as the Limit of Infinite Spin Dimensionality
            H. E. Stanley
            Lincoln Laboratory,* Massachusetts Institute of Technology, Lexington, Massachusetts
                    and
                Physics Department, Universily of California, Berkeley, California|
                    (Received 20 April 1968)
            The Berlin-Kac spherical model (or "spherical approximation to the Ising model")
                    Jesm}=-J\mp@subsup{\sum}{\langleij\rangle}{\sum}\mp@subsup{\mu}{i}{}\mp@subsup{\mu}{i}{},\quad\mathrm{ with }\mp@subsup{\sum}{i=1}{N}\mp@subsup{u}{i}{2}=N
                is found to be equivalent to the }\nu->\infty\mathrm{ limit of the Hamiltonian
\[
\mathcal{H}^{(\nu)}=-J \sum_{\langle i j\rangle} \mathbf{S}_{i}(\nu) \cdot \mathbf{S}_{j}^{(\nu)}
\]
where \(\mathbf{S}_{j}{ }^{(\rho)}\) are isotropically interacting \(\nu\)-dimensional classical spins.
```

I. INTRODUCTION

Although it is perhaps not generally appreciated, it seems clear that $\mathscr{H}^{\left({ }^{( }\right)}$reduces to the $S=\frac{1}{2}$ Ising, classical planar, and classical Heisenberg models for $\nu=1,2$,

## Geometric instances: spin glasses

Particles are located at vertices of an interaction graph
Particles are unit vectors


- $1 \mathrm{D}=$ Ising model
- $2 \mathrm{D}=$ planar model
- 3D $=$ Heisenberg model

Edge weights $W: E \rightarrow \mathbb{R}$ give their interaction strength

Problem: compute the ground state of the total system:

$$
-\max \sum_{\{u, v\} \in E} W(u, v)\left\langle x_{u}, x_{v}\right\rangle
$$

## Approximation results

$K(r, G)=\max \frac{\operatorname{SDP}_{\infty}(A)}{\operatorname{SDP}_{r}(A)}$ over matrices $A$ with support graph $G$ upper bounds on $K(r, G)$ ("integrality gaps") rank $r$


Proof sketch for $\chi(G)=2$, rank $\geq 1$

- Want to show: $\operatorname{SDP}_{r}(A) \geq c \operatorname{SDP}_{\infty}(A)$ for bipartite $A$
- Transform optimal SDP $_{\infty}$ vectors $x_{i}$ into $r$-dimensional $y_{i}$ s.t.

$$
\left\langle y_{i}, y_{j}\right\rangle=c\left\langle x_{i}, x_{j}\right\rangle
$$

- $y_{i}$ are feasible for SDP $_{r}$
- they give value

$$
\sum A(i, j)\left\langle y_{i}, y_{j}\right\rangle=c \operatorname{SDP}_{\infty}(A)
$$

- Hence, $\operatorname{SDP}_{r}(A) \geq c \operatorname{SDP}_{\infty}(A)$
- $\sim K(r, G) \leq 1 / c$

How to transform the SDP solution vectors??

Random "rounding" and a generalized Grotendieck identity

- Sample $Z \in \mathbb{R}^{r \times n}$ with iid $N(0,1)$ entries
- For optimal SDP $_{\infty}$ vector $x$, set $y=Z x /\|Z x\|_{2}$
- What we would like to hold: $\mathbb{E}_{Z}\left[\left\langle y_{i}, y_{j}\right\rangle\right]=c\left\langle x_{i}, x_{j}\right\rangle$

Theorem. $\mathbb{E}_{Z}\left[\left\langle y_{i}, y_{j}\right\rangle\right]=E_{r}\left(\left\langle x_{i}, x_{j}\right\rangle\right)$
$=\gamma(r) \times\left(\left\langle x_{i}, x_{j}\right\rangle+\frac{1}{2(r+2)}\left\langle x_{i}, x_{j}\right\rangle^{3}+\right.$ $\frac{9}{8(r+2)(r+4)}\left\langle x_{i}, x_{j}\right\rangle^{5}+\frac{225}{48(r+2)(r+4)(r+6)}\left\langle x_{i}, x_{j}\right\rangle^{7}+$ $\frac{11025}{384(r+2)(r+4)(r+6)(r+8)}\left\langle x_{i}, x_{j}\right)^{9}+\frac{89305}{3880(r+2)(r+4)(r+6)(r+8)(r+10)}\left\langle x_{i}, x_{j}\right)^{11}$
)

- Grothendieck's identity: $E_{1}=\frac{2}{\pi} \arcsin$


## Krivine's embedding technique

- Embed the $\mathrm{SDP}_{\infty}$ vectors $x_{i}$ before rounding
- To embed, use the inverse of $E_{r}$

$$
E_{r}^{-1}(t)=\alpha_{1} t+\alpha_{2} t^{2}+\cdots
$$

- Set $S(x)=\left[\quad \sqrt{c\left|\alpha_{1}\right|} x \quad, \quad \sqrt{c^{2}\left|\alpha_{2}\right|} x^{\otimes 2} \quad, \ldots\right]$
- $T(x)=\left[\operatorname{sign}\left(\alpha_{1}\right) \sqrt{c\left|\alpha_{1}\right|} x, \operatorname{sign}\left(\alpha_{2}\right) \sqrt{c^{2}\left|\alpha_{2}\right|} x^{\otimes 2}, \ldots\right]$
- Inner product of $S(x)$ and $T(y)$ inverts $E_{r}$

$$
\langle S(x), S(y)\rangle=E_{r}^{-1}(c\langle x, y\rangle)
$$

Putting things together: "Embed, then round"

1. Get optimal vectors $x_{i}$ for $\operatorname{SDP}_{\infty}$
2. Krivine embedding

- For "left" index $i$ set $\tilde{x}_{i}=S\left(x_{i}\right)$
- For "right" index $j$ set $\tilde{x}_{j}=T\left(x_{i}\right)$

3. "Round"

- Sample $Z \sim N(0,1)^{r \times n}$

- set $y_{i}=Z \tilde{x}_{i} /\left\|Z \tilde{x}_{i}\right\|_{2}$

4. We have

$$
\begin{aligned}
\mathbb{E}_{Z}\left[\left\langle y_{i}, y_{j}\right\rangle\right] & =E_{r}\left(\left\langle\tilde{x}_{i}, \tilde{x}_{j}\right\rangle\right) \text { Grothenedieck identity } \\
& =E_{r}\left(E_{r}^{-1}\left(c\left\langle x_{i}, x_{j}\right\rangle\right)\right) \text { Krivine's trick } \\
& =c\left\langle x_{i}, x_{j}\right\rangle
\end{aligned}
$$

## Open problems

- [BMMN11] showed that Krivine's technique is not optimal for rounding SDP solutions to integer solutions
- Can their rounding scheme be extended to higher ranks?
- Krivine $+\vartheta$-type rounding and [AMMN06] rounding are favorable for small/large chromatic number resp.
- Is there some hybrid scheme of these two?

