Grothendieck inequalities for semidefinite programs with rank constraints

> Jop Briët CWI

Joint work with Fernando de Oliveira-Filho (TU Berlin) and Frank Vallentin (TU Delft)

China Theory Week 2011 Aarhus, Denmark

The plain-vanilla-flavor SDP problem

- Given: symmetric matrix $A \in \mathbb{R}^{n \times n}$ with diag(A) = 0
- Find: unit vectors x_1, \ldots, x_n that maximize the sum

$$\sum_{1 \le i < j \le n} A(i,j) \cdot \langle x_i, x_j \rangle$$

Can be solved in poly-time

SDPs with rank* constraint

Adding a little more structure...

Given: symmetric matrix $A \in \mathbb{R}^{n \times n}$ with diag(A) = 0and positive integer r

Find: *r*-dimensional unit vectors x_1, \ldots, x_n that maximize the sum

 $\sum_{1 \le i < j \le n} A(i,j) \cdot \langle x_i, x_j \rangle$

Denote this problem by SDP_r and its optimum by SDP_r(A) SDP_{∞} is the SDP relaxation of SDP_r: "drop the rank constraint" *The word rank appears because the matrix $X(i,j) = \langle x_i, x_j \rangle$ has rank r A tiny example: n = 2

Given: $a \in \mathbb{R}$ and $r \in \mathbb{N}$

Find: $x, y \in S^{r-1}$ that maximize $a \cdot \langle x, y \rangle$

The rank-1 case has a combinatorial nature

Higher ranks have a more geometric flavor

$$x \uparrow \qquad a \cdot \langle x, y \rangle \qquad y \downarrow$$

Applications of SDPs with rank constraint

- Combinatorial cases (rank-1):
 - MAX CUT
 - cut-norm of a matrix
 - statistical physics (Ising spin glasses)
 - communication complexity
- ▶ Geometrical cases (ranks ≥ 2):
 - quantum information theory
 - statistical physics (planar and Heisenberg spin glasses)

MAIN QUESTION

How close are $SDP_{\infty}(A)$ and $SDP_{r}(A)$?

Inapproximability results are known for all ranks $r \ge 1$

"Hyperplane rounding" does not work

• Obvious strategy to approximate SDP_1 by SDP_{∞}

- 1. Solve SDP_{∞} , get vectors $x_1, \ldots, x_n \in S^{n-1}$
- 2. Sample vector $z \in \mathbb{R}^n$ with iid N(0, 1) entries
- 3. Round: Set $y_i = \operatorname{sign}\langle x_i, z \rangle$
- Grothendieck identity: $\mathbb{E}_{z}[y_{i}y_{j}] = \frac{2}{\pi} \operatorname{arcsin}(\langle x_{i}, x_{j} \rangle)$

Coefficients A(i,j) of y_iy_j give bad cancellations

Approximation results for the rank-1 case <u>Positive result</u>

► [N98, NRT99, Meg01, CW04]: O(log n)-approximation

Negative results

- [KO'D09]: Matching $\Omega(\log n)$ lower bound
- ► [ABKHS05, KO'D09]: Hardness-of-approximation results

Better results hold for "bipartite matrices"...

Matrices with bipartite support graph

► For graph G = (V, E) and W = diag(deg(V)) - Adj(G), $SDP_1\left(\begin{bmatrix} 0 & W \\ W^T & 0 \end{bmatrix}\right) = 4|MAX CUT(G)|$

► [GW95]: .878-approximation for these types of matrices SDP_∞ SDP₁ .878⁻¹ SDP₁

Grothendieck's inequality

- [AN04]: O(1)-approximation of SDP₁(A) for bipartite A
- ▶ Based on an algorithmic proof of *Grothendieck's inequality:*

for universal constant K_G and bipartite A [Grothendieck53]

- Exact value of K_G : unknown
- ▶ [Krivine79]: $K_G \le 1.78...$, [BMMN11]: $K_G < 1.78...$
- ▶ [RS09]: Assuming UGC, $\not\exists$ ($K_G \delta$)-approximation for $\delta > 0$

Other support graphs? Higher ranks?

Big contrast between complete and bipartite support graphs

• Better approximation results for other support graphs??

What about higher ranks??

The graphical Grothendieck problem with rank-r contstraint

Given: graph G = (V, E), symmetric matrix A with support graph G and positive integer r

Find: *r*-dimensional unit vectors *x_i* that maximize the sum

 $\sum_{i,j} A(i,j) \cdot \langle x_i, x_j \rangle$

Application: spin glasses

Model of interacting particles introduced by Stanley (1968)

Geometric instances: spin glasses

Particles are located at vertices of an interaction graph

Particles are unit vectors

- ▶ 1D = Ising model
- 2D = planar model
- ► 3D = Heisenberg model

Edge weights $W : E \to \mathbb{R}$ give their interaction strength

Problem: compute the *ground state* of the total system:

$$-\max\sum_{\{u,v\}\in E} W(u,v)\langle x_u,x_v\rangle$$

Approximation results

$K(r, G) = \max \frac{\text{SDP}_{\infty}(A)}{\text{SDP}_{r}(A)}$ over matrices A with support graph G

upper bounds on K(r, G) ("integrality gaps")

Proof sketch for $\chi(G) = 2$, rank ≥ 1

• Want to show: $SDP_r(A) \ge c SDP_{\infty}(A)$ for bipartite A

▶ Transform optimal SDP_∞ vectors x_i into <u>*r*-dimensional</u> y_i s.t.

$$\langle y_i, y_j \rangle = \boldsymbol{c} \langle x_i, x_j \rangle$$

- ▶ y_i are *feasible* for SDP_r
- they give value

$$\sum A(i,j) \langle y_i, y_j \rangle = c \operatorname{SDP}_{\infty}(A)$$

- Hence, $SDP_r(A) \ge c SDP_{\infty}(A)$
- $\blacktriangleright \rightsquigarrow K(r, G) \leq 1/c$

How to transform the SDP solution vectors??

Random "rounding" and a generalized Grotendieck identity

- Sample $Z \in \mathbb{R}^{r \times n}$ with iid N(0, 1) entries
- For optimal SDP_{∞} vector x, set $y = Zx/||Zx||_2$
- What we would like to hold: $\mathbb{E}_{\mathbb{Z}}[\langle y_i, y_j \rangle] = c \langle x_i, x_j \rangle$

Theorem.
$$\mathbb{E}_{Z}[\langle y_{i}, y_{j} \rangle] = E_{r}(\langle x_{i}, x_{j} \rangle)$$

$$= \gamma(r) \times \left(\langle x_{i}, x_{j} \rangle + \frac{1}{2(r+2)} \langle x_{i}, x_{j} \rangle^{3} + \frac{9}{8(r+2)(r+4)} \langle x_{i}, x_{j} \rangle^{5} + \frac{225}{48(r+2)(r+4)(r+6)} \langle x_{i}, x_{j} \rangle^{7} + \frac{11025}{384(r+2)(r+4)(r+6)(r+8)} \langle x_{i}, x_{j} \rangle^{9} + \frac{893025}{3840(r+2)(r+4)(r+6)(r+8)} \langle x_{i}, x_{j} \rangle^{11} + \cdots \right)$$

• Grothendieck's identity: $E_1 = \frac{2}{\pi} \arcsin$

Krivine's embedding technique

- Embed the SDP $_{\infty}$ vectors x_i before rounding
- To embed, use the *inverse* of E_r

$$E_r^{-1}(t) = \alpha_1 t + \alpha_2 t^2 + \cdots$$

- Set $S(x) = \begin{bmatrix} \sqrt{c|\alpha_1|}x & \sqrt{c^2|\alpha_2|}x^{\otimes 2} & \dots \end{bmatrix}$
- $T(x) = [\operatorname{sign}(\alpha_1)\sqrt{c|\alpha_1|}x, \operatorname{sign}(\alpha_2)\sqrt{c^2|\alpha_2|}x^{\otimes 2}, \dots]$

• Inner product of S(x) and T(y) inverts E_r

$$\langle S(\mathbf{x}), S(\mathbf{y}) \rangle = E_r^{-1}(\mathbf{c} \langle \mathbf{x}, \mathbf{y} \rangle)$$

Putting things together: "Embed, then round"

- 1. Get optimal vectors x_i for SDP_{∞}
- 2. Krivine embedding
 - For "left" index *i* set $\tilde{x}_i = S(x_i)$
 - For "right" index j set $\tilde{x}_j = T(x_i)$
- 3. "Round"
 - Sample $Z \sim N(0,1)^{r \times n}$
 - set $y_i = Z\tilde{x}_i / \|Z\tilde{x}_i\|_2$
- 4. We have

 $\mathbb{E}_{Z}[\langle y_{i}, y_{j} \rangle] = E_{r}(\langle \tilde{x}_{i}, \tilde{x}_{j} \rangle) \text{ Grothenedieck identity}$ $= E_{r}(E_{r}^{-1}(c \langle x_{i}, x_{j} \rangle)) \text{ Krivine's trick}$ $= c \langle x_{i}, x_{j} \rangle$

Open problems

- [BMMN11] showed that Krivine's technique is *not* optimal for rounding SDP solutions to integer solutions
- Can their rounding scheme be extended to higher ranks?

- ► Krivine+ϑ-type rounding and [AMMN06] rounding are favorable for small/large chromatic number resp.
- Is there some hybrid scheme of these two?

arXiv:1011.1754 [math.OC]