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The plain-vanilla-flavor SDP problem

Given: symmetric matrix A ∈ Rn×n with diag(A) = 0

Find: unit vectors x1, . . . , xn that
maximize the sum

∑
1≤i<j≤n

A(i , j) · 〈xi , xj〉

Can be solved in poly-time



SDPs with rank∗ constraint

Adding a little more structure...

Given: symmetric matrix A ∈ Rn×n with diag(A) = 0
and positive integer r

Find: r -dimensional unit vectors x1, . . . , xn
that maximize the sum

∑
1≤i<j≤n

A(i , j) · 〈xi , xj〉

Denote this problem by SDPr and its optimum by SDPr (A)

SDP∞ is the SDP relaxation of SDPr : “drop the rank constraint”

∗The word rank appears because the matrix X (i , j) = 〈xi , xj〉 has rank r



A tiny example: n = 2

Given: a ∈ R and r ∈ N

Find: x , y ∈ S r−1 that maximize a · 〈x , y〉

The rank-1 case has a combinatorial nature

x = ±1 y = ±1
a · xy

Higher ranks have a more geometric flavor

a · 〈x , y〉x
y



Applications of SDPs with rank constraint

I Combinatorial cases (rank-1):

I MAX CUT

I cut-norm of a matrix

I statistical physics (Ising spin glasses)

I communication complexity

I Geometrical cases (ranks ≥ 2):

I quantum information theory

I statistical physics (planar and Heisenberg spin glasses)



MAIN QUESTION

How close are SDP∞(A) and SDPr(A)?

??SDPr

SDP∞

Inapproximability results are known for all ranks r ≥ 1



“Hyperplane rounding” does not work

I Obvious strategy to approximate SDP1 by SDP∞

1. Solve SDP∞, get vectors x1, . . . , xn ∈ Sn−1

2. Sample vector z ∈ Rn with iid N(0, 1) entries

3. Round: Set yi = sign〈xi , z〉

I Grothendieck identity: Ez [yiyj ] = 2
π arcsin(〈xi , xj〉)

t

2
π
arcsin t

t

I Coefficients A(i , j) of yiyj give bad cancellations

z⊥

xi

+1

−1



Approximation results for the rank-1 case

Positive result

I [N98, NRT99, Meg01, CW04]: O(log n)-approximation

O(log n) SDP1SDP1

SDP∞

Negative results

I [KO’D09]: Matching Ω(log n) lower bound

I [ABKHS05, KO’D09]: Hardness-of-approximation results

Better results hold for “bipartite matrices”. . .



Matrices with bipartite support graph

0

0

...
...

I For graph G = (V ,E ) and W = diag(deg(V ))− Adj(G ),

SDP1

([
0 W

W T 0

])
= 4|MAX CUT(G)|

I [GW95]: .878-approximation for these types of matrices

.878−1 SDP1SDP1

SDP∞



Grothendieck’s inequality

I [AN04]: O(1)-approximation of SDP1(A) for bipartite A

I Based on an algorithmic proof of Grothendieck’s inequality:

KG SDP1(A)SDP1(A)

SDP∞(A)

for universal constant KG and bipartite A [Grothendieck53]

I Exact value of KG : unknown

I [Krivine79]: KG ≤ 1.78 . . . , [BMMN11]: KG<1.78 . . .

I [RS09]: Assuming UGC, 6 ∃ (KG − δ)-approximation for δ > 0



Other support graphs? Higher ranks?

I Big contrast between complete and bipartite support graphs

I Better approximation results for other support graphs??

I What about higher ranks??



The graphical Grothendieck problem with rank-r contstraint

Given: graph G = (V ,E ),
symmetric matrix A with support graph G
and positive integer r

Find: r -dimensional unit vectors xi
that maximize the sum

∑
i ,j

A(i , j) · 〈xi , xj〉



Application: spin glasses

Model of interacting particles introduced by Stanley (1968)



Geometric instances: spin glasses

Particles are located at vertices of an interaction graph

Particles are unit vectors

I 1D = Ising model

I 2D = planar model

I 3D = Heisenberg model

Edge weights W : E → R give
their interaction strength

Problem: compute the ground
state of the total system:

−max
∑
{u,v}∈E

W (u, v)〈xu, xv 〉



Approximation results

K (r ,G ) = max SDP∞(A)
SDPr (A)

over matrices A with support graph G

rank r

χ(G )

upper bounds on K (r ,G ) (“integrality gaps”)
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Proof sketch for χ(G ) = 2, rank ≥ 1

I Want to show: SDPr (A) ≥ c SDP∞(A) for bipartite A

I Transform optimal SDP∞ vectors xi into r -dimensional yi s.t.

〈yi , yj〉 = c 〈xi , xj〉

I yi are feasible for SDPr

I they give value∑
A(i , j) 〈yi , yj〉 = c SDP∞(A)

I Hence, SDPr (A) ≥ c SDP∞(A)

I ; K (r ,G ) ≤ 1/c

How to transform the SDP solution vectors??



Random “rounding” and a generalized Grotendieck identity

I Sample Z ∈ Rr×n with iid N(0, 1) entries

I For optimal SDP∞ vector x , set y = Zx/‖Zx‖2

I What we would like to hold: EZ [〈yi , yj〉] = c〈xi , xj〉

Theorem. EZ [〈yi , yj〉] = Er

(
〈xi , xj〉

)
= γ(r)× (〈xi , xj〉+ 1

2(r+2)
〈xi , xj〉3 +

9
8(r+2)(r+4)〈xi , xj〉

5 + 225
48(r+2)(r+4)(r+6)〈xi , xj〉

7 +

11025
384(r+2)(r+4)(r+6)(r+8)

〈xi , xj〉9+ 893025
3840(r+2)(r+4)(r+6)(r+8)(r+10)

〈xi , xj 〉11 + · · · )

I Grothendieck’s identity: E1 = 2
π arcsin



Krivine’s embedding technique

I Embed the SDP∞ vectors xi before rounding

I To embed, use the inverse of Er

E−1
r (t) = α1t + α2t

2 + · · ·

I Set S(x) = [
√

c |α1|x ,
√

c2|α2|x⊗2 , . . . ]

I T (x) = [sign(α1)
√

c |α1|x , sign(α2)
√

c2|α2|x⊗2 , . . . ]

I Inner product of S(x) and T (y) inverts Er

〈S(x), S(y)〉 = E−1
r (c〈x , y〉)



Putting things together: “Embed, then round”

1. Get optimal vectors xi for SDP∞

2. Krivine embedding

I For “left” index i set x̃i = S(xi )

I For “right” index j set x̃j = T (xi )

3. “Round”

I Sample Z ∼ N(0, 1)r×n

I set yi = Zx̃i/‖Zx̃i‖2

4. We have

EZ [〈yi , yj〉] = Er (〈x̃i , x̃j〉) Grothenedieck identity

= Er

(
E−1r (c〈xi , xj〉)

)
Krivine’s trick

= c〈xi , xj〉

0

0

i

j



Open problems

I [BMMN11] showed that Krivine’s technique is not optimal for
rounding SDP solutions to integer solutions

I Can their rounding scheme be extended to higher ranks?

I Krivine+ϑ-type rounding and [AMMN06] rounding are
favorable for small/large chromatic number resp.

I Is there some hybrid scheme of these two?
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