
Polynomial time algorithms for Branching Markov
(Decision) Processes

Alistair Stewart

U. of Edinburgh

Joint work with:
Kousha Etessami, U. of Edinburgh

and
Mihalis Yannakakis, Columbia U.

CTW

August nth, 2012

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 2 / 27

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 2 / 27

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 2 / 27

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 2 / 27

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 2 / 27

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 2 / 27

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question

What is the probability of eventual

extinction, starting with one ?

xR =
1

3
x2
BxGxR +

1

2
xBxR +

1

6

xB =
1

4
x2
R +

3

4
xG = xBx

2
R

We get fixed point equations,
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 3 / 27

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question

What is the probability of eventual

extinction, starting with one ?

xR =

1

3
x2
BxGxR +

1

2
xBxR +

1

6

xB =
1

4
x2
R +

3

4
xG = xBx

2
R

We get fixed point equations,
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 3 / 27

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question

What is the probability of eventual

extinction, starting with one ?

xR =
1

3
x2
BxGxR +

1

2
xBxR +

1

6

xB =
1

4
x2
R +

3

4
xG = xBx

2
R

We get fixed point equations,
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 3 / 27

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question

What is the probability of eventual

extinction, starting with one ?

xR =
1

3
x2
BxGxR +

1

2
xBxR +

1

6

xB =
1

4
x2
R +

3

4
xG = xBx

2
R

We get fixed point equations,
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 3 / 27

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question

What is the probability of eventual

extinction, starting with one ?

xR =
1

3
x2
BxGxR +

1

2
xBxR +

1

6

xB =
1

4
x2
R +

3

4
xG = xBx

2
R

We get fixed point equations,
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 3 / 27

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question

What is the probability of eventual

extinction, starting with one ?

xR =
1

3
x2
BxGxR +

1

2
xBxR +

1

6

xB =
1

4
x2
R +

3

4
xG = xBx

2
R

We get fixed point equations,
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).

q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 3 / 27

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question

What is the probability of eventual

extinction, starting with one ?

xR =
1

3
x2
BxGxR +

1

2
xBxR +

1

6

xB =
1

4
x2
R +

3

4
xG = xBx

2
R

We get fixed point equations,
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 3 / 27

Probabilistic Polynomial Systems of Equations

1

3
x2BxGxR +

1

2
xBxR +

1

6

is a Probabilistic Polynomial: the coefficients are positive and sum to 1.

A Probabilistic Polynomial System (PPS) is a system

xi = Pi(x) i = 1, . . . , n

of n equations in n variables, where each Pi (x) is a probabilistic
polynomial. We denote the entire system by:

x = P(x)

Every multi-type Branching Process (BP) with n types corresponds to
such a PPS and vice-versa.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 4 / 27

Basic properties of PPSs, x = P(x)

P(x) defines a continuous map, P : [0, 1]n → [0, 1]n.
P : [0, 1]n → [0, 1]n defines a monotone operator on [0, 1]n.

Proposition

Every PPS, x = P(x) has a least fixed point (LFP), q∗ ∈ [0, 1]n.
(q∗ can be irrational.)

q∗ is the vector of extinction/termination probabilities for the
corresponding BP (SCFG).

Question

Can we compute the probabilities q∗ efficiently (in P-time)?

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 5 / 27

Main Result: P-time approximation

Answer

Yes

Theorem (Main Result of [Etessami-S.-Yannakakis, STOC ’12])

Given a PPS, x = P(x), with LFP q∗ ∈ [0, 1]n, we can compute a rational
vector v ∈ [0, 1]n such that ||v − q∗||∞ ≤ 2−j , in time polynomial in the
encoding size |P| of the equations, and in j.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 6 / 27

Newton’s method

Newton’s method

Seeking a solution to F (x) = 0, we start at a guess x(0), and iterate:
x(k+1) := x(k) − (F ′(x(k)))−1F (x(k))

Here F ′(x), is the Jacobian matrix:

F ′(x) =


∂F1
∂x1

. . . ∂F1
∂xn

...
...

...
∂Fn
∂x1

. . . ∂Fn
∂xn


For PPSs, Newton iteration looks like this:

x(k+1) := x(k) + (I − P ′(x(k)))−1(P(x(k))− x(k))
where P ′(x) is the Jacobian of P(x).

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 7 / 27

Newton on PPSs

We can decompose x = P(x) into its strongly connected components
(SCCs), based on variable dependencies, and eliminate “0” variables.

[Etessami-Yannakakis’05] showed that this decomposed Newton’s method
converges monotonically to the LFP q∗.

But...

They gave no upper bounds for the number of iterations needed for
PPSs.

They proved hardness results for approximating the LFP of Monotone
Polynomial Systems (MPSs), for which the same Newton’s method
works.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 8 / 27

What is Newton’s worst case behavior for PPSs?

[Esparza,Kiefer,Luttenberger,2010] studied Newton’s method on MPSs

Gave bad examples of PPSs, x = P(x), requiring exponentially many
iterations, as a function of the encoding size |P| of the equations, to
converge to within additive error < 1/2.

For strongly-connected equation systems they gave an exponential
upper bound.

They gave no upper bounds for arbitrary PPSs.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 9 / 27

Qualitative problems for PPSs are in P-time

Theorem ([Kolmogorov-Sevastyanov’47,Harris’63])

For certain classes of strongly-connected PPSs, q∗i = 1 for all i if the
spectral radius of the “moment matrix”, P ′(1), is > 1. Otherwise q∗i < 1
for all i .

Theorem ([Etessami-Yannakakis’05])

For a PPS, x = P(x), deciding whether q∗i = 1 is in P-time.

(Deciding whether q∗i = 0 is also in P-time.)

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 10 / 27

Algorithm

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

Theorem

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then after k ≥ 4|P|+ j iterations ||q∗ − x(k)|| ≤ 2−j .

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 11 / 27

Algorithm

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

Theorem

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then after k ≥ 4|P|+ j iterations ||q∗ − x(k)|| ≤ 2−j .

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 11 / 27

Algorithm with rounding

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

3 After each iteration, round down to a multiple of 2−h

Theorem

If, after each Newton iteration, we round down to a multiple of 2−h where
h := 4|P|+ j + 2, after h iterations ‖q∗ − x(h)‖∞ ≤ 2−j .

Thus we have a P-time algorithm (in the standard Turing model).

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 12 / 27

Proof outline: key lemmas

(1− q∗) is the vector of non-termination, or survival, probabilities.

Lemma

If q∗ − x(k) ≤ λ(1− q∗) for some λ > 0, then q∗ − x(k+1) ≤ λ
2 (1− q∗).

Lemma

For any PPS with LFP q∗, such that 0 < q∗ < 1, for any i ,
q∗i ≤ 1− 2−4|P|.

Theorem

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then after k ≥ 4|P|+ j iterations ||q∗ − x(k)|| ≤ 2−j .

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 13 / 27

Proof outline: key lemmas

(1− q∗) is the vector of non-termination, or survival, probabilities.

Lemma

If q∗ − x(k) ≤ λ(1− q∗) for some λ > 0, then q∗ − x(k+1) ≤ λ
2 (1− q∗).

Lemma

For any PPS with LFP q∗, such that 0 < q∗ < 1, for any i ,
q∗i ≤ 1− 2−4|P|.

Theorem

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then after k ≥ 4|P|+ j iterations ||q∗ − x(k)|| ≤ 2−j .

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 13 / 27

Proof outline: key lemmas

(1− q∗) is the vector of non-termination, or survival, probabilities.

Lemma

If q∗ − x(k) ≤ λ(1− q∗) for some λ > 0, then q∗ − x(k+1) ≤ λ
2 (1− q∗).

Lemma

For any PPS with LFP q∗, such that 0 < q∗ < 1, for any i ,
q∗i ≤ 1− 2−4|P|.

Theorem

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then after k ≥ 4|P|+ j iterations ||q∗ − x(k)|| ≤ 2−j .

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 13 / 27

Proof outline: key lemmas

(1− q∗) is the vector of non-termination, or survival, probabilities.

Lemma

If q∗ − x(k) ≤ λ(1− q∗) for some λ > 0, then q∗ − x(k+1) ≤ λ
2 (1− q∗).

Lemma

For any PPS with LFP q∗, such that 0 < q∗ < 1, for any i ,
q∗i ≤ 1− 2−4|P|.

Theorem

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then after k ≥ 4|P|+ j iterations ||q∗ − x(k)|| ≤ 2−j .

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 13 / 27

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 14 / 27

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 14 / 27

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 14 / 27

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 14 / 27

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 14 / 27

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 14 / 27

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Question

What is the maximum probability of

extinction, starting with one ?

xR =
1

3
x2
BxGxY +

1

2
xBxR +

1

6

xB =
1

4
x2
R +

3

4
xG = xBx

2
R

xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact

The maximum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 15 / 27

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Question

What is the maximum probability of

extinction, starting with one ?

xR =
1

3
x2
BxGxY +

1

2
xBxR +

1

6

xB =
1

4
x2
R +

3

4
xG = xBx

2
R

xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact

The maximum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 15 / 27

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Question

What is the maximum probability of

extinction, starting with one ?

xR =
1

3
x2
BxGxY +

1

2
xBxR +

1

6

xB =
1

4
x2
R +

3

4
xG = xBx

2
R

xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact

The maximum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 15 / 27

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Question

What is the maximum probability of

extinction, starting with one ?

xR =
1

3
x2
BxGxY +

1

2
xBxR +

1

6

xB =
1

4
x2
R +

3

4
xG = xBx

2
R

xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact

The maximum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 15 / 27

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Question

What is the maximum probability of

extinction, starting with one ?

xR =
1

3
x2
BxGxY +

1

2
xBxR +

1

6

xB =
1

4
x2
R +

3

4
xG = xBx

2
R

xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact

The maximum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 15 / 27

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Question

What is the minimum probability of

extinction, starting with one ?

xR =
1

3
x2
BxGxY +

1

2
xBxR +

1

6

xB =
1

4
x2
R +

3

4
xG = xBx

2
R

xY = min{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact

The minimum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 16 / 27

Maximum Probabilistic Polynomial Systems of Equations

1

3
x2BxGxR +

1

2
xBxR +

1

6

is a Probabilistic Polynomial: the coefficients are positive and sum to 1.

A Maximum Probabilistic Polynomial System (maxPPS) is a system

xi = max{pi ,j(x) : j = 1, . . . ,mi} i = 1, . . . , n

of n equations in n variables, where each pi ,j(x) is a probabilistic
polynomial. We denote the entire system by:

x = P(x)

These are the Bellman equations for a maximizing BMDP with n types

A max/minPPS is either a maxPPS or an minPPS

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 17 / 27

Basic properties of max/minPPSs, x = P(x)

P(x) defines a continuous map, P : [0, 1]n → [0, 1]n.
P : [0, 1]n → [0, 1]n defines a monotone operator on [0, 1]n.

Proposition

Every max/minPPS, x = P(x) has a least fixed point (LFP),
q∗ ∈ [0, 1]n.
(q∗ can be irrational.)

q∗ is the vector of optimal extinction probabilities for the
corresponding BMDP.

Question

Can we compute the probabilities q∗ efficiently (in P-time)?

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 18 / 27

Main Result: P-time approximation

Answer

Yes

Theorem (Main Result of [Etessami-S.-Yannakakis, ICALP ’12])

Given a max/minPPS, x = P(x), with LFP q∗ ∈ [0, 1]n, we can compute a
rational vector v ∈ [0, 1]n such that ||v − q∗||∞ ≤ 2−j , in time polynomial
in the encoding size |P| of the equations, and in j.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 19 / 27

if we had no nonlinear terms...

If the polynomials pi ,j(x) were all linear, then x = P(x) are the
Bellman optimality equations for maximizing/minimizing the hitting
(reachability) probability on a finite-state MDP.

The LFP solution, q∗, yields the optimal probabilities. In the
maximization case, q∗ can be computed easily in P-time using LP:

minimize :
∑

i xi ;
subject to :
pi ,j(x) ≤ xi , for all i , j
xi ≥ 0 for all i

In the minimization case, a little graph-theoretic analysis, combined
with a different LP, can be used to solve the problem in P-time.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 20 / 27

A Newton iteration as a first-order approximation

An iteration of Newton’s method on a PPS, applied on current vector
y ∈ Rn, solves the equation

Py(x) = x

where Py(x) ≡ P(y) + P ′(y)(x− y) is a linear approximation of P(x)

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 21 / 27

Generalised Newton’s method

Linearisation

Given a maxPPS

(P(x))i = max{pi ,j(x) : j = 1, . . . ,mi} i = 1, . . . , n

We define the linearisation, Py (x), by:

(Py(x))i = max{pi ,j(y) +∇pi ,j(y).(x− y) : j = 1, . . . ,mi} i = 1, . . . , n

Generalised Newton’s method, applied at vector y

For a maxPPS,
minimize

∑
i xi subject to Py(x) ≤ x;

For a minPPS,
maximize

∑
i xi subject to Py(x) ≥ x;

These give a solution to Py(x) = x, and yield the GNM iteration we need.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 22 / 27

Generalised Newton’s method

Linearisation

Given a maxPPS

(P(x))i = max{pi ,j(x) : j = 1, . . . ,mi} i = 1, . . . , n

We define the linearisation, Py (x), by:

(Py(x))i = max{pi ,j(y) +∇pi ,j(y).(x− y) : j = 1, . . . ,mi} i = 1, . . . , n

Generalised Newton’s method, applied at vector y

For a maxPPS,
minimize

∑
i xi subject to Py(x) ≤ x;

For a minPPS,
maximize

∑
i xi subject to Py(x) ≥ x;

These give a solution to Py(x) = x, and yield the GNM iteration we need.
Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 22 / 27

Algorithm for PPSs(Recap)

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0. After each iteration, round down to a multiple of 2−h

Theorem

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, using h := 4|P|+ j + 1 bits of precision, then after
k ≥ 4|P|+ j + 1 iterations ||q∗ − x(k)|| ≤ 2−j . We can do all this in time
polynomial in |P| and j.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 23 / 27

Algorithm for PPSs(Recap)

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0. After each iteration, round down to a multiple of 2−h

Theorem

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, using h := 4|P|+ j + 1 bits of precision, then after
k ≥ 4|P|+ j + 1 iterations ||q∗ − x(k)|| ≤ 2−j . We can do all this in time
polynomial in |P| and j.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 23 / 27

Algorithm for max/minPPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.
(Computable in P-time [Etessami-Yannakakis’06].)

2 On the resulting system of equations, run Generalized Newton’s
Method, starting from 0. After each iteration, round down to a
multiple of 2−h.
Each iteration of GNM can be computed in P-time by solving an LP.

Theorem

Given a max/minPPS x = P(x) with LFP 0 < q∗ < 1, if we apply GNM
starting at x(0) = 0, using h := 4|P|+ j + 1 bits of precision, then after
k ≥ 4|P|+ j + 1 iterations ||q∗ − x(k)|| ≤ 2−j . We can do all this in time
polynomial in |P| and j.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 24 / 27

Algorithm for max/minPPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.
(Computable in P-time [Etessami-Yannakakis’06].)

2 On the resulting system of equations, run Generalized Newton’s
Method, starting from 0. After each iteration, round down to a
multiple of 2−h.
Each iteration of GNM can be computed in P-time by solving an LP.

Theorem

Given a max/minPPS x = P(x) with LFP 0 < q∗ < 1, if we apply GNM
starting at x(0) = 0, using h := 4|P|+ j + 1 bits of precision, then after
k ≥ 4|P|+ j + 1 iterations ||q∗ − x(k)|| ≤ 2−j . We can do all this in time
polynomial in |P| and j.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 24 / 27

Optimal and ε-optimal policies/strategies for
max/minPPSs

Theorem ([Etessami-Yannakakis’05])

Any (maximizing or minimizing) BMDP has a static optimal policy.

A static policy (or strategy) is one that, for every controlled type, always
deterministically chooses the same single rule.

Computing an optimal policy is hard (as hard as the SQRT-SUM and
PosSLP problem).

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 25 / 27

Theorem

Given a BMDP (or max/minPPS x = P(x)), and given ε > 0, we can
compute an ε-optimal static policy in time polynomial in |P| and log(1/ε).

First compute an approximation z to q∗ of the corresponding
max/minPPS with ‖q∗ − z‖∞ ≤ 2−14|P|−2ε.

For a minimizing BMDP, we choose, for the type corresponding to xi ,
the rule which gives the lowest approximate minimal extinction
probability pi ,j(y).

The maximizing BMDP case is more complicated but we start in a
similar way.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 26 / 27

Conclusions

P-time algorithms for computing extinction probabilities for MT-BPs.

We can approximate the optimal extinction probabilities of a
maximizing or minimizing Branching Markov Decision Process in
polynomial time.

We can compute ε-optimal policies of a BMDP in polynomial time.

Alistair Stewart (U. Edinburgh) Algorithms for Branching (Decision) Processes CTW 27 / 27

