Polynomial time algorithms for Branching Markov （Decision）Processes

Alistair Stewart

U．of Edinburgh

Joint work with：
Kousha Etessami，U．of Edinburgh and
Mihalis Yannakakis，Columbia U．

CTW
August nth， 2012

Multi-type Branching Processes (Kolmogorov,1940s)

Multi-type Branching Processes (Kolmogorov,1940s)

Multi-type Branching Processes (Kolmogorov,1940s)

Multi-type Branching Processes (Kolmogorov,1940s)

Multi-type Branching Processes (Kolmogorov,1940s)

Multi-type Branching Processes (Kolmogorov,1940s)

Multi-type Branching Procescec (Knlmnonrnv 104na)

Question

What is the probability of eventual

$1 / 2=\{\bigcirc, \bigcirc$
$1 / 6-\{ \}$

Multi-type Branching Procescea (KnImnonrnv 1040a)

Question

What is the probability of eventual

Multi-type Branching Procescea (KnImnonrnv 1040a)

Question

What is the probability of eventual

$$
x_{R}=\frac{1}{3} x_{B}^{2} x_{G} x_{R}+\frac{1}{2} x_{B} x_{R}+\frac{1}{6}
$$

Multi-type Branching Procescea (KnImnonrnv 1040a)

Question

What is the probability of eventual
$1 / 3,\left\{\begin{array}{l}1 / 2, \\ x_{R}=\frac{1}{3} x_{B}^{2} x_{G} x_{R}+\frac{1}{2} x_{B} x_{R}+\frac{1}{6} \\ x_{B}=\frac{1}{4} x_{R}^{2}+\frac{3}{4} \\ x_{G}=x_{B} x_{R}^{2}\end{array}\right.$

$$
\begin{aligned}
& x_{R}=\frac{1}{3} x_{B}^{2} x_{G} x_{R}+\frac{1}{2} x_{B} x_{R}+\frac{1}{6} \\
& x_{B}=\frac{1}{4} x_{R}^{2}+\frac{3}{4} \\
& x_{G}=x_{B} x_{R}^{2}
\end{aligned}
$$

Multi-type Branching Procescea (KnImnonrnv 1040a)

Question

What is the probability of eventual

We get fixed point equations,

$$
\overline{\mathbf{x}}=P(\overline{\mathbf{x}})
$$

Multi-type Branching Procescea (KnImnonrnv 104na)
 Question

What is the probability of eventual
$1 / 3,\left\{\begin{array}{l}1 / 2, \\ x_{R}=\frac{1}{3} x_{B}^{2} x_{G} x_{R}+\frac{1}{2} x_{B} x_{R}+\frac{1}{6} \\ x_{B}=\frac{1}{4} x_{R}^{2}+\frac{3}{4} \\ x_{G}=x_{B} x_{R}^{2}\end{array}\right.$

We get fixed point equations,

$$
\overline{\mathbf{x}}=P(\overline{\mathbf{x}}) .
$$

Fact

The extinction probabilities are the least fixed point, $\mathbf{q}^{*} \in[0,1]^{3}$, of $\overline{\mathbf{x}}=P(\overline{\mathbf{x}})$.

Multi-type Branching Procescea (KnImnonrnv 104na)
 Question

What is the probability of eventual

We get fixed point equations,

$$
\overline{\mathbf{x}}=P(\overline{\mathbf{x}}) .
$$

Fact

The extinction probabilities are the least fixed point, $\mathbf{q}^{*} \in[0,1]^{3}$, of $\overline{\mathbf{x}}=P(\overline{\mathbf{x}})$.

$$
q_{R}^{*}=0.276 ; q_{B}^{*}=0.769 ; q_{G}^{*}=0.059
$$

Probabilistic Polynomial Systems of Equations

$$
\frac{1}{3} x_{B}^{2} x_{G} x_{R}+\frac{1}{2} x_{B} x_{R}+\frac{1}{6}
$$

is a Probabilistic Polynomial: the coefficients are positive and sum to 1 .

A Probabilistic Polynomial System (PPS) is a system

$$
\mathbf{x}_{i}=P_{i}(\mathbf{x}) \quad i=1, \ldots, n
$$

of n equations in n variables, where each $P_{i}(x)$ is a probabilistic polynomial. We denote the entire system by:

$$
\mathbf{x}=P(\mathbf{x})
$$

Every multi-type Branching Process (BP) with n types corresponds to such a PPS and vice-versa.

Basic properties of PPSs, $\mathbf{x}=P(\mathbf{x})$

$P(x)$ defines a continuous map, $P:[0,1]^{n} \rightarrow[0,1]^{n}$.
$P:[0,1]^{n} \rightarrow[0,1]^{n}$ defines a monotone operator on $[0,1]^{n}$.

Proposition

- Every PPS, $x=P(x)$ has a least fixed point (LFP), $q^{*} \in[0,1]^{n}$. (q^{*} can be irrational.)
- q^{*} is the vector of extinction/termination probabilities for the corresponding BP (SCFG).

Question

Can we compute the probabilities q^{*} efficiently (in P-time)?

Main Result: P-time approximation

AnswerYes
Theorem (Main Result of [Etessami-S.-Yannakakis, STOC '12])

Given a PPS, $\mathbf{x}=P(\mathbf{x})$, with $L F P \mathbf{q}^{*} \in[0,1]^{n}$, we can compute a rational vector $\mathbf{v} \in[0,1]^{n}$ such that $\left\|\mathbf{v}-\mathbf{q}^{*}\right\|_{\infty} \leq 2^{-j}$, in time polynomial in the encoding size $|P|$ of the equations, and in j.

Newton's method

Newton's method

Seeking a solution to $F(\mathbf{x})=0$, we start at a guess $\mathbf{x}^{(0)}$, and iterate:

$$
\mathbf{x}^{(k+1)}:=\mathbf{x}^{(k)}-\left(F^{\prime}\left(\mathbf{x}^{(k)}\right)\right)^{-1} F\left(\mathbf{x}^{(k)}\right)
$$

Here $F^{\prime}(\mathbf{x})$, is the Jacobian matrix:

$$
F^{\prime}(\mathbf{x})=\left[\begin{array}{c}
\frac{\partial F_{1}}{\partial x_{1}} \cdots \frac{\partial F_{1}}{\partial x_{n}} \\
\vdots \vdots \\
\frac{\partial F_{n}}{\partial x_{1}} \cdots \frac{\partial F_{n}}{\partial x_{n}}
\end{array}\right]
$$

For PPSs, Newton iteration looks like this:

$$
\mathbf{x}^{(k+1)}:=\mathbf{x}^{(k)}+\left(I-P^{\prime}\left(\mathbf{x}^{(k)}\right)\right)^{-1}\left(P\left(\mathbf{x}^{(k)}\right)-\mathbf{x}^{(k)}\right)
$$

where $P^{\prime}(\mathbf{x})$ is the Jacobian of $P(\mathbf{x})$.

Newton on PPSs

We can decompose $\mathbf{x}=P(\mathbf{x})$ into its strongly connected components (SCCs), based on variable dependencies, and eliminate "0" variables.
[Etessami-Yannakakis'05] showed that this decomposed Newton's method converges monotonically to the LFP \mathbf{q}^{*}.

But...

- They gave no upper bounds for the number of iterations needed for PPSs.
- They proved hardness results for approximating the LFP of Monotone Polynomial Systems (MPSs), for which the same Newton's method works.

What is Newton's worst case behavior for PPSs?

[Esparza,Kiefer,Luttenberger,2010] studied Newton's method on MPSs

- Gave bad examples of PPSs, $\mathbf{x}=P(\mathbf{x})$, requiring exponentially many iterations, as a function of the encoding size $|P|$ of the equations, to converge to within additive error $<1 / 2$.
- For strongly-connected equation systems they gave an exponential upper bound.
- They gave no upper bounds for arbitrary PPSs.

Qualitative problems for PPSs are in P-time

Theorem ([Kolmogorov-Sevastyanov'47,Harris'63])

For certain classes of strongly-connected PPSs, $q_{i}^{*}=1$ for all i if the spectral radius of the "moment matrix", $P^{\prime}(1)$, is >1. Otherwise $q_{i}^{*}<1$ for all i.

Theorem ([Etessami-Yannakakis'05])

For a PPS, $\mathbf{x}=P(\mathbf{x})$, deciding whether $q_{i}^{*}=1$ is in P-time.
(Deciding whether $q_{i}^{*}=0$ is also in P-time.)

Algorithm

(1) Find and remove all variables x_{i} such that $q_{i}^{*}=0$ or $q_{i}^{*}=1$.
(2) On the resulting system of equations, run Newton's method starting from 0 .

Algorithm

(1) Find and remove all variables x_{i} such that $q_{i}^{*}=0$ or $q_{i}^{*}=1$.
(2) On the resulting system of equations, run Newton's method starting from 0 .

Theorem

Given a PPS $\mathbf{x}=P(\mathbf{x})$ with LFP $\mathbf{0}<\mathbf{q}^{*}<\mathbf{1}$, if we apply Newton starting at $\mathbf{x}^{(0)}=\mathbf{0}$, then after $k \geq 4|P|+j$ iterations $\left\|\mathbf{q}^{*}-\mathbf{x}^{(k)}\right\| \leq 2^{-j}$.

Algorithm with rounding

(1) Find and remove all variables x_{i} such that $q_{i}^{*}=0$ or $q_{i}^{*}=1$.
(2) On the resulting system of equations, run Newton's method starting from 0 .
(3) After each iteration, round down to a multiple of 2^{-h}

Theorem

If, after each Newton iteration, we round down to a multiple of 2^{-h} where $h:=4|P|+j+2$, after h iterations $\left\|\mathbf{q}^{*}-\mathbf{x}^{(h)}\right\|_{\infty} \leq 2^{-j}$.

Thus we have a P-time algorithm (in the standard Turing model).

Proof outline: key lemmas

$\left(\mathbf{1}-\mathbf{q}^{*}\right)$ is the vector of non-termination, or survival, probabilities.

Proof outline: key lemmas

$\left(\mathbf{1}-\mathbf{q}^{*}\right)$ is the vector of non-termination, or survival, probabilities.

> Lemma
> If $\mathbf{q}^{*}-\mathbf{x}^{(k)} \leq \lambda\left(\mathbf{1}-\mathbf{q}^{*}\right)$ for some $\lambda>0$, then $\mathbf{q}^{*}-\mathbf{x}^{(k+1)} \leq \frac{\lambda}{2}\left(\mathbf{1}-\mathbf{q}^{*}\right)$.

Proof outline: key lemmas

$\left(\mathbf{1}-\mathbf{q}^{*}\right)$ is the vector of non-termination, or survival, probabilities.

Lemma

If $\mathbf{q}^{*}-\mathbf{x}^{(k)} \leq \lambda\left(\mathbf{1}-\mathbf{q}^{*}\right)$ for some $\lambda>0$, then $\mathbf{q}^{*}-\mathbf{x}^{(k+1)} \leq \frac{\lambda}{2}\left(\mathbf{1}-\mathbf{q}^{*}\right)$.

Lemma

For any PPS with LFP \mathbf{q}^{*}, such that $\mathbf{0}<\mathbf{q}^{*}<\mathbf{1}$, for any i,

$$
q_{i}^{*} \leq 1-2^{-4|P|} .
$$

Proof outline: key lemmas

$\left(\mathbf{1}-\mathbf{q}^{*}\right)$ is the vector of non-termination, or survival, probabilities.

Lemma

If $\mathbf{q}^{*}-\mathbf{x}^{(k)} \leq \lambda\left(\mathbf{1}-\mathbf{q}^{*}\right)$ for some $\lambda>0$, then $\mathbf{q}^{*}-\mathbf{x}^{(k+1)} \leq \frac{\lambda}{2}\left(\mathbf{1}-\mathbf{q}^{*}\right)$.

Lemma

For any PPS with LFP \mathbf{q}^{*}, such that $\mathbf{0}<\mathbf{q}^{*}<\mathbf{1}$, for any i,

$$
q_{i}^{*} \leq 1-2^{-4|P|}
$$

Theorem

Given a PPS $\mathbf{x}=P(\mathbf{x})$ with LFP $\mathbf{0}<\mathbf{q}^{*}<\mathbf{1}$, if we apply Newton starting at $\mathbf{x}^{(0)}=\mathbf{0}$, then after $k \geq 4|P|+j$ iterations $\left\|\mathbf{q}^{*}-\mathbf{x}^{(k)}\right\| \leq 2^{-j}$.

Branching Markov Decision Processes

Branching Markov Decision Prnressea
 \section*{Question}

What is the maximum probability of extinction, starting with one

Branching Markov Decision Prnressea

Question

What is the maximum probability of extinction, starting with one ?

$$
\begin{aligned}
x_{R} & =\frac{1}{3} x_{B}^{2} x_{G} x_{Y}+\frac{1}{2} x_{B} x_{R}+\frac{1}{6} \\
x_{B} & =\frac{1}{4} x_{R}^{2}+\frac{3}{4} \\
x_{G} & =x_{B} x_{R}^{2}
\end{aligned}
$$

Branching Markov Decision Proresqea

Question

What is the maximum probability of extinction, starting with one ?

$$
\begin{aligned}
x_{R} & =\frac{1}{3} x_{B}^{2} x_{G} x_{Y}+\frac{1}{2} x_{B} x_{R}+\frac{1}{6} \\
x_{B} & =\frac{1}{4} x_{R}^{2}+\frac{3}{4} \\
x_{G} & =x_{B} x_{R}^{2} \\
x_{Y} & =\max \left\{x_{B}^{2}, x_{R}\right\}
\end{aligned}
$$

Branching Markov Decision Proresqea

Question

What is the maximum probability of extinction, starting with one ?

$$
\begin{aligned}
x_{R} & =\frac{1}{3} x_{B}^{2} x_{G} x_{Y}+\frac{1}{2} x_{B} x_{R}+\frac{1}{6} \\
x_{B} & =\frac{1}{4} x_{R}^{2}+\frac{3}{4} \\
x_{G} & =x_{B} x_{R}^{2} \\
x_{Y} & =\max \left\{x_{B}^{2}, x_{R}\right\}
\end{aligned}
$$

We get fixed point equations, $\overline{\mathbf{x}}=P(\overline{\mathbf{x}})$.

Branching Markov Decision Proresqea
 \section*{Question}

What is the maximum probability of extinction, starting with one ?

$$
\begin{aligned}
x_{R} & =\frac{1}{3} x_{B}^{2} x_{G} x_{y}+\frac{1}{2} x_{B} x_{R}+\frac{1}{6} \\
x_{B} & =\frac{1}{4} x_{R}^{2}+\frac{3}{4} \\
x_{G} & =x_{B} x_{R}^{2} \\
x_{Y} & =\max \left\{x_{B}^{2}, x_{R}\right\}
\end{aligned}
$$

We get fixed point equations, $\overline{\mathbf{x}}=P(\overline{\mathbf{x}})$.

Fact

The maximum extinction probabilities are the least fixed point, $\mathbf{q}^{*} \in[0,1]^{3}$, of $\overline{\mathbf{x}}=P(\overline{\mathbf{x}})$.

Branching Markov Decision Proresqea

Question

What is the minimum probability of extinction, starting with one ?

$$
\begin{aligned}
x_{R} & =\frac{1}{3} x_{B}^{2} x_{G} x_{Y}+\frac{1}{2} x_{B} x_{R}+\frac{1}{6} \\
x_{B} & =\frac{1}{4} x_{R}^{2}+\frac{3}{4} \\
x_{G} & =x_{B} x_{R}^{2} \\
x_{Y} & =\min \left\{x_{B}^{2}, x_{R}\right\}
\end{aligned}
$$

We get fixed point equations, $\overline{\mathbf{x}}=P(\overline{\mathbf{x}})$.

Fact

The minimum extinction probabilities are the least fixed point, $\mathbf{q}^{*} \in[0,1]^{3}$, of $\overline{\mathbf{x}}=P(\overline{\mathbf{x}})$.

Maximum Probabilistic Polynomial Systems of Equations

$$
\frac{1}{3} x_{B}^{2} x_{G} x_{R}+\frac{1}{2} x_{B} x_{R}+\frac{1}{6}
$$

is a Probabilistic Polynomial: the coefficients are positive and sum to 1 .

A Maximum Probabilistic Polynomial System (maxPPS) is a system

$$
\mathbf{x}_{i}=\max \left\{p_{i, j}(\mathbf{x}): j=1, \ldots, m_{i}\right\} \quad i=1, \ldots, n
$$

of n equations in n variables, where each $p_{i, j}(x)$ is a probabilistic polynomial. We denote the entire system by:

$$
\mathbf{x}=P(\mathbf{x})
$$

These are the Bellman equations for a maximizing BMDP with n types

A max/minPPS is either a maxPPS or an minPPS

Basic properties of max $/$ minPPSs, $x=P(x)$

$P(x)$ defines a continuous map, $P:[0,1]^{n} \rightarrow[0,1]^{n}$.
$P:[0,1]^{n} \rightarrow[0,1]^{n}$ defines a monotone operator on $[0,1]^{n}$.

Proposition

- Every max/minPPS, $x=P(x)$ has a least fixed point (LFP), $q^{*} \in[0,1]^{n}$.
(q^{*} can be irrational.)
- q^{*} is the vector of optimal extinction probabilities for the corresponding BMDP.

Question

Can we compute the probabilities q^{*} efficiently (in P-time)?

Main Result: P-time approximation

AnswerYes
Theorem (Main Result of [Etessami-S.-Yannakakis, ICALP '12])

Given a max/minPPS, $\mathbf{x}=P(\mathbf{x})$, with $L F P \mathbf{q}^{*} \in[0,1]^{n}$, we can compute a rational vector $\mathbf{v} \in[0,1]^{n}$ such that $\left\|\mathbf{v}-\mathbf{q}^{*}\right\|_{\infty} \leq 2^{-j}$, in time polynomial in the encoding size $|P|$ of the equations, and in j.

if we had no nonlinear terms...

- If the polynomials $p_{i, j}(x)$ were all linear, then $x=P(x)$ are the Bellman optimality equations for maximizing/minimizing the hitting (reachability) probability on a finite-state MDP.
- The LFP solution, q^{*}, yields the optimal probabilities. In the maximization case, q^{*} can be computed easily in P-time using LP:
minimize : $\sum_{i} x_{i} ;$
subject to :
$\begin{array}{ll}p_{i, j}(x) \leq x_{i}, & \text { for all } i, j \\ x_{i} \geq 0 & \text { for all } i\end{array}$
- In the minimization case, a little graph-theoretic analysis, combined with a different LP, can be used to solve the problem in P-time.

A Newton iteration as a first-order approximation

An iteration of Newton's method on a PPS, applied on current vector $y \in \mathbb{R}^{n}$, solves the equation

$$
P^{\mathrm{y}}(\mathbf{x})=\mathbf{x}
$$

where $P^{\mathbf{y}}(\mathbf{x}) \equiv P(\mathbf{y})+P^{\prime}(\mathbf{y})(\mathbf{x}-\mathbf{y})$ is a linear approximation of $P(x)$

Generalised Newton's method

Linearisation

Given a maxPPS

$$
(P(\mathbf{x}))_{i}=\max \left\{p_{i, j}(\mathbf{x}): j=1, \ldots, m_{i}\right\} \quad i=1, \ldots, n
$$

We define the linearisation, $P^{y}(x)$, by:
$\left(P^{\mathbf{y}}(\mathbf{x})\right)_{i}=\max \left\{p_{i, j}(\mathbf{y})+\nabla p_{i, j}(\mathbf{y}) \cdot(\mathbf{x}-\mathbf{y}): j=1, \ldots, m_{i}\right\} \quad i=1, \ldots, n$

Generalised Newton's method

Linearisation

Given a maxPPS

$$
(P(\mathbf{x}))_{i}=\max \left\{p_{i, j}(\mathbf{x}): j=1, \ldots, m_{i}\right\} \quad i=1, \ldots, n
$$

We define the linearisation, $P^{y}(x)$, by:
$\left(P^{\mathbf{y}}(\mathbf{x})\right)_{i}=\max \left\{p_{i, j}(\mathbf{y})+\nabla p_{i, j}(\mathbf{y}) \cdot(\mathbf{x}-\mathbf{y}): j=1, \ldots, m_{i}\right\} \quad i=1, \ldots, n$

Generalised Newton's method, applied at vector y

For a maxPPS,

$$
\operatorname{minimize} \sum_{i} x_{i} \text { subject to } P^{\mathrm{y}}(\mathbf{x}) \leq \mathbf{x} \text {; }
$$

For a minPPS,
maximize $\sum_{i} x_{i}$ subject to $P^{\mathbf{y}}(\mathbf{x}) \geq \mathbf{x} ;$
These give a solution to $P^{\mathbf{y}}(\mathbf{x})=\mathbf{x}$, and yield the GNM iteration we need.

Algorithm for PPSs(Recap)

(1) Find and remove all variables x_{i} such that $q_{i}^{*}=0$ or $q_{i}^{*}=1$.
(2) On the resulting system of equations, run Newton's method starting from $\mathbf{0}$. After each iteration, round down to a multiple of 2^{-h}

Algorithm for PPSs(Recap)

(1) Find and remove all variables x_{i} such that $q_{i}^{*}=0$ or $q_{i}^{*}=1$.
(2) On the resulting system of equations, run Newton's method starting from 0 . After each iteration, round down to a multiple of 2^{-h}

Theorem

Given a PPS $\mathbf{x}=P(\mathbf{x})$ with LFP $\mathbf{0}<\mathbf{q}^{*}<\mathbf{1}$, if we apply Newton starting at $\mathbf{x}^{(0)}=\mathbf{0}$, using $h:=4|P|+j+1$ bits of precision, then after $k \geq 4|P|+j+1$ iterations $\left\|\mathbf{q}^{*}-\mathbf{x}^{(k)}\right\| \leq 2^{-j}$. We can do all this in time polynomial in $|P|$ and j.

Algorithm for max/minPPSs

(1) Find and remove all variables x_{i} such that $q_{i}^{*}=0$ or $q_{i}^{*}=1$. (Computable in P-time [Etessami-Yannakakis'06].)
(2) On the resulting system of equations, run Generalized Newton's Method, starting from $\mathbf{0}$. After each iteration, round down to a multiple of 2^{-h}.
Each iteration of GNM can be computed in P-time by solving an LP.

Algorithm for max/minPPSs

(1) Find and remove all variables x_{i} such that $q_{i}^{*}=0$ or $q_{i}^{*}=1$. (Computable in P-time [Etessami-Yannakakis'06].)
(2) On the resulting system of equations, run Generalized Newton's Method, starting from $\mathbf{0}$. After each iteration, round down to a multiple of 2^{-h}.
Each iteration of GNM can be computed in P-time by solving an LP.

Theorem

Given a max/minPPS $\mathbf{x}=P(\mathbf{x})$ with LFP $\mathbf{0}<\mathbf{q}^{*}<\mathbf{1}$, if we apply GNM starting at $\mathbf{x}^{(0)}=\mathbf{0}$, using $h:=4|P|+j+1$ bits of precision, then after $k \geq 4|P|+j+1$ iterations $\left\|\mathbf{q}^{*}-\mathbf{x}^{(k)}\right\| \leq 2^{-j}$. We can do all this in time polynomial in $|P|$ and j.

Optimal and ϵ-optimal policies/strategies for max/minPPSs

Theorem ([Etessami-Yannakakis'05])

Any (maximizing or minimizing) BMDP has a static optimal policy.

A static policy (or strategy) is one that, for every controlled type, always deterministically chooses the same single rule.

Computing an optimal policy is hard (as hard as the SQRT-SUM and PosSLP problem).

Theorem

Given a BMDP (or max/minPPS $x=P(x)$), and given $\epsilon>0$, we can compute an ϵ-optimal static policy in time polynomial in $|P|$ and $\log (1 / \epsilon)$.

- First compute an approximation z to q^{*} of the corresponding max/minPPS with $\left\|q^{*}-z\right\|_{\infty} \leq 2^{-14|P|-2} \epsilon$.
- For a minimizing BMDP, we choose, for the type corresponding to x_{i}, the rule which gives the lowest approximate minimal extinction probability $p_{i, j}(y)$.
- The maximizing BMDP case is more complicated but we start in a similar way.

Conclusions

- P-time algorithms for computing extinction probabilities for MT-BPs.
- We can approximate the optimal extinction probabilities of a maximizing or minimizing Branching Markov Decision Process in polynomial time.
- We can compute ϵ-optimal policies of a BMDP in polynomial time.

