Single-Call Mechanisms

Christopher Wilkens

UC Berkeley

China Theory Week August 16, 2012

joint work with Balasubramanian Sivan

Truthfulness:

A mechanism is *truthful* if a player's best strategy is to tell the truth.

Example:

A second-price auction is truthful because a player's best strategy is to bid the amount of money he is willing to pay. Truthfulness requires information:

A bidder maximizes his utility, so truthful payments "balance" the bidder's utility across different outcomes.

...but how many outcomes are necessary to compute payments?

Single-call mechanisms are a powerful tool:

Given any procedure with truthful prices, a single-call mechanism guarantees truthfulness using only the actual outcome!

...with caveats.

Babaioff, Kleinberg, and Slivkins (2010):

Single-call mechanisms exist for monotone, single-parameter allocation procedures.

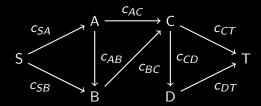
W and Sivan:

Single-call mechanisms exist using VCG prices. What do single-call mechanisms look like? What are the best single-call mechanisms? Nisan and Ronen (1998):

Naïvely computing VCG prices for a shortest-path auction requires the length of |E| + 1 different $S \rightarrow T$ paths.

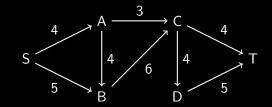
Standard model:

- Graph G = (V, E).
- Edge $e \in E$ has cost c_e if used, 0 otherwise.
- c_e is private information.
- Auctioneer pays $-P_e$ to learn c_e .



How much should we pay edge CT to learn c_{CT} ?

 $-P_{CT}^{VCG} = [\text{Cost to others without CT}] - [\text{Cost to others with CT}]$

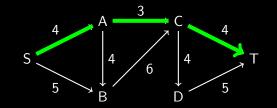


$$-P_{CT}^{VCG} =$$

How much should we pay edge CT to learn c_{CT} ?

 $-P_{CT}^{VCG} = [\text{Cost to others without CT}] - [\text{Cost to others with CT}]$

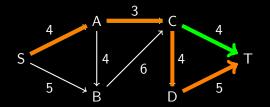
Shortest $S \rightarrow T$ path



How much should we pay edge CT to learn c_{CT} ?

 $-P_{CT}^{VCG} = [\text{Cost to others without CT}] - [\text{Cost to others with CT}]$

Shortest $S \rightarrow T$ path Shortest $S \rightarrow T$ path without edge CT



 $-P_{CT}^{VCG} = cost(SACDT) - cost(SAC) = 16 - 7 = 9$

|□▶ ◀뮵▶ ◀ె≥▶ ◀ె≥▶ = ♡९@

Algorithm 1: Naïve auction for $S \to T$ paths in G = (V, E)input : Bids $b_e = c_e$. output : $S \to T$ path and payments $\{P_e\}$. for $e \in E$ do $[\Gamma'_e \leftarrow$ shortest path in $G' = (V, E \setminus \{e\}, c_e);$ $\Gamma \leftarrow$ shortest path in $G = (V, E, c_e);$ outcome : Γ payments: $-P_e = \sum_{x \in \Gamma'_e} c_x - \sum_{x \in \Gamma \setminus \{e\}} c_x$ What if we can only compute the length one path?

Babaioff, Kleinberg, and Slivkins (2010):

Truthfulness in expectation only requires measurements along the path you actually use!

... if you occasionally pick the wrong one...

...and you occasionally get large rebates.

Why do we care?

Application: PPC Advertising Auctions

I have two ad slots to sell to two bidders:

< □ >

Pay-Per-Click (PPC) — bidders only pay when ad is clicked.

Standard model:

- Ad slots $j \in \{1,2\}$, probability user clicks (CTR) is $c_1 > c_2$
- Bidders $i \in \{1, 2\}$, value-per-click v_i where $v_1 > v_2$

• Utility $\mathbf{E}[u_i] = c_{j(i)}v_i - P_i$

Auctioneer estimates of CTRs ĉ_j

Standard model:

- Ad slots $j \in \{1, 2\}$, probability user clicks (CTR) is $c_1 > c_2$
- Bidders $i \in \{1, 2\}$, value-per-click v_i where $v_1 > v_2$
 - Utility $\mathbf{E}[u_i] = c_{j(i)}v_i P_i$
- Auctioneer estimates of CTRs ĉ_j

True VCG price:

$$\mathbf{E}[P_1^{VCG}] = (c_1 - c_2)v_2$$

Standard model:

- Ad slots $j \in \{1, 2\}$, probability user clicks (CTR) is $c_1 > c_2$
- Bidders $i \in \{1, 2\}$, value-per-click v_i where $v_1 > v_2$

• Utility
$$\mathbf{E}[u_i] = c_{j(i)}v_i - P_i$$

Auctioneer estimates of CTRs ĉ_j

True VCG price:

$$\mathsf{E}[P_1^{VCG}] = (c_1 - c_2)v_2$$

Pay-per-click (PPC) price using estimates:

$$PPC_1 = rac{1}{\hat{c}_1}(\hat{c}_1 - \hat{c}_2)v_2$$

Standard model:

- Ad slots $j \in \{1, 2\}$, probability user clicks (CTR) is $c_1 > c_2$
- Bidders $i \in \{1, 2\}$, value-per-click v_i where $v_1 > v_2$

• Utility
$$\mathbf{E}[u_i] = c_{j(i)}v_i - P_i$$

Auctioneer estimates of CTRs ĉ_j

True VCG price:

$$\mathsf{E}[P_1^{VCG}] = (c_1 - c_2)v_2$$

Pay-per-click (PPC) price using estimates:

$$PPC_1 = \frac{1}{\hat{c}_1}(\hat{c}_1 - \hat{c}_2)v_2$$

Expected PPC price:

$$\mathbf{E}[P_1] = c_1 PPC_1 = \frac{c_1}{\hat{c}_1} (\hat{c}_1 - \hat{c}_2) v_2 \left(\neq P_1^{VCG} \right)$$

500

Nontruthful Example:

Auction parameters:

$$\begin{array}{ll} v_1 = \$1.10 & c_1 = 0.1 \\ v_2 = b_2 = \$1 & \hat{c}_1 = 0.11 \\ c_2 = \hat{c}_2 = 0.09 \end{array}$$

Advertiser 1 prefers to lie:

Bid: $b_1 = v_1 = \$1.10$ $b_1 = \$0$ Expected Utility:0.092<0.099

Single-Call Solution:

We can use the BKS single-call construction:

- Even bad estimates ĉ_j give a monotone, single-parameter allocation procedure.
- Observing clicks gives an unbiased estimate of a bidder's true expected value c_{j(i)}v_i.

Informational limitations are general...

PPC advertising auctions with estimated CTRs: $[value] = [bid] \times [CTR]$

Machine scheduling with per-unit-time bids: $[cost] = [bid] \times [runtime]$

Any allocation procedure where bids are "incomplete" could be vulnerable!

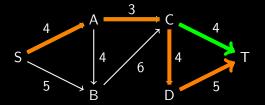
Single-call mechanisms offer robust truthfulness guarantees.

Single-Call Mechanisms with VCG Prices: VCG Shortest-Path Example

How much should we pay edge CT to learn c_{CT} ?

 $-P_{CT}^{VCG} = [\text{Cost to others without CT}] - [\text{Cost to others with CT}]$

Shortest $S \rightarrow T$ path Shortest $S \rightarrow T$ path without edge CT



 $-P_{CT}^{VCG} = cost(SACDT) - cost(SAC) = 16 - 7 = 9$

Problem:

We observe *cost*(*SAC*), but *cost*(*SACDT*) could be wrong!

Idea:

Most of the time... ...select SACT and pay $-P_{CT} \approx -cost(SAC)$. With small probability γselect SACDT and pay rebate $-P_{CT} \approx \frac{1}{\gamma}cost(SACDT)$.

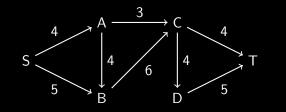
Result:

$$-\mathbf{E}[P_{CT}] \approx cost(SACDT) - cost(SAC)$$

and we only needed observed costs!

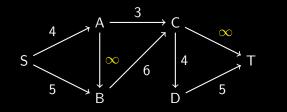
A full single-call implementation:

I Start with given costs.



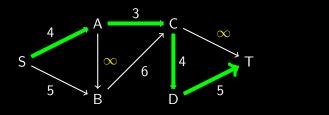
A full single-call implementation:

- **1** Start with given costs.
- **2** Randomly change some costs to ∞ .



A full single-call implementation:

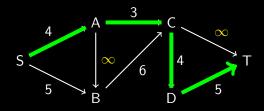
- **1** Start with given costs.
- **2** Randomly change some costs to ∞ .
- **3** Compute shortest path.



A full single-call implementation:

- **1** Start with given costs.
- **2** Randomly change some costs to ∞ .
- **3** Compute shortest path.
- 4 Pay edge e

$$-\mathcal{P}_{e} = \left(\sum_{x \in \Gamma \setminus \{e\}} c_{x}\right) \times \begin{cases} -1, & \hat{c}_{e} = c_{e} \\ \frac{1-\gamma}{\gamma}, & \hat{c}_{e} = \infty \end{cases}$$



Algorithm 2: Single-call auction for $S \rightarrow T$ paths in G = (V, E)input : Bids $b_e = c_e$. **output** : $S \rightarrow T$ path and payments $\{P_e\}$. for $e \in E$ do with probability $1-\gamma$ $\hat{c}_e \leftarrow c_e;$ otherwise $\hat{c}_e \leftarrow \infty;$ $\Gamma \leftarrow$ shortest path in $G = (V, E, \hat{c}_e)$; outcome : payments: $-\mathcal{P}_e = \left(\sum_{x \in \Gamma \setminus \{e\}} c_x\right) \times \begin{cases} -1, & \hat{c}_e = c_e \\ \frac{1-\gamma}{2}, & \hat{c}_e = \infty \end{cases}$

Single-Call Theory

Players bid: For each possible outcome o, a player claims to have value $b_i(o)$. (his actual value is $v_i(o)$)

The "auctioneer" picks an outcome: Model as an allocation function A mapping bids b to outcomes o. (e.g. A(b) = "give the item slot to the highest bidder.")

Money exchanged: Bidders pay P_i to auctioneer.

Single-Call Mechanisms

Mechanism $\mathcal{M} = (A, \{\mathcal{P}_i\})$ that is truthful in expectation and calls A only once.

Single-Call Mechanisms Reductions

Input:

Black box allocation rule A that maximizes welfare.

Output:

Mechanism $\mathcal{M} = (A, \{\mathcal{P}_i\})$ that is truthful in expectation and calls A only once.

Single-Call Mechanisms Reductions

Input:

Black box allocation rule A that maximizes welfare.

Output:

Mechanism $\mathcal{M} = (A, \{\mathcal{P}_i\})$ that is truthful in expectation and calls A only once. Allocation rule $\mathcal{A} \approx A$ and mechanism $\mathcal{M} = (\mathcal{A}, \mathcal{P}_i)$ that is truthful in expectation. Single-call reductions are the tool for creating single-call mechanisms.

Prior Work

Theorem (Babaioff, Kleinberg, and Slivkins 2010)

There is a single-call reduction that takes as input any monotone single-parameter allocation rule A(b) and returns a truthful-in-expectation mechanism $\mathcal{M} = (\mathcal{A}, \{\mathcal{P}_i\})$ with $\mathcal{A} \approx A$ that only calls A once.

Our Work

W and Sivan:

BKS works for single-parameter domains...does a similar approach work using VCG prices?

There is a single-call reduction for MIDR allocation rules that uses VCG prices.

What do single-call mechanisms look like?

We characterize "all single-call reductions" for single-parameter domains and VCG prices.

Large rebates and "wrong" choices are bad... BKS and WS are optimal for their domains.

Existence: "VCG" Single-Call Reductions

The MIDRtoMech (A, γ) Reduction

```
Algorithm 3: MIDRtoMech(A, \gamma)
input : MIDR allocation function A.
output: Truthful-in-expectation mechanism \mathcal{M} = (\mathcal{A}, \{\mathcal{P}_i\}).
Solicit bids b from agents;
for i \in [n] do
        with probability 1-\gamma
             Set \hat{b}_i = b_i;
        otherwise
          Set \hat{b}_i = "zero";
Outcome: \mathcal{A}(b) = \mathcal{A}(\hat{b});
 Payments:
\mathcal{P}_i(b) = \left(\sum_{j \neq i} b_j(\mathcal{A}(\hat{b}))\right) 	imes \begin{cases} -1, & \hat{b}_i = b_i \\ rac{1-\gamma}{2}, & \hat{b}_i = "zero" \end{cases}
```

The MIDRtoMech(A, γ) Reduction

Theorem

For all maximal-in-distributional-range (MIDR) allocation rules A, the single-call reduction MIDRtoMech(A, γ) produces a mechanism $\mathcal{M} = (\mathcal{A}, \{\mathcal{P}_i\})$ that is truthful in expectation. Characterization: What Single-Call Reductions Exist?

Characterizing Reductions

A single-call reduction/mechanism must...

- Take *A* as a black box.
- Request b from bidders.
- Evaluate A on at most one bid vector \hat{b} , causing the outcome $A(\hat{b})$ to be realized.
- Charge payments \mathcal{P}_i that are a function of things it knows.

Characterizing Reductions

Algorithm 4: Generic Single-Call Reduction $(\mu, \{\mathcal{P}_i\})$

input : Black box access to allocation function *A*. output : Truthful-in-expectation mechanism $\mathcal{M} = (\mathcal{A}, \{\mathcal{P}_i\})$.

Solicit bid vector b from agents;

Sample $\hat{b} \sim \mu_b$;

outcome : $\mathcal{A}(b) = \mathcal{A}(\hat{b})$ payments: $\mathcal{P}_i(\mathcal{A}(\hat{b}), \hat{b}, b)$

Characterizing VCG-Based Reductions

Theorem

A single-call reduction $(\mu, \{\mathcal{P}_i\})$ using VCG prices is truthful for all MIDR allocation rules A if and only if:

■ μ corresponds to the following idea: randomly pick a set of bidders $M \subseteq [n]$ and "ignore" bidders not in M. The distribution Pr(M) should be independent of b

$$\square \mathcal{P}_i = \left(\sum_{j \neq i} b_j(\mathcal{A}(\hat{b}^M))\right) \times \begin{cases} -1, & i \in M \\ \frac{\Pr(M \cup \{i\})}{\Pr(M)}, & i \notin M \end{cases}$$

Proof idea:

- μ must be such that \mathcal{A} is MIDR.
- Write VCG payments for general single-call reduction and equate to *P*.

Characterizing VCG-Based Reductions

Theorem

A single-call reduction $(\mu, \{\mathcal{P}_i\})$ using VCG prices is truthful for all MIDR allocation rules A if and only if:

• μ corresponds to the following idea: randomly pick a set of bidders $M \subseteq [n]$ and "ignore" bidders not in M. The distribution Pr(M) should be independent of b

$$\mathbb{P}_{i} = \left(\sum_{j \neq i} b_{j}(A(\hat{b}^{M})) \right) \times \begin{cases} -1, & i \in M \\ \frac{\Pr(M \cup \{i\})}{\Pr(M)}, & i \notin M \end{cases}$$

Proof idea:

- μ must be such that \mathcal{A} is MIDR.
- Write VCG payments for general single-call reduction and equate to *P*.

Characterizing VCG-Based Reductions

Theorem

A single-call reduction $(\mu, \{\mathcal{P}_i\})$ using VCG prices is truthful for all MIDR allocation rules A if and only if:

■ μ corresponds to the following idea: randomly pick a set of bidders $M \subseteq [n]$ and "ignore" bidders not in M. The distribution Pr(M) should be independent of b

$$\mathbb{P}_i = \left(\sum_{j \neq i} b_j(A(\hat{b}^M))\right) \times \begin{cases} -1, & i \in M \\ \frac{\Pr(M \cup \{i\})}{\Pr(M)}, & i \notin M \end{cases}$$

Proof idea:

- μ must be such that \mathcal{A} is MIDR.
- Write VCG payments for general single-call reduction and equate to *P*.

Optimality: What are the Best Single-Call Reductions? Single-call reductions trade *expectation* for *risk*.

Single-call mechanisms sacrifice expected behavior:

- Expected welfare may be worse than A
- Expected revenue may be less than A.
- Nontrivial likelihood of choosing "wrong" outcome. (Precision)

Optimal Reductions: Risk

Single-call payments may have a high variance:

- Large payment variance $\max Var(\mathcal{P}_i)$
- Large worst-case payment max $|\mathcal{P}_i|$

Optimal Reductions

Lemma

The reduction $MIDRtoMech(A, \gamma)...$

- ...has (normalized) payment variance $\frac{1-\gamma}{\gamma}$.
- \blacksquare ...has (normalized) worst-case payment $\frac{1-\gamma}{\gamma}$.
- \blacksquare ...guarantees a welfare approximation of 1γ .
- \blacksquare ...guarantees a revenue approximation of $(1 \gamma)^n$.
- ... has precision $(1 \gamma)^n$.

Optimal Reductions

Theorem (Optimality of MIDRtoMech (A, γ))

Among single-call reductions that yield a truthful mechanism for all MIDR A, MIDRtoMech (A, γ) simultaneously optimizes max Var (\mathcal{P}_i) and max $|\mathcal{P}_i|$ with respect to a bound on welfare, revenue, or precision.

Single-Parameter Domains

Characterization:

Analogous characterization holds for single-parameter domains, but a general proof requires measure theory.

Proof uses payment characterization from Archer and Tardos (2001).

Optimality: BKS optimizes metrics simultaneously for bidders with positive types. Informational restrictions are natural and common: Problems like PPC ad auctions have limited information that breaks truthfulness for standard truthful mechanisms.

Single-Call Mechanisms are powerful and general: Single-call mechanisms can be constructed in many ways for two of the largest classes of allocations that admit truthful prices... ...but they have substantial tradeoffs.

Main open question:

What domains admit practical single-call mechanisms?

Thank you.