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Truthfulness:

A mechanism is truthful if a player’s best strategy is to tell the
truth.

Example:

A second-price auction is truthful because a player’s best strategy
is to bid the amount of money he is willing to pay.



Truthfulness requires information:

A bidder maximizes his utility, so truthful payments “balance” the
bidder’s utility across different outcomes.

...but how many outcomes are necessary to compute payments?

Single-call mechanisms are a powerful tool:

Given any procedure with truthful prices, a single-call mechanism
guarantees truthfulness using only the actual outcome!

...with caveats.



Babaioff, Kleinberg, and Slivkins (2010):

Single-call mechanisms exist for monotone, single-parameter
allocation procedures.

W and Sivan:

Single-call mechanisms exist using VCG prices.

What do single-call mechanisms look like?

What are the best single-call mechanisms?



Nisan and Ronen (1998):

Näıvely computing VCG prices for a shortest-path auction requires
the length of |E |+ 1 different S → T paths.



VCG Shortest-Path Auctions

Standard model:

Graph G = (V ,E ).

Edge e ∈ E has cost ce if used, 0 otherwise.

ce is private information.

Auctioneer pays −Pe to learn ce .
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VCG Shortest-Path Auctions

How much should we pay edge CT to learn cCT ?

−PVCG
CT = [Cost to others without CT]− [Cost to others with CT]

Shortest S → T path

Shortest S → T path without edge CT
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−PVCG
CT =

cost(SACDT )− cost(SAC ) = 16− 7 = 9
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VCG Shortest-Path Auctions

Algorithm 1: Näıve auction for S → T paths in G = (V ,E )

input : Bids be = ce .
output : S → T path and payments {Pe}.
for e ∈ E do

Γ′e ← shortest path in G ′ = (V ,E \ {e}, ce);

Γ← shortest path in G = (V ,E , ce);

outcome : Γ
payments: −Pe =

∑
x∈Γ′

e
cx −

∑
x∈Γ\{e} cx



What if we can only compute the length one path?



Babaioff, Kleinberg, and Slivkins (2010):

Truthfulness in expectation only requires measurements along the
path you actually use!

...if you occasionally pick the wrong one...
...and you occasionally get large rebates.



Why do we care?



Application:
PPC Advertising Auctions



PPC Ad Auctions

I have two ad slots to sell to two bidders:

Pay-Per-Click (PPC) — bidders only pay when ad is clicked.



PPC Ad Auctions

Standard model:

Ad slots j ∈ {1, 2}, probability user clicks (CTR) is c1 > c2

Bidders i ∈ {1, 2}, value-per-click vi where v1 > v2

Utility E[ui ] = cj(i)vi − Pi

Auctioneer estimates of CTRs ĉj

True VCG price:
E[PVCG

1 ] = (c1 − c2)v2

Pay-per-click (PPC) price using estimates:

PPC1 =
1

ĉ1
(ĉ1 − ĉ2)v2

Expected PPC price:

E[P1] = c1PPC1 =
c1

ĉ1
(ĉ1 − ĉ2)v2

(
6= PVCG

1

)
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(ĉ1 − ĉ2)v2

Expected PPC price:

E[P1] = c1PPC1 =
c1

ĉ1
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(ĉ1 − ĉ2)v2
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PPC Ad Auctions

Nontruthful Example:

Auction parameters:

v1 = $1.10
v2 = b2 = $1

c1 = 0.1
ĉ1 = 0.11

c2 = ĉ2 = 0.09

Advertiser 1 prefers to lie:

Bid: b1 = v1 = $1.10 b1 = $0
Expected Utility: 0.092 < 0.099



PPC Ad Auctions

Single-Call Solution:

We can use the BKS single-call construction:

Even bad estimates ĉj give a monotone, single-parameter
allocation procedure.

Observing clicks gives an unbiased estimate of a bidder’s true
expected value cj(i)vi .



Informational limitations are general...

PPC advertising auctions with estimated CTRs:
[value] = [bid ]× [CTR]

Machine scheduling with per-unit-time bids:
[cost] = [bid ]× [runtime]

...

Any allocation procedure where bids are “incomplete” could be
vulnerable!

Single-call mechanisms offer robust truthfulness guarantees.



Single-Call Mechanisms with VCG Prices:
VCG Shortest-Path Example



VCG Shortest-Path Auctions

How much should we pay edge CT to learn cCT ?

−PVCG
CT = [Cost to others without CT]− [Cost to others with CT]

Shortest S → T path

Shortest S → T path without edge CT
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VCG Shortest-Path Auctions

Problem:

We observe cost(SAC ), but cost(SACDT ) could be wrong!



VCG Shortest-Path Auctions

Idea:

Most of the time...
...select SACT and pay −PCT ≈ −cost(SAC ).

With small probability γ...
...select SACDT and pay rebate −PCT ≈ 1

γ cost(SACDT ).

Result:
−E[PCT ] ≈ cost(SACDT )− cost(SAC )

and we only needed observed costs!



VCG Shortest-Path Auctions

A full single-call implementation:

1 Start with given costs.

2 Randomly change some costs to ∞.

3 Compute shortest path.

4 Pay edge e

−Pe =
(∑

x∈Γ\{e} cx
)
×

{
−1, ĉe = ce
1−γ
γ , ĉe =∞
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γ , ĉe =∞

S

A

B

C

D

T

4

5

∞

3

6
4

∞

5



VCG Shortest-Path Auctions

Algorithm 2: Single-call auction for S → T paths in G = (V ,E )

input : Bids be = ce .
output : S → T path and payments {Pe}.
for e ∈ E do

with probability 1− γ
ĉe ← ce ;

otherwise
ĉe ←∞;

Γ← shortest path in G = (V ,E , ĉe);

outcome : Γ

payments: −Pe =
(∑

x∈Γ\{e} cx
)
×

{
−1, ĉe = ce
1−γ
γ , ĉe =∞



Single-Call Theory



What is a Mechanism?

Players bid:

For each possible outcome o, a player claims to have value bi (o).
(his actual value is vi (o))

The “auctioneer” picks an outcome:

Model as an allocation function A mapping bids b to outcomes o.
(e.g. A(b) =“give the item slot to the highest bidder.”)

Money exchanged:

Bidders pay Pi to auctioneer.



Single-Call Mechanisms

Input:

Black box allocation rule A that maximizes welfare.

Output:

Mechanism M = (A, {Pi}) that is truthful in expectation and calls
A only once.

Allocation rule A ≈ A and
mechanism M = (A,Pi ) that is truthful in expectation.



Single-Call Mechanisms Reductions

Input:

Black box allocation rule A that maximizes welfare.

Output:

Mechanism M = (A, {Pi}) that is truthful in expectation and calls
A only once.

Allocation rule A ≈ A and
mechanism M = (A,Pi ) that is truthful in expectation.



Single-Call Mechanisms Reductions

Input:

Black box allocation rule A that maximizes welfare.

Output:

Mechanism M = (A, {Pi}) that is truthful in expectation and calls
A only once.
Allocation rule A ≈ A and
mechanism M = (A,Pi ) that is truthful in expectation.



Single-call reductions are the tool for creating single-call mechanisms.



Prior Work

Theorem (Babaioff, Kleinberg, and Slivkins 2010)

There is a single-call reduction that takes as input any monotone
single-parameter allocation rule A(b) and returns a
truthful-in-expectation mechanism M = (A, {Pi}) with A ≈ A
that only calls A once.



Our Work

W and Sivan:

BKS works for single-parameter domains...does a similar approach
work using VCG prices?

There is a single-call reduction for MIDR allocation rules that uses
VCG prices.

What do single-call mechanisms look like?

We characterize “all single-call reductions” for single-parameter
domains and VCG prices.

Large rebates and “wrong” choices are bad...

BKS and WS are optimal for their domains.



Existence:
“VCG” Single-Call Reductions



The MIDRtoMech(A, γ) Reduction

Algorithm 3: MIDRtoMech(A, γ)

input : MIDR allocation function A.
output: Truthful-in-expectation mechanism M = (A, {Pi}).

Solicit bids b from agents;
for i ∈ [n] do

with probability 1− γ
Set b̂i = bi ;

otherwise

Set b̂i = “zero ′′;

Outcome: A(b) = A(b̂);
Payments:

Pi (b) =
(∑

j 6=i bj(A(b̂))
)
×

{
−1, b̂i = bi
1−γ
γ , b̂i = “zero ′′

;



The MIDRtoMech(A, γ) Reduction

Theorem

For all maximal-in-distributional-range (MIDR) allocation rules A,
the single-call reduction MIDRtoMech(A, γ) produces a mechanism
M = (A, {Pi}) that is truthful in expectation.



Characterization:
What Single-Call Reductions Exist?



Characterizing Reductions

A single-call reduction/mechanism must...

Take A as a black box.

Request b from bidders.

Evaluate A on at most one bid vector b̂, causing the outcome
A(b̂) to be realized.

Charge payments Pi that are a function of things it knows.



Characterizing Reductions

Algorithm 4: Generic Single-Call Reduction (µ, {Pi})
input : Black box access to allocation function A.
output : Truthful-in-expectation mechanism M = (A, {Pi}).

Solicit bid vector b from agents;

Sample b̂ ∼ µb;

outcome : A(b) = A(b̂)
payments: Pi (A(b̂), b̂, b)



Characterizing VCG-Based Reductions

Theorem

A single-call reduction (µ, {Pi}) using VCG prices is truthful for all
MIDR allocation rules A if and only if:

µ corresponds to the following idea: randomly pick a set of
bidders M ⊆ [n] and “ignore” bidders not in M. The
distribution Pr(M) should be independent of b

Pi =
(∑

j 6=i bj(A(b̂M))
)
×

{
−1, i ∈ M
Pr(M∪{i})

Pr(M) , i 6∈ M

Proof idea:

µ must be such that A is MIDR.

Write VCG payments for general single-call reduction and
equate to P.
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Optimality:
What are the Best Single-Call Reductions?



Single-call reductions trade expectation for risk.



Optimal Reductions: Expectation

Single-call mechanisms sacrifice expected behavior:

Expected welfare may be worse than A

Expected revenue may be less than A.

Nontrivial likelihood of choosing “wrong” outcome.
(Precision)



Optimal Reductions: Risk

Single-call payments may have a high variance:

Large payment variance max Var(Pi )
Large worst-case payment max |Pi |



Optimal Reductions

Lemma

The reduction MIDRtoMech(A, γ)...

...has (normalized) payment variance 1−γ
γ .

...has (normalized) worst-case payment 1−γ
γ .

...guarantees a welfare approximation of 1− γ.

...guarantees a revenue approximation of (1− γ)n.

...has precision (1− γ)n.



Optimal Reductions

Theorem (Optimality of MIDRtoMech(A, γ))

Among single-call reductions that yield a truthful mechanism for
all MIDR A, MIDRtoMech(A, γ) simultaneously optimizes
max Var(Pi ) and max |Pi | with respect to a bound on welfare,
revenue, or precision.



Single-Parameter Domains



Single-Parameter Domains

Characterization:

Analogous characterization holds for single-parameter domains, but
a general proof requires measure theory.

Proof uses payment characterization from Archer and Tardos
(2001).

Optimality:

BKS optimizes metrics simultaneously for bidders with positive
types.



Conclusion and Open Questions

Informational restrictions are natural and common:

Problems like PPC ad auctions have limited information that
breaks truthfulness for standard truthful mechanisms.

Single-Call Mechanisms are powerful and general:

Single-call mechanisms can be constructed in many ways for two of
the largest classes of allocations that admit truthful prices...

...but they have substantial tradeoffs.

Main open question:

What domains admit practical single-call mechanisms?



Thank you.
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