From Irreducible Representations to Locally Decodable Codes

Klim Efremenko

Tel-Aviv University

August 13, 2012

- Encoding $C : \mathbb{F}^k \to \mathbb{F}^n$, $n \ge k$.
- Even if C(x) is adversary corrupted in δn positions we still can recover x.
- We can achieve n = O(k) and linear time encoding and decoding.

If we want only one bit x_i we still need to decode the hole message

- Encoding $C : \mathbb{F}^k \to \mathbb{F}^n$, $n \ge k$.
- Even if C(x) is adversary corrupted in δn positions we still can recover x.
- We can achieve n = O(k) and linear time encoding and decoding.

If we want only one bit x_i we still need to decode the hole message

Definition: Locally Decodable Codes

 $C(x_1, x_2, ..., x_k) = (w_1, w_2, ..., w_n)$ is LDC if every x_i can be recovered from q entries of $C(\vec{x})$, even if C(x) is corrupted (in up-to δn coordinates) with high probability (w.p $1 - \varepsilon$). There exists a probabilistic decoding algorithm d_i s.t. $d_i(w_1, w_2, ..., w_n) = x_i$ d_i reads only q symbols of \vec{w}

< 回 > < 三 > < 三 >

Applications of LDCs

- Probabilistically checkable proofs.
- Worst case average case reductions
- Pseudo-random generators
- Hardness amplification
- Private information retrieval schemes
- Banach Spaces

Constructions of LDC

- Reed-Muller Codes: Codes based on evaluation of multivariate polynomials.
- Matching Vectors Codes: Codes based on matching vector families.

his Work

We present a framework for the construction of LDCs from the representation theory which captures both of the above constructions.

Constructions of LDC

- Reed-Muller Codes: Codes based on evaluation of multivariate polynomials.
- Matching Vectors Codes: Codes based on matching vector families.

This Work

We present a framework for the construction of LDCs from the representation theory which captures both of the above constructions.

# queries	Lower Bounds	Upper Bounds
1	Do not exist	
2	2 ^k	2 ^k
> 2	$k^{1+arepsilon(q)}$	$\approx \exp(\exp O(\log k))$ MVC
polylog(k)	-	Poly(k), RM
k^{ε}	-	$1+\delta(arepsilon)k,RM$

[KT00, KdW03, Woo07, Yek08, E09, IS08, MFL+10, KSY11 ...]

Definition: Representations

Definition (Representation of a Group)

Let *G* be a group. A representation (ρ, V) of *G* is a group homomorphism $\rho : G \to GL(V)$, $\rho(g_1 \cdot g_2) = \rho(g_1) \cdot \rho(g_2), \forall g_1, g_2 \in G.$

Definition (Sub-Representation)

Let $\rho : G \to GL(V)$ be a representation of *G*. Subspace $W \subset V$ is a sub-representation if $\rho(g)W = W$ for every $g \in G$.

Definition (Irreducible-Representation)

A representation (ρ , V) is irreducible if it does not have non-trivial sub-representations.

Examples of Representations

Example

- Trivial representation: $\rho(g) = 1$ for every g
- Permutational representation: *G* acts on *X* then (\mathbb{F}^X, ρ) where $\tau(g)$ permutes coordinates. $\tau(g)v[x] = v[g^{-1}x]$. Let $v = (1, 1, ..., 1) \in \mathbb{F}^X$. Then *v* spans one dim. sub-reps of \mathbb{F}^X . Let

$$V = \{ v \in \mathbb{F}^X : \sum_{x \in X} v[x] = 0 \}.$$

Then *V* is sub-representation of \mathbb{F}^{X} .

So Regular representation: permutational representation when X = G.

Theorem (Main Theorem)

 (ρ, V) irrep. of G Let $g_1, g_2, \ldots g_q \in G, c_1, \ldots c_q \in \mathbb{F}$ s. t. $\sum c_i \rho(g_i)$ is a rank one matrix then there exists $(q, \delta, q\delta)$ LDC

$$\mathcal{C}: V \to \mathbb{F}[G].$$

Klim Efremenko (Tel-Aviv University) From Irreducible Representations to Locally [

Example

- Let $G = S_n$,
 - (ρ , \mathbb{F}^n) perm. reps. Let $V = \{v \in \mathbb{F}^n : \sum_{i=1}^n v[i] = 0\}$ is an irreducible sub-reps. Let $g_1 = id, g_2 = (1, 2)$ then

$$(\rho(g_1) - \rho(g_2))v = (v[1] - v[2])(1, -1, 0, ..., 0).$$

Thus $\rho(g_1) - \rho(g_2)$ rank one matrix.

This gives [n-1,n!] LDC with 2-queries.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclutions and Future Work

- Give a conditions for representations to have sparse rank one element.
- Prove any non-trivial lower bounds for this model.
- Extend this model for modular representation theory.