From Irreducible Representations to Locally Decodable Codes

Klim Efremenko

Tel-Aviv University
August 13, 2012

Error Correcting Codes

Motivation

- Encoding $\mathcal{C}: \mathbb{F}^{k} \rightarrow \mathbb{F}^{n}, n \geq k$.
- Even if $\mathcal{C}(x)$ is adversary corrupted in δn positions we still can recover x.
- We can achieve $n=O(k)$ and linear time encoding and decoding.

If we want only one bit x_{i} we still need to decode the hole

 message
Error Correcting Codes

Motivation

- Encoding $\mathcal{C}: \mathbb{F}^{k} \rightarrow \mathbb{F}^{n}, n \geq k$.
- Even if $\mathcal{C}(x)$ is adversary corrupted in δn positions we still can recover x.
- We can achieve $n=O(k)$ and linear time encoding and decoding.

If we want only one bit x_{i} we still need to decode the hole message

Definition of LDC

Definition: Locally Decodable Codes

$C\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$
is LDC if every x_{i} can be recovered from q entries of $C(\vec{x})$, even if $C(x)$ is corrupted (in up-to δn coordinates) with high probability (w.p $1-\varepsilon$).
There exists a probabilistic decoding algorithm d_{i} s.t.
$d_{i}\left(w_{1}, w_{2}, \ldots, w_{n}\right)=x_{i}$
d_{i} reads only q symbols of \vec{w}

Applicationsof LDCs

Applications of LDCs

- Probabilistically checkable proofs.
- Worst case - average case reductions
- Pseudo-random generators
- Hardness amplification
- Private information retrieval schemes
- Banach Spaces

Constructions of LDC

Constructions of LDC

- Reed-Muller Codes: Codes based on evaluation of multivariate polynomials.
- Matching Vectors Codes: Codes based on matching vector families.

> We present a framework for the construction of LDCs from the representation theory which captures both of the above constructions.

Constructions of LDC

Constructions of LDC

- Reed-Muller Codes: Codes based on evaluation of multivariate polynomials.
- Matching Vectors Codes: Codes based on matching vector families.

This Work

We present a framework for the construction of LDCs from the representation theory which captures both of the above constructions.

Upper and Lower Bounds(LDC)

\# queries	Lower Bounds	Upper Bounds
1	Do not exist	
2	2^{k}	2^{k}
>2	$k^{1+\varepsilon(q)}$	$\approx \exp (\exp O(\sqrt[\log q]{\log k})) \mathrm{MVC}$
polylog (k)	-	$\operatorname{Poly}(k), \mathrm{RM}$
k^{ε}	-	$1+\delta(\varepsilon) k, \mathrm{RM}$

[KT00, KdW03, Woo07, Yek08, E09, IS08, MFL+10, KSY11 ...]

Definition: Representations

Definition (Representation of a Group)

Let \mathcal{G} be a group. A representation (ρ, V) of \mathcal{G} is a group homomorphism $\rho: G \rightarrow G L(V)$,
$\rho\left(g_{1} \cdot g_{2}\right)=\rho\left(g_{1}\right) \cdot \rho\left(g_{2}\right), \forall g_{1}, g_{2} \in G$.

Definition (Sub-Representation)

Let $\rho: G \rightarrow G L(V)$ be a representation of G. Subspace $W \subset V$ is a sub-representation if $\rho(g) W=W$ for every $g \in G$.

Definition (Irreducible-Representation)

A representation (ρ, V) is irreducible if it does not have non-trivial sub-representations.

Examples of Representations

Example

(1) Trivial representation: $\rho(g)=1$ for every g
(2) Permutational representation: G acts on X then $\left(\mathbb{F}^{X}, \rho\right)$ where $\tau(g)$ permutes coordinates. $\tau(g) v[x]=v\left[g^{-1} x\right]$. Let $v=(1,1, \ldots, 1) \in \mathbb{F}^{X}$. Then v spans one dim. sub-reps of \mathbb{F}^{X}. Let

$$
V=\left\{v \in \mathbb{F}^{X}: \sum_{x \in X} v[x]=0\right\} .
$$

Then V is sub-representation of \mathbb{F}^{X}.
(3) Regular representation: permutational representation when $X=G$.

Main Theorem

Theorem (Main Theorem)

(ρ, V) irrep. of G Let $g_{1}, g_{2}, \ldots g_{q} \in G, c_{1}, \ldots c_{q} \in \mathbb{F}$ s. t. $\sum c_{i} \rho\left(g_{i}\right)$ is a rank one matrix then there exists $(q, \delta, q \delta)$ LDC

$$
\mathcal{C}: V \rightarrow \mathbb{F}[G] .
$$

Example of LDC

Example

Let $G=S_{n}$,
(1) $\left(\rho, \mathbb{F}^{n}\right)$ perm. reps. Let $V=\left\{v \in \mathbb{F}^{n}: \sum_{i=1}^{n} v[i]=0\right\}$ is an irreducible sub-reps. Let $g_{1}=i d, g_{2}=(1,2)$ then

$$
\left(\rho\left(g_{1}\right)-\rho\left(g_{2}\right)\right) v=(v[1]-v[2])(1,-1,0, \ldots, 0) .
$$

Thus $\rho\left(g_{1}\right)-\rho\left(g_{2}\right)$ rank one matrix.
(2) This gives $[\mathrm{n}-1, \mathrm{n}$] LDC with 2 -queries.

Conclutions and Future Work

Conclutions and Future Work

- Give a conditions for representations to have sparse rank one element.
- Prove any non-trivial lower bounds for this model.
- Extend this model for modular representation theory.

