Rational Proofs

Pablo Azar

Silvio Micali

Central Question f(x)?

Arthur

Merlin

What problems have efficient proofs? (Rounds, Communication, Time)

Interactive Proofs

IP AM [GMR 85, BM 85]

Interactive Proofs

IP = PSPACE [LFKN 90, Shamir 90]

And they lived happily ever after...

Many Centuries Later...

f(x)?

Centuries Later...

f(x)?

Centuries Later...

Centuries Later...

f(x)?

How to pay a Math Expert?

f(x)?

How to pay a Math Expert?

f(x)?

Fixed Price:

Correct Proof : \$1 Incorrect Proof: \$0

How to pay a Math Expert?

Fixed Price:

Correct Proof : \$1 Incorrect Proof: \$0

Can we do better?

Can we do better?

Can we prove more theorems? Can we prove them faster?

Can we do better?

Fewer Rounds?

Our Central Question

What's the largest class of problems for which we can guarantee correctness of solution using monetary incentives?

Rational MA

$f \in Rational MA[k]$ iff

$f \in Rational MA[k] iff$

π output function (poly time) R reward function (randomized poly time)

$f \in Rational MA[k] iff$

T output function (poly time) R reward function (randomized poly time) f(x)?

Transcript $T = (y_1, r_1, ..., y_k)$

Merlin chooses Transcript T^* that maximizes E[R(x,T)]

Merlin chooses Transcript T^* that maximizes E[R(x,T)]

Merlin chooses Transcript T^* that maximizes E[R(x,T)]

Our Central Question

Where does RMA[k] fit?

Theorem I

Theorem I

 $\#P \subset RMA[1]$

Proof Sketch

 $\#P \subset RMA[1]$

$\#\{y : M(x,y) = I\}$?

$\#\{y : M(x,y) = 1\}$?

2³⁰¹ + 13

$\#\{y : M(x,y) = 1\}$? $2^{301} + 13$

$\#\{y : M(x,y) = I\}?$

2³⁰¹ + 13

$\#\{y : M(x,y) = I\}$?

2³⁰¹ + 13

 $M(x, y_1), M(x, y_2), \ldots$

$\#\{y : M(x,y) = I\}$?

2³⁰¹ + 13

 $M(x, y_1), M(x, y_2), \ldots$

No I-round proof so far

Wednesday, August 15, 12

Economics To The Rescue!

Arthur

Arthur

Information

What is information?

Arthur

What is information?

How do we guarantee it is correct?

Computation View x, f

Information is output of a hard to compute function

Information is output of a hard to compute function

Correctness guaranteed by proof

Economics View

Decision Maker

Economics View

Decision Maker Agent Information: distribution \mathcal{D} over Ω = states of the world

Economics View

Decision Maker Agent Information: distribution \mathcal{D} over Ω = states of the world

Correctness from incentives

Proper Scoring Rules [Good 52, Brier 50]

Proper Scoring Rules

[Good 52, Brier 50]

Proper Scoring Rules

[Good 52, Brier 50]

 $60\% \cdot S(\mathcal{P}, Boston) + 40\% S(\mathcal{P}, NY)$

 $\max_{\mathcal{P}} [60\% \cdot S(\mathcal{P}, Boston) + 40\% S(\mathcal{P}, NY)]$

Wednesday, August 15, 12

2³⁰¹ + 13

 $\#\{y : M(x,y) = I\}$?

$Pr_y[M(x,y) = 1]$?

Reduce the problem to question about probabilities

Wednesday, August 15, 12

$Pr_y[M(x,y) = 1]$?

Merlin knows $q = Pr_y[M(x,y) = I]$ Need to incentivize him to reveal q

Wednesday, August 15, 12

Our Rational Proof for #P $\Omega = \{0, 1\}, \mathcal{D} \in \Delta(\Omega)$

Our Rational Proof for #P

$\Omega = \{0, 1\}, \mathcal{D} \in \Delta(\Omega)$ $\mathcal{D}(1) = Pr_y[M(x, y) = 1]$

Our Rational Proof for #P

$\Omega = \{0, 1\}, \mathcal{D} \in \Delta(\Omega)$ $\mathcal{D}(1) = Pr_y[M(x, y) = 1]$ $\omega = \{M(x, y) : y \leftarrow \{0, 1\}^{poly(n)}\}$

$$Our Rational Proof for #P$$

$$\Omega = \{0,1\}, \mathcal{D} \in \Delta(\Omega)$$

$$\mathcal{D}(1) = Pr_y[M(x,y) = 1]$$

$$\omega = \{M(x,y) : y \leftarrow \{0,1\}^{poly(n)}\}$$

$$\mathcal{D}(1) = q$$

$$\mathcal{D}(0) = 1 - q$$

$$\begin{array}{l} Our \ Rational \ Proof \ for \ \#P \\ \Omega = \{0,1\}, \mathcal{D} \in \Delta(\Omega) \\ \hline \mathcal{D}(1) = Pr_y[M(x,y) = 1] \\ \omega = \{M(x,y) : y \leftarrow \{0,1\}^{poly(n)}\} \end{array} \qquad \begin{array}{c} \mathcal{D}(1) = q \\ \mathcal{D}(0) = 1 - q \\ \hline \mathcal{O}(0) = 1 - q \end{array}$$

$$Our Rational Proof for #P$$

$$\Omega = \{0,1\}, \mathcal{D} \in \Delta(\Omega)$$

$$\mathcal{D}(1) = Pr_y[M(x,y) = 1]$$

$$\omega = \{M(x,y) : y \leftarrow \{0,1\}^{poly(n)}\}$$

$$\mathcal{D}(1) = q$$

$$\mathcal{D}(0) = 1 - q$$

$$\begin{array}{c} Our \ Rational \ Proof \ for \ \#P \\ \Omega = \{0,1\}, \mathcal{D} \in \Delta(\Omega) \\ \hline \mathcal{D}(1) = Pr_y[M(x,y) = 1] \\ \omega = \{M(x,y) : y \leftarrow \{0,1\}^{poly(n)}\} \\ \hline \mathcal{D}(0) = 1 - q \\ \hline \mathcal{D}(0) = 1 - q \\ \hline \mathcal{P} \\ \hline \mathbf{P} \\ \hline \mathbf{P}$$

$$\begin{array}{c} Our \ Rational \ Proof \ for \ \#P \\ \Omega = \{0,1\}, \mathcal{D} \in \Delta(\Omega) \\ \hline \mathcal{D}(1) = Pr_y[M(x,y) = 1] \\ \omega = \{M(x,y) : y \leftarrow \{0,1\}^{poly(n)}\} \end{array} \qquad \begin{array}{c} \mathcal{D}(1) = q \\ \mathcal{D}(0) = 1 - q \\ \hline \mathcal{D}(0) =$$

 $\mathcal{D} = argmax_{\mathcal{P}}\{q \cdot S(\mathcal{P}, 1) + (1 - q) \cdot S(\mathcal{P}, 0)\}$

Theorem I

 $\#P \subset RMA[1]$

Theorem I

$\#P \subset RMA[1]$

Zero-Knowledge Rational Proof!

Theorem I

 $\#P \subset RMA[1]$

Zero-Knowledge Rational Proof! Computationally Sound Rational Proof!

$RMA[1] \subset P^{NP^{\#P}}$

Thank you Lance!

Wednesday, August 15, 12

$RMA[1] \subset P^{NP^{\#P}}$

There are things money can't buy

Thank you Lance!

$$RMA[1] \subset P^{NP^{\#P}}$$

Economics View: Computational Limit on Contracts

Thank you Lance!

 $CH = CP_0 \cup CP_1 \cup CP_2 \cup \dots$

$CH = CP_0 \cup CP_1 \cup CP_2 \cup \dots$

 $CP_0 = P$

$CH = CP_0 \cup CP_1 \cup CP_2 \cup \dots$

 $CP_0 = P$

 $CP_1 = PP$

$CH = CP_0 \cup CP_1 \cup CP_2 \cup \dots$

 $CP_0 = P$

 $CP_1 = PP$

 $CP_2 = PP^{CP_1} = PP^{PP}$

Counting Hierarchy $CH = CP_0 \cup CP_1 \cup CP_2 \cup \dots$ $CP_0 = P$ $CP_1 = PP$ $CP_2 = PP^{CP_1} = PP^{PP}$

 $CP_k = PP^{CP_{k-1}} = PP^{PP\cdots}$

 $CP_k \subset RMA[k] \subset CP_{2k+1}$

RMA = CH

Open Question

Does CH Collapse?

Old Analogy Q: Does CH Collapse? A: Not if it behaves like PH

$$\begin{array}{c} NP^{NP \dots NP} \\ \dots \\ NP^{NP} \\ NP \end{array} \qquad \begin{array}{c} PP^{PP \dots PP} \\ PP^{PP} \\ PP \end{array}$$

New Analogy

Q: Does CH Collapse? A:Yes if it behaves like AM

 $PP^{PP\cdots^{PP}}$ AM[k]AM[2]AM[1]PP

Summary of Contributions

- New Complexity Class RMA
- Short Rational Proofs for #P
- Constant-Round Rational Proofs = CH

THANK YOU!