Rational Proofs

Pablo Azar

Silvio Micali

Central Question $f(x)$?

Arthur

What problems have efficient proofs? (Rounds, Communication, Time)

Interactive Proofs $f(x)$?

IP
 AM
 [GMR 85, BM 85]

Interactive Proofs $f(x)$?

IP = PSPACE
[LFKN 90, Shamir 90]
And they lived happily ever after...

Many Centuries Later...

$f(x)$?

Centuries Later...

$f(x)$?

Centuries Later...

Centuries Later...

Goldman Sachis

JPMorgan ©

Centuries Later...

Goldman Sachs

JPMorgan ©

How to pay a Math Expert? $f(x)$?

How to pay a Math Expert?

Fixed Price:
$f(x)$?

Correct Proof : \$
Incorrect Proof: \$0

How to pay a Math Expert? $f(x)$?

Fixed Price:

Correct Proof:\$1
Incorrect Proof: \$0

Can we do better?

$f(x)$?

Can we do better?

$f(x)$?

Can we prove more theorems?
Can we prove them faster?

Can we do better?

$f(x)$?

Fewer Rounds?

Our Central Question $f(x)$?

What's the largest class of problems for which we can guarantee correctness of solution using monetary incentives?

Rational MA

$f \in$ Rational $M A[k]$ iff

$\mathrm{f} \in$ Rational MA[k] iff

π output function (poly time)
R reward function (randomized poly time)

$f \in$ Rational MA[k] iff

π output function (poly time)
R reward function (randomized poly time) $f(x)$?

$\mathrm{f} \in$ Rational MA[k] iff

π output function (poly time)
R reward function (randomized poly time) $f(x)$?

yI

$\mathrm{f} \in$ Rational MA[k] iff

π output function (poly time)
R reward function (randomized poly time)
$f(x)$?

$\mathrm{f} \in$ Rational MA[k] iff

π output function (poly time)
R reward function (randomized poly time) $f(x)$?

$\mathrm{f} \in$ Rational MA[k] iff

 π output function (poly time) R reward function (randomized poly time) $f(x)$?

$\mathrm{f} \in$ Rational MA[k] iff

 π output function (poly time) R reward function (randomized poly time) $f(x)$?

$\mathrm{f} \in$ Rational MA[k] iff

 π output function (poly time) R reward function (randomized poly time) $\mathrm{f}(\mathrm{x})$?

Transcript T = ($\left.\mathrm{y}_{\mathrm{l}}, \mathrm{r}_{\mathrm{l}}, \ldots, \mathrm{y}_{\mathrm{k}}\right)$

$\mathrm{f} \in$ Rational MA[k] iff

 π output function (poly time) R reward function (randomized poly time)

Transcript T = ($\left.\mathrm{y}_{\mathrm{l}}, \mathrm{r}_{\mathrm{l}}, \ldots, \mathrm{y}_{\mathrm{k}}\right)$

$f \in$ Rational MA[k] iff

 π output function (poly time) R reward function (randomized poly time)

Output $=\pi(x, T)$

Transcript $T=\left(y_{ı}, r_{ı}, \ldots, y_{k}\right)$

$\mathrm{f} \in$ Rational MA[k] iff

 π output function (poly time) R reward function (randomized poly time)

Output $=\pi(x, T)$

$$
f(x) ?
$$

Transcript $\mathrm{T}=\left(\mathrm{y}_{\mathrm{l}}, \mathrm{r}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right)$
No Verification!

$\mathrm{f} \in$ Rational MA[k] iff

 π output function (poly time) R reward function (randomized poly time)

$\mathrm{f} \in$ Rational MA[k] iff

 π output function (poly time) R reward function (randomized poly time),

Output $=\pi(x, T)$

Merlin chooses Transcript T* that maximizes $\mathrm{E}[\mathrm{R}(\mathrm{x}, \mathrm{T})]$

$f \in$ Rational MA[k] iff

Merlin chooses Transcript T* that maximizes $\mathrm{E}[\mathrm{R}(\mathrm{x}, \mathrm{T})$]

$f \in$ Rational MA[k] iff

Merlin chooses Transcript T^{*} that maximizes $\mathrm{E}[\mathrm{R}(\mathrm{x}, \mathrm{T})]$

Our Central Question

Where does RMA[k] fit?

Theorem I

$$
\# P \subset R M A[?]
$$

Theorem I

$$
\# P \subset R M A[1]
$$

Proof Sketch

$$
\# P \subset R M A[1]
$$

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

$\#\{y: M(x, y)=I\}$?

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

$$
\#\{y: M(x, y)=1\} ?
$$

$$
2^{301}+13
$$

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

$\#\{y: M(x, y)=I\} ?$
$2^{301}+13$

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

$\#\{y: M(x, y)=1\} ?$
$2^{301}+13$

\#P Problems

Input: $M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\}$

$$
x \in\{0,1\}^{n}
$$

$$
\#\{y: M(x, y)=1\} ?
$$

$2^{301}+13$

$$
M\left(x, y_{1}\right), M\left(x, y_{2}\right), \ldots
$$

\#P Problems

Input: $M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\}$

$$
x \in\{0,1\}^{n}
$$

$$
\#\{y: M(x, y)=I\} ?
$$

$2^{301}+13$

$$
M\left(x, y_{1}\right), M\left(x, y_{2}\right), \ldots
$$

No I-round proof so far

Economics To The Rescue!

Asymmetric Information

Asymmetric Information

Asymmetric Information

What is information?

Asymmetric Information

What is information?
How do we guarantee it is correct?

Computation View x, f

Prover

Computation View
 $$
x, f
$$

Information is output of a hard to compute function

Computation View
 $$
x, f
$$

Prover
Information is output of a hard to compute function
Correctness guaranteed by proof

Economics View

Decision Maker

Economics View

Decision Maker

Agent Information: distribution \mathcal{D} over $\Omega=$ states of the world

Economics View

Decision Maker
Agent
Information: distribution \mathcal{D} over $\Omega=$ states of the world

Correctness from incentives

Proper Scoring Rules [Good 52, Brier 50]

Proper Scoring Rules [Good 52, Brier 50]
 $$
\begin{gathered} \Omega=\{, \mathbb{M}\} \\ \mathcal{D} \in \Delta(\Omega) \end{gathered}
$$

Proper Scoring Rules [Good 52, Brier 50]

$$
\begin{gathered}
\Omega=\{, \mathcal{M}\} \\
\mathcal{D} \in \Delta(\Omega)
\end{gathered}
$$

Proper Scoring Rules [Good 52, Brier 50]

$$
\begin{gathered}
\Omega=\{, \mathbb{X}\} \\
\mathcal{D} \in \Delta(\Omega)
\end{gathered}
$$

Proper Scoring Rules [Good 52, Brier 50]

$$
\begin{gathered}
\Omega=\{, \mathbb{X}\} \\
\mathcal{D} \in \Delta(\Omega)
\end{gathered}
$$

Proper Scoring Rules [Good 52, Brier 50]

$$
\begin{gathered}
\Omega=\{, \mathbb{M}\} \\
\mathcal{D} \in \Delta(\Omega)
\end{gathered}
$$

$$
\omega \leftarrow \mathcal{D}
$$

Proper Scoring Rules [Good 52, Brier 50]

$$
\begin{gathered}
\Omega=\{, \mathbb{M}\} \\
\mathcal{D} \in \Delta(\Omega)
\end{gathered}
$$

$$
\omega \leftarrow \mathcal{D}
$$

Proper Scoring Rules

$$
\Omega=\{, \quad\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\omega \leftarrow \mathcal{D}
$$

Proper Scoring Rules

$$
\Omega=\{\quad, \mathbb{M}\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\omega \leftarrow \mathcal{D}
$$

Proper Scoring Rules

$$
\Omega=\{\quad, \mathbb{M}\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\omega \leftarrow \mathcal{D}
$$

$60 \% \cdot S(\mathcal{P}$, Boston $)+40 \% S(\mathcal{P}, N Y)$

Proper Scoring Rules

$$
\Omega=\{\quad, \mathbb{M}\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\omega \leftarrow \mathcal{D}
$$

$\max _{\mathcal{P}}[60 \% \cdot S(\mathcal{P}$, Boston $)+40 \% S(\mathcal{P}, N Y)]$

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{n^{c}} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

$$
\#\{y: M(x, y)=I\} ?
$$

$$
2^{301}+13
$$

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{n^{c}} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

$$
\operatorname{Pr} y[M(x, y)=I] ?
$$

Reduce the problem to question about probabilities

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{n^{c}} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

$$
\operatorname{Pr} y[M(x, y)=I] ?
$$

Merlin knows $\mathrm{q}=\operatorname{Pr}_{y}[\mathrm{M}(\mathrm{x}, \mathrm{y})=\mathrm{I}]$ Need to incentivize him to reveal q

Our Rational Proof for \#P

$\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)$

Our Rational Proof for \#P

$$
\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]
$$

Our Rational Proof for \#P

$$
\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]
$$

$$
\omega=\left\{M(x, y): y \leftarrow\{0,1\}^{p o l y(n)}\right\}
$$

Our Rational Proof for \#P

$\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)$
$\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]$
$\omega=\left\{M(x, y): y \leftarrow\{0,1\}^{\text {poly }(n)}\right\}$

Our Rational Proof for \#P

$$
\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]
$$

$$
\omega=\left\{M(x, y): y \leftarrow\{0,1\}^{p o l y(n)}\right\}
$$

Our Rational Proof for \#P

$$
\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]
$$

$$
\omega=\left\{M(x, y): y \leftarrow\{0,1\}^{p o l y(n)}\right\}
$$

Our Rational Proof for \#P

$$
\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]
$$

$$
\omega=\left\{M(x, y): y \leftarrow\{0,1\}^{p o l y(n)}\right\}
$$

Our Rational Proof for \#P

$$
\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]
$$

$$
\omega=\left\{M(x, y): y \leftarrow\{0,1\}^{p o l y(n)}\right\}
$$

$$
\mathcal{D}=\operatorname{argmax}_{\mathcal{P}}\{q \cdot S(\mathcal{P}, 1)+(1-q) \cdot S(\mathcal{P}, 0)\}
$$

Theorem I

$$
\# P \subset R M A[1]
$$

Theorem I

$$
\# P \subset R M A[1]
$$

Zero-Knowledge Rational Proof!

Theorem I

$$
\# P \subset R M A[1]
$$

Zero-Knowledge Rational Proof!

Computationally Sound Rational Proof!

Theorem 2

$R M A[1] \subset P^{N P^{\# P}}$

Thank you Lance!

Theorem 2

$R M A[1] \subset P^{N P^{\# P}}$

There are things money can't buy
Thank you Lance!

Theorem 2

$R M A[1] \subset P^{N P^{\# P}}$

Economics View: Computational Limit on Contracts
Thank you Lance!

Counting Hierarchy

$$
C H=C P_{0} \cup C P_{1} \cup C P_{2} \cup \ldots
$$

Counting Hierarchy

$$
\begin{gathered}
C H=C P_{0} \cup C P_{1} \cup C P_{2} \cup \ldots \\
C P_{0}=P
\end{gathered}
$$

Counting Hierarchy

$$
C H=C P_{0} \cup C P_{1} \cup C P_{2} \cup \ldots
$$

$$
C P_{0}=P
$$

$$
C P_{1}=P P
$$

Counting Hierarchy

$$
C H=C P_{0} \cup C P_{1} \cup C P_{2} \cup \ldots
$$

$$
C P_{0}=P
$$

$$
C P_{1}=P P
$$

$$
C P_{2}=P P^{C P_{1}}=P P^{P P}
$$

Counting Hierarchy

$$
\begin{gathered}
C H=C P_{0} \cup C P_{1} \cup C P_{2} \cup \ldots \\
C P_{0}=P \\
C P_{1}=P P \\
C P_{2}=P P^{C P_{1}}=P P^{P P} \\
C P_{k}=P P^{C P_{k-1}}=P P^{P P^{\prime \cdots P}}
\end{gathered}
$$

Theorem 3

Theorem 3

$C P_{k} \subset R M A[k] \subset C P_{2 k+1}$

Theorem 3

$R M A=C H$

Open Question

Does CH Collapse?

Old Analogy

Q: Does CH Collapse?

 A: Not if it behaves like PH$$
\begin{gathered}
N P^{N P^{\ldots N P}} \\
\ldots \\
N P^{N P} \\
N P
\end{gathered}
$$

$$
\begin{gathered}
P P^{P P^{\ldots P P}} \\
\cdots \\
P P^{P P} \\
P P
\end{gathered}
$$

New Analogy

Q: Does CH Collapse?
A:Yes if it behaves like AM

$$
\begin{gathered}
A M[k] \\
\ldots \\
A M[2] \\
A M[1]
\end{gathered}
$$

$P P^{P P^{\ldots P P}}$
\ldots
$P P^{P P}$
$P P$

Summary of Contributions

- New Complexity Class RMA
- Short Rational Proofs for \#P
- Constant-Round Rational Proofs $=\mathrm{CH}$

THANK YOU!

