
Innovations in Computer Science 2010

Breaking and Making Quantum Money: Toward a New Quantum
Cryptographic Protocol

Andrew Lutomirski1 Scott Aaronson2 Edward Farhi1 David Gosset1 Jonathan Kelner2,3

Avinatan Hassidim1 Peter Shor1,2,3

1Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

Cambridge, MA 02139
3Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
luto@mit.edu aaronson@csail.mit.edu farhi@mit.edu dgosset@mit.edu kelner@mit.edu

avinatanh@gmail.com shor@math.mit.edu

Abstract: Public-key quantum money is a cryptographic protocol in which a bank can create quantum states
which anyone can verify but no one except possibly the bank can clone or forge. There are no secure public-key
quantum money schemes in the literature; as we show in this paper, the only previously published scheme [1] is
insecure. We introduce a category of quantum money protocols which we call collision-free. For these protocols,
even the bank cannot prepare multiple identical-looking pieces of quantum money. We present a blueprint for
how such a protocol might work as well as a concrete example which we believe may be insecure.

Keywords: quantum money; cryptography; random matrices; and markov chains

1 Introduction
In 1969, Wiesner [9] pointed out that the no-cloning

theorem raises the possibility of uncopyable cash: bills
whose authenticity would be guaranteed by quantum
physics.1 Here’s how Wiesner’s scheme works: be-
sides an ordinary serial number, each bill would con-
tain (say) a few hundred photons, which the central
bank polarized in random directions when it issued
the note. The bank remembers the polarization of
every photon on every bill ever issued. If you want to
verify that a bill is genuine, you take it to the bank,
and the bank uses its knowledge of the polarizations
to measure the photons. On the other hand, the No-
Cloning Theorem ensures that someone who doesn’t
know the polarization of a photon can’t produce more
photons with the same polarizations. Indeed, copying
a bill can succeed with probability at most (5/6)n,
where n is the number of photons per bill.

Despite its elegance, Wiesner’s quantum money is
a long way from replacing classical money. The main
practical problem is that we don’t know how to reli-
ably store polarized photons (or any other coherent
quantum state) for any appreciable length of time.

Yet, even if we could solve the technological prob-

1This is the same paper that introduced the idea of quan-
tum cryptography. Wiesner’s paper was not published until
the 1980s; the field of quantum computing and information (to
which it naturally belonged) had not yet been invented.

lems, Wiesner’s scheme would still have a serious
drawback: only the bank can verify that a bill is gen-
uine. Ideally, printing bills ought to be the exclu-
sive prerogative of the bank, but the checking process
ought to be open to anyone—think of a convenience-
store clerk holding up a $20 bill to a light.

But, with quantum mechanics, it may be possible
to have quantum money satisfying all three require-
ments:

1. The bank can print it. That is, there is an effi-
cient algorithm to produce the quantum money
state.

2. Anyone can verify it. That is, there is an effi-
cient measurement that anyone can perform that
accepts money produced by the bank with high
probability and minimal damage.

3. No one (except possibly the bank) can copy it.
That is, no one other than the bank can efficiently
produce states that are accepted by the verifier
with better than exponentially small probability.

We call such a scheme a public-key quantum money
scheme, by analogy with public-key cryptography.
Such a scheme cannot be secure against an adversary
with unbounded computational power, since a brute-
force search will find valid money states in exponential
time. Surprisingly, the question of whether public-key

20

BREAKING AND MAKING QUANTUM MONEY: TOWARD A NEW QUANTUM CRYPTOGRAPHIC PROTOCOL

quantum money schemes are possible under computa-
tional assumptions has remained open for forty years,
from Wiesner’s time until today.

The first proposal for a public-key quantum money
scheme, along with a proof that such money exists in
an oracle model, appeared in [1]. We show in section 3
that the proposed quantum money scheme is insecure.

In this paper we introduce the idea of collision-free
quantum money, which is public-key quantum money
with the added restriction that no one, not even the
bank, can efficiently produce two identical-looking
pieces of quantum money. We discuss the prospect
of implementing collision-free quantum money and its
uses in section 2 below.

The question of whether secure public-key quantum
money exists remains open.

2 Two Kinds of Quantum Money
All public-key quantum money schemes need some

mechanism to identify the bank and prevent other
parties from producing money the same way that the
bank does. A straightforward way of accomplishing
this is to have the money consist of a quantum state
and a classical description, digitally signed by the
bank, of a circuit to verify the quantum state. Digi-
tal signatures secure against quantum adversaries are
believed to exist, so we do not discuss the signature
algorithm in the remainder of the paper.

Alternatively, if the bank produces a fixed number
of quantum money states, it could publish a list of all
the verifier circuits of all the valid money states, and
anyone could check that the verifier of their money
state is in that list. This alternative is discussed fur-
ther in section 2.2.

2.1 Quantum Money with a Classical Se-
cret

Public-key quantum money is a state which can be
produced by a bank and verified by anyone. One way
to design quantum money is to have the bank choose,
for each instance of the money, a classical secret which
is a description of a quantum state that can be effi-
ciently generated and use that secret to manufacture
the state. The bank then constructs an algorithm to
verify that state and distributes the state and a de-
scription of the algorithm as “quantum money.” We
will refer to protocols of this type as quantum money
with a classical secret. The security of such a scheme
relies on the difficulty of deducing the classical se-
cret given the verification algorithm and a copy of
the state.

A simple but insecure scheme for this type of quan-
tum money is based on random product states. The

bank chooses a string of n uniformly random angles
θi between 0 and 2π. This string is the classical se-
cret. Using these angles, the bank generates the state
|ψ〉 = ⊗i|θi〉 where |θi〉 = cos θi|0〉 + sin θi|1〉 and
chooses a set of (say) 4-local projectors which are all
orthogonal to |ψ〉. The quantum money is the state
|ψ〉 and a classical description of the projectors, and
anyone can verify the money by measuring the pro-
jectors.

It is NP-hard to produce the state |ψ〉 given only
a description of the projectors. However, this quan-
tum money is insecure because of a fully quantum at-
tack [5] that uses a copy of the state and the descrip-
tion of the projectors to produce additional copies of
the state. A more sophisticated example of quantum
money with a classical secret is described in [1].

All quantum money schemes which rely on a classi-
cal secret in this way have the property, shared with
ordinary bank notes and coins, that an unscrupulous
bank can produce multiple pieces of identical money.
Also, if there is a classical secret, there is the risk that
some classical algorithm can deduce the secret from
the verification algorithm (we show in section 3 that
the scheme of [1] fails under some circumstances for
exactly this reason).

2.2 Collision-free Quantum Money
An alternative kind of quantum money is collision-

free. This means that the bank cannot efficiently pro-
duce two pieces of quantum money with the same
classical description of the verifier. This rules out
protocols in which the verifier is associated with a
classical secret which allows the bank to produce the
state. (For example, in the product state construction
in the previous section, the set of angles would allow
the bank to produce any number of identical pieces of
quantum money.)

Collision-free quantum money has a useful prop-
erty that even uncounterfeitable paper money (if it
existed) would not have: instead of just digitally sign-
ing the verifier for each piece of money, the bank could
publish a list describing the verifier of each piece of
money it intends to produce. These verifiers would
be like serial numbers on paper money, but, since the
bank cannot cheat by producing two pieces of money
with the same serial number, it cannot produce more
money than it says. This means that the bank cannot
inflate the currency by secretly printing extra money.

We expect that computationally secure collision-
free quantum money is possible. We do not have
a concrete implementation of such a scheme, but in
the next few sections, we give a blueprint for how a
collision-free quantum money scheme could be con-

21

A. LUTOMIRSKI, S. AARONSON, E. FARHI, D. GOSSET, J. KELNER, A. HASSIDIM AND P. SHOR

structed. We hope that somebody produces such a
scheme which will not be vulnerable to attack.

2.2.1 Quantum Money by Postselection
Our approach to collision-free quantum money

starts with a classical set. For concreteness, we will
take this to be the set of n-bit strings. We need a clas-
sical function L that assigns a label to each element of
the set. There should be an exponentially large set of
labels and an exponentially large number of elements
with each label. Furthermore, no label should corre-
spond to more than an exponentially small fraction
of the set. The function L should be as obscure and
have as little structure as possible. The same function
can be used to generate multiple pieces of quantum
money. Each piece of quantum money is a state of
the form

|ψ�〉 =
1√
N�

∑
x s.t. L(x)=�

|x〉

along with the label � which is used as part of the
verification procedure (N� is the number of terms in
the sum). The function L must have some additional
structure in order to verify the state.

Such a state can be generated as follows. First,
produce the equal superposition over all n-bit strings.
Then compute the function L into an ancilla register
and measure that register to obtain a particular value
�. The state left over after measurement will be |ψ�〉.

The quantum money state |ψ�〉 is the equal super-
position of exponentially many terms which seemingly
have no particular relationship to each other. Since no
label occurs during the postselection procedure above
with greater than exponentially small probability, the
postselection procedure would have to be repeated ex-
ponentially many times to produce the same label �
twice. If the labeling function L is a black box with no
additional structure, then Grover’s lower bound rules
out any polynomial time algorithm that can produce
the state |ψ�〉 given only knowledge of �. We conjec-
ture that it is similarly difficult to copy a state |ψ�〉
or to produce the state |ψ�〉 ⊗ |ψ�〉 for any � at all.

It remains to devise an algorithm to verify the
money.

2.2.2 Verification using Rapidly Mixing
Markov Chains

The first step of any verification algorithm is to
measure the function L to ensure that the state is
a superposition of basis vectors associated with the
correct label �. The more difficult task is to verify
that it is the correct superposition |ψ�〉.

Our verification procedure requires some additional
structure in the function L: we assume that we know

of a classical Markov matrix M which, starting from
any distribution over bit strings with the same label �,
rapidly mixes to the uniform distribution over those
strings but does not mix between strings with differ-
ent �. This Markov chain must have a special form:
each update must consist of a uniform random choice
over N update rules, where each update rule is deter-
ministic and invertible. We can consider the action
of the operator M on the Hilbert space in which our
quantum money lives (M is, in general, neither uni-
tary nor Hermitian). Acting on states in this Hilbert
space, any valid quantum money state |ψ�〉 is a +1
eigenstate of M and, in fact,

M r ≈
∑
l

|ψ�〉〈ψ�| (1)

where the approximation is exponentially good for
polynomially large r. This operator, when restricted
to states with a given label �, approximately projects
onto the money state |ψ�〉. After measuring the label
� as above, the final step of our verification procedure
is to measure M r for sufficiently large r as we de-
scribe below. Even using the Markov chainM , we do
not know of a general way to efficiently copy quantum
money states |ψ�〉.

Any deterministic, invertible function corresponds
to a permutation of its domain; we can write the
Markov matrix as the average of N such permuta-
tions Pi over the state space, where Pi corresponds to
the ith update rule. That is

M = 1
N

N∑
i=1
Pi.

We define a controlled update U of the state, which
is a unitary quantum operator on two registers (the
first holds an n-bit string and the second holds num-
bers from 1 to N)

U =
∑
i

Pi ⊗ |i〉〈i|.

Given some initial quantum state on n qubits, we
can add an ancilla in a uniform superposition over
all i (from 1 to N). We then apply the unitary U ,
measure the projector of the ancilla onto the uniform
superposition, and discard the ancilla. The Kraus op-
erator sum element corresponding to the outcome 1
is (

I ⊗ 1√
N

N∑
i=1
〈i|
)
U

(
I ⊗ 1√

N

N∑
i=1
|i〉
)

= 1
N

N∑
i=1
Pi

=M.

22

BREAKING AND MAKING QUANTUM MONEY: TOWARD A NEW QUANTUM CRYPTOGRAPHIC PROTOCOL

This operation can be implemented with one call to
controlled-Pi and additional overhead logarithmic in
N . Repeating this operation r times, the Kraus op-
erator corresponding to all outcomes being 1 is M r.
The probability that all of the outcomes are 1 starting
from a state |φ〉 is ‖M r|φ〉‖2 and the resulting state
is M r|φ〉/ ‖M r|φ〉‖2. If choose a large enough num-
ber of iterations r, we approximate a measurement of∑
l |ψ�〉〈ψ�| as in eq. 1.
This construction has the caveat that, if the out-

comes are not all 1, the final state is not (1−M r)|ψ〉.
This can be corrected by deferring all measurements,
computing an indicator of whether all outcomes were
1, and uncomputing everything else, but, as we do not
care about the final state of bad quantum money, we
do not need this correction.

2.3 An Example of Quantum Money by
Postselection

2.3.1 Constructing a Label Function
One approach to creating the labeling function L

from Sec. 2.2.1 is to concatenate the output of multi-
ple single-bit classical cryptographic hash functions,2
each of which acts on some subset of the qubits in the
money state. We will describe such a scheme in this
section, which has promising properties but is most
likely insecure.

We start by randomly choosing �√n� subsets of the
n bits, where each bit is in 10 of the subsets. We asso-
ciate a different binary valued hash function with each
subset. The hash function associated with a partic-
ular subset maps the bits in that subset to either 0
or 1. The labeling function L is the �√n�-bit string
which contains the outputs of all the hash functions.

The bank can produce a random pair (�, |ψ�〉),
where |ψ�〉 is the uniform superposition of all bit
strings that hash to the values corresponding to the
label �, by using the algorithm in Sec. 2.2.1.

2.3.2 Verifying the Quantum Money
As in Sec. 2.2.2, we verify the money using a

Markov chain. The update rule for the Markov chain
is to choose a bit at random and flip the bit if and only
if flipping that bit would not change the label (i.e. if
all of the hash function that include that bit do not
change value, which happens with roughly constant
probability). This Markov chain is not ergodic, be-
cause there are probably many assignments to all the
bits which do not allow any of the bits to be flipped.

2A simpler apprach would be to hash the entire n-bit string
onto a smaller, but still exponentially large, set of labels. We
do not pursue this approach because we do not know of any
way to verify the resulting quantum money states.

These assignments, along with some other possible as-
signments that mix slowly, can be excluded from the
superposition, and the verifier may still be very close
to a projector onto the resulting money state.

2.3.3 A Weakness of This Quantum Money
A possible weakness of our hash-based labeling

function as defined above is that the label is not an
opaque value—the labels of two different bit strings
are related to the difference between those strings.
Specifically, the problem of finding strings that map
to a particular label � is a constraint satisfaction prob-
lem, and the Hamming distance between the label
�′ = L (x) and � is the number of clauses that the
string x violates.

We are concerned about the security of this scheme
because it may be possible to use the structure of
the labeling function to implement algorithms such
as the state generation algorithm in [2], which, under
certain circumstances, could be used to produce the
money state. For example, consider a thermal distri-
bution for which each bit string has probability pro-
portional to e−βc(x), where β is an arbitrary constant
and c (x) is the number of clauses that the string x vi-
olates. If for all β we could construct a rapidly mixing
Markov chain with this stationary distribution, then
we could apply the state generation algorithm men-
tioned above. A naive Metropolis-Hastings construc-
tion that flips single bits gives Markov chains that are
not rapidly mixing at high β, but some variants may
be rapidly mixing. We do not know whether quantum
sampling algorithms based on such Markov chains can
run in polynomial time.

Due to this type of attack, and because we do not
have a security proof, we do not claim that this money
is secure.

3 Insecurity of a Previously Published
Quantum Money Scheme

The only currently published public-key quantum
money scheme, an example of quantum money with a
classical secret, was proposed in [1]. We refer to this
scheme as stabilizer money. We show that stabilizer
money is insecure by presenting two different attacks
that work in different parameter regimes. For some
parameters, a classical algorithm can recover the se-
cret from the description of the verifier. For other
parameters, a quantum algorithm can generate states
which are different from the intended money state but
which still pass verification with high probability. Nei-
ther attack requires access to the original money state.

The stabilizer money is parametrized by integers
n, m and l and by a real number ε ∈ [0, 1]. These

23

A. LUTOMIRSKI, S. AARONSON, E. FARHI, D. GOSSET, J. KELNER, A. HASSIDIM AND P. SHOR

parameters are required to satisfy 1
ε2
 l.

The quantum money state is a tensor product of l
different stabilizer states, each on n qubits, and the
classical secret is a list of Pauli group operators which
stabilize the state. The bank generates an instance
of the money by choosing a random stabilizer state
for each of the l registers. To produce the verifier,
the bank generates an m × l table of n qubit Pauli
group operators. The (i, j)th element of the table is
an operator

Eij = (−1)bijAij1 ⊗Aij2 ...⊗Aijn
where each Aijk ∈ {1, σx, σy, σz} and bij ∈ {0, 1}.
Each element Eij of the table is generated by the fol-
lowing procedure:

1. With probability 1−ε choose the bij and, for each
k, Aijk uniformly at random.

2. With probability ε choose the operator Eij to
be a uniformly random element of the stabilizer
group of |Ci〉.

To verify the quantum money state, for each i the
authenticator chooses j (i) ∈ [m] at random and mea-
sures

Q = 1
l

∑
i

I⊗i−1 ⊗ Ei,j(i) ⊗ I⊗m−i. (2)

The authenticator accepts iff the outcome is greater
than or equal to ε2 . Note that measuring the opera-
tor Q is equivalent to measuring the operator Ei,j(i)
for each register i ∈ [l] and then averaging the re-
sults, since the measurements on different registers
commute.

The state |C1〉|C2〉...|Cl〉 is accepted by this pro-
cedure with high probability since the probability of
measuring a +1 for the operator Ei,j(i) on the state
|Ci〉 is 1+ε

2 . The mean value of the operator Q in
the state |C1〉|C2〉...|Cl〉 is therefore ε, since it is sim-
ply the average of the Ei,j(i) for each register i ∈ [l].
The parameter l is chosen so that l

ε2 = Ω (n) so the
probability that one measures Q to be less than ε

2 is
exponentially small in n.

Our attack on this money depends on the parame-
ter ε. Our proofs assume that m = poly(n), but we
expect that both attacks work beyond the range in
which our proofs apply.

3.1 Attacking the Verifier for ε ≤ 1
16
√
m

For ε ≤ 1
16
√
m

and with high probability over the
table of Pauli operators, we can efficiently generate

a state that passes verification with high probabil-
ity. This is because the verification algorithm does
not project onto the intended money state but in fact
accepts many states with varying probabilities. On
each register, we want to produce a state for which
the expected value of the measurement of a random
operator from the appropriate column of E is suffi-
ciently positive. This is to ensure that, with high
probability, the verifier’s measurement of Q will have
an outcome greater than ε

2 . For small ε, there are
many such states on each register and we can find
enough of them by brute force.

We find states that pass verification by working on
one register at a time. For each register i, we search
for a state ρi with the property that

Tr

⎡
⎣
⎛
⎝ 1
m

m∑
j=1
Eij

⎞
⎠ ρi
⎤
⎦ ≥ 1

4
√
m

+O
(

1
m2

)
. (3)

As we show in Appendix A, we can find such states
efficiently on enough of the registers to construct a
state that passes verification.

3.2 Recovering the Classical Secret for ε ≥
c√
m

We describe how to recover the classical secret (i.e.
a description of the quantum state), and thus forge
the money, when the parameter ε ≥ c√

m
for any con-

stant c > 0. We observe that each column of the table
E contains approximately εm commuting operators,
with the rest chosen randomly, and if, in each column,
we can find a set of commuting operators that is at
least as large as the planted set, then any quantum
state stabilized by these operators will pass verifica-
tion.

We begin by casting our question as a graph prob-
lem. For each column, let G be a graph whose vertices
correspond to the m measurements, and connect ver-
tices i and j if and only if the corresponding measure-
ments commute. The vertices corresponding to the
planted commuting measurements now form a clique,
and we aim to find it.

In general, it is intractable to find the largest clique
in a graph. In fact, it is NP-hard even to approx-
imate the size of the largest clique within n1−ε, for
any ε > 0 [10]. Finding large cliques planted in oth-
erwise random graphs, however, can be easy.

For example, if ε = Ω
(

logm√
m

)
, then a simple clas-

sical algorithm will find the clique. This algorithm
proceeds by sorting the vertices in decreasing order of
degree and selecting vertices from the beginning of the
list as long as the selected vertices continue to form a
clique.

24

BREAKING AND MAKING QUANTUM MONEY: TOWARD A NEW QUANTUM CRYPTOGRAPHIC PROTOCOL

We can find the planted clique for ε ≥ c√
m

for
any constant c > 0 in polynomial time using a more
sophisticated classical algorithm that may be of in-
dependent interest. If the graph were obtained by
planting a clique of size ε

√
m in a random graph

drawn from G(m, 1/2), Alon, Krivelevich, and Su-
dakov showed in [3] that one can find the clique in
polynomial time with high probability.3 Unfortu-
nately, the measurement graph G is not drawn from
G(m, 1/2), so we cannot directly apply their result.
However, we show in appendix A that if G is suffi-
ciently random then a modified version of their algo-
rithm works.

4 Conclusions
Quantum money is an exciting and open area of

research. Wiesner’s original scheme is information-
theoretically secure, but is not public-key. In this
paper, we proved that the stabilizer construction for
public-key quantum money [1] is insecure for most
choices of parameters, and we expect that it is inse-
cure for all choices of parameters. We drew a distinc-
tion between schemes which use a classical secret and
those which are collision-free. We gave a blueprint for
how a collision-free scheme might be devised. We de-
scribed an illustrative example of such a scheme, but
we have serious doubts as to its security.

It remains a major challenge to base the se-
curity of a public-key quantum money scheme on
any previously-studied (or at least standard-looking)
cryptographic assumption, for example, that some
public-key cryptosystem is secure against quantum
attack. Much as we wish it were otherwise, it seems
possible that public-key quantum money intrinsically
requires a new mathematical leap of faith, just as
public-key cryptography required a new leap of faith
when it was first introduced in the 1970s.

Acknowledgments
This work was supported in part by funds provided

by the U.S. Department of Energy under cooperative
research agreement DE-FG02-94ER40818, the W. M.
Keck Foundation Center for Extreme Quantum In-
formation Theory, the U.S. Army Research Labora-
tory’s Army Research Office through grant number
W911NF-09-1-0438, the National Science Foundation
through grant numbers CCF-0829421, CCF-0843915,

3Remember that G (m, p) is the Erdös-Rényi distribution
over m-vertex graphs in which an edge connects each pair of
vertices independently with probability p. The AKS algorithm
was later improved [6] to work on subgraphs of G(n, p) for any
constant p, but our measurement graph G is not of that form.

and CCF-0844626, a DARPA YFA grant, the NDSEG
fellowship, the Natural Sciences and Engineering Re-
search Council of Canada, and Microsoft Research.

References
[1] S. Aaronson. Quantum copy-protection and quantum

money. In Computational Complexity, Annual IEEE
Conference on, pages 229–242, 2009.

[2] D. Aharonov and A. Ta-Shma. Adiabatic Quan-
tum State Generation. SIAM Journal on Computing,
37:47, 2007.

[3] N. Alon, M. Krivelevich, and B. Sudakov. Finding a
large hidden clique in a random graph. In Proceed-
ings of the ninth annual ACM-SIAM symposium on
Discrete algorithms, pages 594–598. Society for In-
dustrial and Applied Mathematics Philadelphia, PA,
USA, 1998.

[4] N. Alon and A. Nussboim. k-wise independent ran-
dom graphs. In FOCS, pages 813–822. IEEE Com-
puter Society, 2008.

[5] E. Farhi, D. Gosset, A. Hassidim, A. Lutomirski,
D. Nagaj, and P. Shor. Work in progress. 2009.

[6] U. Feige and R. Krauthgamer. Finding and certifying
a large hidden clique in a semirandom graph. Random
Struct. Algorithms, 16(2):195–208, 2000.

[7] Z. Füredi and J. Komlos. The eigenvalues of ran-
dom symmetric matrices. Combinatorica, 1(3):233–
241, 1981.

[8] M. Nielsen and I. Chuang. Quantum computation
and quantum information. 2000.

[9] S. Wiesner. Conjugate coding. SIGACT News,
15(1):78–88, 1983. Original manuscript written circa
1970.

[10] D. Zuckerman. Linear degree extractors and the inap-
proximability of max clique and chromatic number.
Theory of Computing, 3(1):103–128, 2007.

A Details of the Attack against Stabi-
lizer Money for ε ≤ 1

16
√
m

For ε ≤ 1
16
√
m

and with high probability in the ta-
ble of Pauli operators, we can efficiently generate a
state that passes verification with high probability.
Our attack may fail for some choices of the table used
in verification, but the probability that such a table
of operators is selected by the bank is exponentially
small.

Recall that each instance of stabilizer money is ver-
ified using a classical certificate, which consists of an
m × l table of n qubit Pauli group operators. The
(i, j)th element of the table is an operator

Eij = (−1)bijAij1 ⊗Aij2 ...⊗Aijn
where each Aijk ∈ {1, σx, σy, σz} and bij ∈ {0, 1}.

25

A. LUTOMIRSKI, S. AARONSON, E. FARHI, D. GOSSET, J. KELNER, A. HASSIDIM AND P. SHOR

We will use one important property of the algorithm
that generates the table of Pauli operators: with the
exception of the fact that −I⊗n cannot occur in the
table, the distribution of the tables is symmetric un-
der negation of all of the operators.

The verification algorithm works by choosing, for
each i, a random j (i) ∈ [m]. The verifier then mea-
sures

Q = 1
l

∑
i

I⊗i−1 ⊗ Ei,j(i) ⊗ I⊗m−i. (4)

The algorithm accepts iff the outcome is greater than
or equal to ε2 . Note that measuring the operator Q is
equivalent to measuring the operator Ei,j(i) for each
register i ∈ [l] and then averaging the results, since
the measurements on different registers commute.

To better understand the statistics of the opera-
tor Q, we consider measuring an operator Ei,j(i) on
a state ρi, where j(i) ∈ [m] is chosen uniformly at
random. The total probability p1(ρi) of obtaining the
outcome +1 is given by

p1(ρi) =
1
m

m∑
j=1

Tr
[(1 + Ei,j(i)

2

)
ρi

]

=
1 + Tr

[
H(i)ρi

]
2

where (for each i ∈ [l]) we have defined the Hamilto-
nian

H(i) = 1
m

m∑
j=1
Eij .

We use the algorithm described below to indepen-
dently generate an n qubit mixed state ρi on each
register i ∈ [l]. At least 1/4 of these states ρi (w.h.p.
over the choice of the table E) will have the property
that

Tr[H(i)ρi] ≥ 1
4
√
m

+O
(

1
m2

)
(5)

and the rest have

p1(ρi) ≥ 1
2 −O

(
1
m

)
(6)

which implies that

𝔼
i
p1(ρi) ≥ 1

2
+ 1

8
√
m

+O
(

1
m2

)
.

We use the state

ρ = ρ1 ⊗ ρ2 ⊗ ...⊗ ρl
as our forged quantum money. If the verifier se-
lects j (i) at random and measures Q (from equation

4), then the expected outcome is at least 1
4 (1

4
√
m

+
O(1
m2)) + 3

4O(1
m), and the probability of an outcome

less than 1
32
√
m

(for ε ≤ 1
16
√
m

, the verifier can only
reject if this occurs) is exponentially small for m suffi-
ciently large by independence of the registers. There-
fore the forged money state ρ is accepted by Aaron-
son’s verifier with probability that is exponentially
close to 1 if ε ≤ 1

16
√
m

.
Before describing our algorithm to generate the

states {ρi}, we must understand the statistics (in par-
ticular, we consider the first two moments) of each
H(i) on the fully mixed state I

2n . We will assume
that, for j = k, Eij = Eik. We also assume that
the operators ±I ⊗ I ⊗ I... ⊗ I do not appear in the
list. Both of these assumptions are satisfied with over-
whelming probability. The first and second moments
of H(i) are

Tr
[
H(i) I

2n

]
= 0

and

Tr
[(
H(i)
)2 I

2n

]
(7)

= 2−nTr

⎡
⎣ 1
m2

∑
j

(Ei,j)2 + 1
m2

∑
j �=k
Ei,jEi,k

⎤
⎦

=
1
m
. (8)

Now let us define fi to be the fraction (out of 2n) of
the eigenstates of H(i) which have eigenvalues in the
set [1

2
√
m
, 1] ∪ [−1,− 1

2
√
m

]. Since the eigenvalues of
H(i) are bounded between −1 and 1, we have

Tr
[(
H(i)
)2 I

2n

]
≤ fi + (1 − fi) 1

4m
.

Plugging in equation 8 and rearranging we obtain

fi ≥ 3
4m− 1

.

We also define gi to be the fraction of eigenstates of
H(i) that have eigenvalues in the set [1

2
√
m
, 1]. The

distribution (for any fixed i) of Eij as generated by
the bank is symmetric under negation of all the Eij ,
so with probability at least 1/2 over the choice of the
operators in the row labeled by i, the fraction gi sat-
isfies

gi ≥ 3
8m− 2

. (9)

We assume this last inequality is satisfied for at least
1/4 of the indices i ∈ [l], for the particular table Eij
that we are given. The probability that this is not the
case is exponentially small in l.

26

BREAKING AND MAKING QUANTUM MONEY: TOWARD A NEW QUANTUM CRYPTOGRAPHIC PROTOCOL

Ideally, we would generate the states ρi by prepar-
ing the fully mixed state, measuring H(i), keeping the
result if the eigenvalue is at least 1

2
√
m
, and otherwise

trying again, up to some appropriate maximum num-
ber of tries. After enough failures, we would simply
return the fully mixed state. It is easy to see that out-
puts of this algorithm would satisfy eq. 3 with high
probability.

Unfortunately, we cannot efficiently measure the
exact eigenvalue of an arbitrary Hermitian opera-
tor, but we can use phase estimation, which gives
polynomial error using polynomial resources. In ap-
pendix A.2 we review the phase estimation algorithm
which is central to our procedure for generating the
states ρi. In section A.1, we describe an efficient algo-
rithm to generate ρi using phase estimation and show
that the resulting states, even in the presence of er-
rors due to polynomial-time phase estimation, are ac-
cepted by the verifier with high probability, assuming
that the table Eij has the appropriate properties.

A.1 Procedure to Generate ρi
We now fix a particular value of i and, for conve-

nience, define H = 1
4H

(i) so that all the eigenvalues
of H lie in the interval [− 1

4 ,
1
4]. We denote the eigen-

vectors of H by {|ψj〉} and write

e2πiH |ψj〉 = e2πiφj |ψj〉.
The positive eigenvalues of H map to phases φj in
the range[0, 1

4] and negative eigenvalues of H map to
[3

4 , 1].
We label each eigenstate of H as either “good” or

“bad” according to its energy. We say an eigenstate
|ψj〉 is good if φj ∈ [1

16
√
m
, 1

4]. Otherwise we say it
is bad (which corresponds to the case where φj ∈
[0, 1

16
√
m

) ∪ [3
4 , 1]).

We use the following algorithm to produce a mixed
state ρi.

1. Set k = 1.

2. Prepare the completely mixed state I
2n . In our

analysis of this step, we will imagine that we have
selected an eigenstate |ψp〉 ofH uniformly at ran-
dom, which yields identical statistics.

3. Use the phase estimation circuit to measure the
phase of the operator e2πiH . Here the phase es-
timation circuit (see appendix A.2) acts on the
original n qubits in addition to q = r + �log(2 +
2
δ)� ancilla qubits, where we choose

r = �log(20m)�
δ = 1
m3 .

4. Accept the resulting state (of the n qubit register)
if the measured phase φ′ = z

2q is in the interval
[1

8
√
m
− 1

20m ,
1
2]. In this case stop and output the

state of the first register. Otherwise set k = k+1.

5. If k = m2 + 1 then stop and output the fully
mixed state. Otherwise go to step 2.

We have chosen the constants in steps 3 and 4 to ob-
tain an upper bound on the probability pb of accepting
a bad state in a particular iteration of steps 2, 3, and
4:

pb = Pr (|ψp〉 is bad and you accept)
≤ Pr (accept given that |ψp〉 was bad)

≤ Pr
(
|φp − φ′| > 1

16
√
m
− 1

20m

)

≤ Pr
(
|φp − φ′| > 1

20m

)
≤ δ by equation 14.

Above, we considered two cases depending on
whether or not the inequality 9 is satisfied for the reg-
ister i. We analyze the algorithm in these two cases
separately.

Case 1: Register i satisfies inequality 9
In this case, choosing p uniformly,

Pr
(

1
4
≥ φp ≥ 1

8
√
m

)
≥ 3

8m− 2
(10)

This case occurs for at least 1/4 of the indices i ∈ [l]
with all but exponential probability.

The probability pg that you pick a good state (in
a particular iteration of steps 2, 3, and 4) and then
accept it is at least

pg = Pr (|ψp〉 is good and you accept)

≥ Pr
(

1
4
≥ φp ≥ 1

8
√
m

and you accept
)

= Pr
(

1
4
≥ φp ≥ 1

8
√
m

)

× Pr
(

accept given 1
4
≥ φp ≥ 1

8
√
m

)

≥ Pr
(

1
4
≥ φp ≥ 1

8
√
m

)
(1− δ)

≥ 3
8m− 2

(
1− 1
m3

)

≥ 1
4m

, for m sufficiently large.

27

A. LUTOMIRSKI, S. AARONSON, E. FARHI, D. GOSSET, J. KELNER, A. HASSIDIM AND P. SHOR

Thus the total probability of outputting a good state
is (in a complete run of the algorithm)

Pr(output a good state) (11)

=
m2∑
k=1
pg(1− pg − pb)k−1

= pg
pg + pb

(
1− (1− pg − pb)m2

)
≥ pg
pg + pb

(
1− (1− pg)m2

)
≥ pg
pg + δ

(
1− (1− pg)m2

)
.

≥ pg
pg + δ

(
1− e−pgm2

)
(12)

≥ 1
1 + 4

m2

(
1− e−pgm2

)
for m sufficiently large.

= 1−O
(

1
m2

)
So in this case, the state ρi will satisfy

Tr
[
H(i)ρi

]
≥ Pr (output a good state) 1

4
√
m

− (1− Pr (output a good state))

= 1
4
√
m

+O
(

1
m2

)
.

Case 2: Register i does not satisfy inequal-
ity 9

This case occurs for at most 3/4 of the indices i ∈ [l]
with all but exponentially small probability.

The probability of accepting a bad state for register
i at any point is

Pr (accept a bad state ever) ≤
m2∑
k=1
δ = 1
m
. (13)

So the state ρi which is generated by the above pro-
cedure will satisfy

Tr
[
H(i)ρi

]
≥ −Pr (accept a bad state ever)

= − 1
m
.

We have thus shown that equation 5 holds for all
indices i which satisfy inequality 9 and that equation
6 holds for the rest of the indices. As discussed above,
this guarantees (assuming at least 1/4 of the indices i
satisfy inequality 9) that our forged state ρ = ρ1⊗ρ2⊗
...⊗ρl is accepted by the verifier with high probability
if ε ≤ 1

16
√
m

.

A.2 Review of the Phase Estimation Algo-
rithm

In this section we review some properties of the
phase estimation algorithm as described in [8]. We use
this algorithm in appendix A to measure the eigen-
values of the operator e2πiH . The phase estimation
circuit takes as input an integer r and a parameter δ
and uses

q = r + �log(2 + 2
δ

)�
ancilla qubits. When used to measure the operator
e2πiH , phase estimation requires as a subroutine a
circuit which implements the unitary operator e2πiHt
for t ≤ 2r, which can be approximated efficiently if
2r = poly(n). This approximation of the Hamilto-
nian time evolution incurs an error which can be made
polynomially small in n using polynomial resources
(see for example [8]). We therefore neglect this error
in the remainder of the discussion. The phase estima-
tion circuit, when applied to an eigenstate |ψj〉 of H
such that

e2πiH |ψj〉 = e2πiφj |ψj〉,
and with the q ancillas initialized in the state |0〉⊗q,
outputs a state

|ψj〉 ⊗ |aj〉
where |aj〉 is a state of the ancillas. If this ancilla
register is then measured in the computational basis,
the resulting q bit string z will be an approximation
to φj which is accurate to r bits with probability at
least 1− δ in the sense that

Pr
(∣∣∣φj − z2q

∣∣∣ > 1
2r

)
≤ δ. (14)

In order for this algorithm to be efficient, we choose
r and δ so that 2r = poly(n) and δ = 1

poly(n) .

B Insecurity of the Stabilizer Money
for ε ≥ c√

m

In this section, we will describe how to forge the
Stabilizer Money when the number of commuting
measurements is at least c

√
m for any constant c > 0.

We will consider each column of the table separately.
For the ith column, let M =Mi be the list of possible
measurements for ψ = ψi, and let K = Ki denote the
set of commuting measurements that stabilize ψ. Set
k = |K| and m = |M |. We will first consider the case
k > 100

√
m, and we will then show how to reduce the

case k > c
√
m to this case for any constant c > 0. The

algorithm we present has success probability 4/5 over
the choice of the random measurements. We have not
attempted to optimize this probability, and it could
be improved with a more careful analysis.

28

BREAKING AND MAKING QUANTUM MONEY: TOWARD A NEW QUANTUM CRYPTOGRAPHIC PROTOCOL

We begin by casting our question as a graph prob-
lem. Let G be a graph whose vertices correspond to
the m measurements, and connect vertices i and j
if and only if the corresponding measurements com-
mute. The set K now forms a clique, and we aim to
find it.

In general, it is intractable to find the largest clique
in a graph. In fact, it is NP-hard even to approx-
imate the size of the largest clique within n1−ε, for
any ε > 0 [10]. However, if the graph is obtained by
planting a clique of size ε

√
m in an (Erdös-Rényi) ran-

dom graph drawn from G(m, 1/2), Alon, Krivelevich,
and Sudakov showed that one can find the clique in
polynomial time with high probability [3]. Unfortu-
nately, the measurement graph G is not drawn from
G(m, 1/2), so we cannot directly apply their result.
However, we shall show that G is sufficiently random
that a modified version of their approach can be made
to go through. The main tool that we use is to show
that G is k-wise independent and that this is enough
for a variant of the clique finding algorithm to work.
k wise independent random graphs were studied by
[4], although they were interested in other properties
of them.

B.1 Properties of the Measurement Graph
To analyze G, it will be convenient to use a linear

algebraic description of its vertices and edges. Recall
that any stabilizer measurement on n qubits can be
described as a vector in 𝔽

2n
2 as follows:

• for j ≤ n, set the jth coordinate to 1 if and only
if the operator restricted to the jth qubit is X or
Y , and
• for n < j ≤ 2n, set the jth coordinate to 1 if and

only if the operator restricted to the (j − n)th

qubit is Y or Z.
For v, w ∈ 𝔽

2n
2 , let

〈v, w〉 = vT
(

0n In
In 0n

)
w,

where In and 0n are the n × n identity and all-zeros
matrices, respectively. It is easy to check that the sta-
bilizer measurements corresponding to v and w com-
mute if and only if 〈v, w〉 = 0 (over 𝔽2).

Using this equivalence between Pauli group oper-
ators and vectors, each vertex u of the graph G is
associated with a vector su. There is an edge be-
tween vertices u and v in G if and only if 〈su, sv〉 = 0.
This means that the 2mn bits that encode the vec-
tors {su} also encode the entire adjacency matrix of
G. There are m (m− 1) /2 possible edges in G, so the
distribution of edges in G is dependent (generically,
m (m− 1) /2) > 2mn). Fortunately, this dependence
is limited, as we can see from the following lemma.

Lemma 1. Let v1, . . . vt, u be measurements such
that sv1 , . . . svt , su are linearly independent, and let
x1, . . . , xt ∈ {0, 1} be arbitrary. Let v be a random
stabilizer measurement such that 〈sv, svi〉 = xi for ev-
ery i and the vectors sv1 , . . . , svt , su, sv are linearly
independent. Then

Pr(〈sv, su〉 = 0) = 1/2±O
(

1
22(n−t)

)
.

Proof. The vector sv ∈ {0, 1}2n is chosen uniformly at
random from the set of vectors satisfying the following
constraints:

1. For every i, we have 〈sv, svi〉 = xi.

2. The vectors sv1 , . . . svt , su, sv are linearly inde-
pendent.

Let S0 denote the set of vectors that satisfy these
constraints and have 〈sv, su〉 = 0, and let S1 be the
set of vectors that satisfy these constraints and have
〈sv, su〉 = 1. We have

Pr(〈sv, su〉 = 0) =
|S0|

|S0 + S1| .

The vectors sv1 , . . . svt , su are linearly independent,
so there are 22n−t−1 solutions to the set of equations
〈sv, su〉 = 1 and 〈sv, svi〉 = xi for all i. This implies
that |S1| ≤ 22n−t−1.

Constraint 2 rules out precisely the set of vectors
in the span of sv1 , . . . , svt , su. This is a (t + 1)-
dimensional subspace, so it contains 2t+1 points, and
thus |S0| ≥ 22n−t−1 − 2t+1. It follows that

Pr(〈sv, su〉 = 0) ≥ 22n−t−1 − 2t+1

22n−t − 2t+1

= 1
2
− 1

22n−2t − 1

= 1
2
−O
(

1
22(n−t)

)
.

Repeating this argument gives the same bound for
Pr(〈sv, su〉 = 1), from which the desired result follows.

B.2 Finding Planted Cliques in Random
Graphs

Our algorithm for finding the clique K will be iden-
tical to that of Alon, Krivelevich, and Sudakov [3],
but we will need to modify the proof of correctness
to show that it still works in our setting. In this sec-
tion, we shall give a high level description of [3] and
explain the modifications necessary to apply it to G.
The fundamental difference is that Alon et al. rely

29

A. LUTOMIRSKI, S. AARONSON, E. FARHI, D. GOSSET, J. KELNER, A. HASSIDIM AND P. SHOR

on results from random matrix theory that use the
complete independence of the matrix entries to bound
mixed moments of arbitrarily high degree, but we only
have guarantees about moments of degree O(logm).
As such, we must adapt the proof to use only these
lower order moments.

LetG(m, 1/2, k) be a random graph fromG(m, 1/2)
augmented with a planted clique of size k, and let
A be its adjacency matrix. Let λ1 ≥ λ2 ≥ · · · ≥
λm be the eigenvalues of A, and let v1, . . . , vm be the
corresponding eigenvectors. To find the clique, Alon
et al. find the set W of vertices with the k largest
coordinates in v2. They then prove that, with high
probability, the set of vertices that have at least 3k/4
neighbors in W precisely comprise the planted clique.

The analysis of their algorithm proceeds by ana-
lyzing the largest eigenvalues of A. They begin by
proving that the following two bounds hold with high
probability:

• λ1 ≥
(1

2 + o(1)
)
m, and

• λi ≤ (1 + o(1))
√
m for all i ≥ 3.

The second of these bounds relies heavily on a result
by Füredi and Komlós about the eigenvalues of ma-
trices with independent entries. The independence
assumption will not apply in our setting, and thus we
will need to reprove this bound for our graph G. This
is the main modification that we will require to the
analysis of [3].

They then introduce a vector z that has zi = (m−k)
when vertex i belongs to the planted clique, and has
zi = −k otherwise. Using the above bounds, they
prove that, when one expands z in the eigenbasis of A,
the coefficients of v1, v3, . . . , vm are all small compared
to ||z||, so z has most of its norm coming from its
projection onto v2. This means that v2 has most of
its weight on the planted clique, which enables them
to prove the correctness of their algorithm.

Other than the bound on λ3, . . . , λm, the proof goes
through with only minor changes. The bound on
λ1 = (1 + o(1))m/2, follows from a simple analysis
of the average degree, which holds for the measure-
ment graph as well. The rest of their proof does not
make heavy use of the structure of the graph. The
only change necessary is to replace various tail bounds
on the binomial distribution and Chebyschev bounds
with Markov bounds. These weaker bounds result in a
constant failure probability and weaker constants, but
they otherwise do not affect the proof. (For brevity,
we omit the details.) As such, our remaining task is
to bound λi for i ≥ 3.

B.3 Bounding λ3, . . . , λm
To bound the higher eigenvalues of the adjacency

matrix, Alon et al. apply the following theorem of
Füredi and Komlós [7]:

Lemma 2. Let R be a random symmetric m × m
matrix in which Ri,i = 0 for all i, and the other en-
tries are independently set to ±1 with Pr(Ri,j = 1) =
Pr(Ri,j = −1) = 1

2 . The largest eigenvalue of R is at
most m+O(m1/3 logm) with high probability.

We will prove a slightly weaker variant of this
lemma for random measurement graphs. Let B be a
matrix that is generated by picking m random stabi-
lizer measurements M1, . . . ,Mm and setting Bi,i = 0,
Bi,j = 1 if Mi commutes with Mj , and Bi,j = −1 if
Mi anticommutes withMj . The main technical result
of this section will be the following:

Theorem 3. With high probability, the largest eigen-
value of B is at most 10

√
m.

Alon et al.[3] show how to transform a bound on
the eigenvalues of R into a bound on the third largest
eigenvalue of A. This reduction does not depend on
the properties of G, and it works in our case when
applied to B. This gives a bound of 10

√
m on the

third largest eigenvalue of the adjacency matrix of G.
The proof of Theorem 3 will rely on the following

lemma, which shows that the entries of small powers
of the matrix B have expectations quite close to those
of R.

Lemma 4. For t ≤ O(logm),

𝔼
[
(Bt)i,j

]
= 𝔼
[
(Rt)i,j

]± 1
2Ω(n−t) .

Proof. [Proof of Lemma 4] With high probability,
for every subset of vertices U such that |U | < t ≤
O(logm), we have that the set {su |u ∈ U} is linearly
independent over 𝔽2. We condition the rest of our
analysis on this high probability event.

We begin by expanding the quantity we aim to
bound:

𝔼
[
(Bt)i,j

]
= 𝔼

⎡
⎣ ∑
�2,...�t

t+1∏
α=1
B�α,�α+1

⎤
⎦

=
∑
�2,...�t

𝔼

[
t+1∏
α=1
B�α,�α+1

]
(15)

where we take set �1 = i and �t+1 = j, and we sum
over all possible values of the indices �2, . . . , �t.

We break the nonzero terms in this summation into
two types of monomials: those in which every matrix

30

BREAKING AND MAKING QUANTUM MONEY: TOWARD A NEW QUANTUM CRYPTOGRAPHIC PROTOCOL

element appears an even number of times, and those
in which at least one element appears an odd number
of times. In the former case, the monomial is the
square of a ±1-valued random variable, so we have

𝔼

[∏
α

B�α,�α+1

]
= 𝔼

[∏
α

R�α,�α+1

]
= 1,

and it suffices to focus on the latter case. By the same
reasoning, we can drop any even number of occur-
rences of an element, so it suffices to estimate the ex-
pectations of monomials of degree at most t in which
all of the variables are distinct.

Any such monomial in the Ri,j has expectation zero
by symmetry, so we need to provide an upper bound
on terms of the form

∏q
α=1 B�α,�α+1 , where q ≤ t ≤ r

and each matrix element appears at most once.
Consider the probability that Bq−1,q = 1, where we

take the probability over the choice of the 2n bit string
sq, given that for any α ≤ q, we have Bα,α+1 = xα
for some value xα. We are computing this expectation
conditioned on the the su being linearly independent,
so we can apply Lemma 1. This gives

𝔼

q∏
α=1
B�α,�α+1

=
∑

x1,...xq−1

Pr(〈s�α , s�α+1〉 = xα)

×
{

Pr(〈sq−1, sq〉 = 1|x1, . . . xq−1)

− Pr(〈sq−1, sq〉 = −1|x1, . . . xq−1)
}

≤O
(

1
22(n−t)

)
·
∑

x1,...xq−1

Pr(〈s�α , s�α+1〉 = xα)

=O
(

1
22(n−t)

)
.

There are nO(logm) terms in the summation of eq. ,
and we have shown that each term is at most
O
(
1/22(n−t)), so we obtain

𝔼
[
(Bt)i,j

] ≤ O(nO(logm)

22(n−t)

)
= 1

2Ω(n) ,

as desired.

We can now use this lemma to prove Theorem 3.

Proof. [Proof of Theorem 3] Consider a random ma-
trix R, with Ri,i = 0 and each other cell distributed
independently at random according to Pr(Ri,j = 1) =
Pr(Ri,j = −1) = 1

2 . Lemma 3.2 of [7] shows that, for
t < m1/3,

Tr(𝔼(Rt)) = mt/2+14t.

For t ≥ 10 logm, Lemma 4 implies that

Tr(𝔼(Bt)) = Tr(𝔼(Rt))± 1
2Ω(n−t)

= mt/2+14t ± 1
2Ω(n−t) .

Let λ1 ≥ · · · ≥ λn be the eigenvalues of B. For any
even t, one has that

TrBt =
∑
i

λti ≥ λt1.

Applying this relation with t = 10 logm gives:

Pr(λ1 ≥ 10
√
m) = Pr

(
λt1 ≥ (10

√
m)t
)

≤ (10
√
m)−t𝔼λt1 ≤ (10

√
m)−tmt/2+14t

= m
(

4
10

)t
< 1/m4.

Plugging the bound from Theorem 3 into the argu-
ment from the section B.2 and computing the correct
constants yields that the algorithm finds a planted
clique in G of size at least 100

√
m with probability

4/5.

B.4 Finding Cliques of Size c
√
m

To break stabilizer money for all ε ≥ c√
m

, we extend
our algorithm to find cliques of size c

√
m for any c > 0.

In [3], Alon et al. show how to bootstrap the above
scheme to work for any c.

The procedure used by Alon et al. is to iterate over
all sets of vertices of size log(100/c), and, for each
such set S, to try to find a clique in the graph GS of
the vertices that are connected to all of the vertices
in S.

When S is in the planted clique, GS also contains
the clique. However, |GS | ≈ c|G|/100, as most of the
vertices that are outside the clique are removed. As
GS behaves like a random graph with the same distri-
bution as the original graph but with a planted clique
of size 100

√|GS |, one can find it using the second
largest eigenvector.

To use the same algorithm in our case, we apply
Lemma 4 with parameter k + log 100/c. This shows
that, up to a small additive error, the expected value
of the kth power of the adjacency matrix of GS be-
haves like the expected value of the kth power of the
adjacency matrix of a random graph, which was all
that we used in the proof.

31

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

