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Abstract: Because of its devastating effects in auctions and other mechanisms, collusion is prohibited and
legally prosecuted. Yet, colluders have always existed, and may continue to exist. We thus raise the following
question for mechanism design:

What desiderata are achievable, and by what type of mechanisms, when any set of players who wish to
collude are free to do so without any restrictions on the way in which they cooperate and coordinate their
actions?

In response to this question we put forward and exemplify the notion of a collusion-leveraging mechanism. In
essence, this is a mechanism aligning its desiderata with the incentives of all its players, including colluders, to
a significant and mutually beneficial extent. Of course such mechanisms may exist only for suitable desiderata.

In unrestricted combinatorial auctions, where classical mechanisms essentially guarantee 0 social welfare and 0
revenue in the presence of just two colluders, we prove that it is possible for collusion-leveraging mechanisms to
guarantee that the sum of social welfare and revenue is always high, even when all players are collusive.

To guarantee better performance, collusion-leveraging mechanisms in essence “welcome" collusive players, rather
than pretending they do not exist, raising a host of new questions at the intersection of cooperative and non-
cooperative game theory.
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1 Introduction

Collusion is a major problem for traditional mecha-
nisms for a very simple and fundamental reason. Tra-
ditional mechanism design guarantees a desired prop-
erty ℙ at equilibrium. But, by definition, an equi-
librium only guarantees that no individual player has
incentive to deviate from his envisaged strategy, while
two or more players may have plenty of incentive to
coordinate a joint deviation. And when they do so
in the course of a mechanism, the desired property ℙ

typically no longer holds. The problem of collusion is
both particularly acute and well documented in auc-
tions. Both physical and legal protection against it
are routinely employed: auction rooms are often mon-
itored by a variety of surveillance equipment, and col-
lusion is outlawed and criminally punished. But with
limited results.

In this paper we thus put forward a new and purely
mathematical approach to collusion in combinatorial
auctions.

∗Work done when all three authors were at the Computer
Science and Artificial Intelligence Laboratory at MIT

1.1 Prior Work
Restricted Collusion and Restricted Auctions

Some protection against collusion can be obtained
by starting with the assumption of some restriction
on the coordination ability of colluders. For in-
stance, group strategy-proof (or equivalently, coalition
strategy-proof) mechanisms [2, 14, 19–21], work under
the assumption that colluders are incapable of making
side-payments to each other. Alternatively, some col-
lusion protection can be obtained for restricted auc-
tions: in particular, single-parameter auctions [10].
(Some collusion protection is also available for other
restricted games, such as with two players of two pos-
sible types, or Bayesian games, where additional in-
formation about the players is available to the mech-
anism designer. See [5, 6, 15, 16].) But all such
protection vanishes when the colluders’ coordination
is unrestricted, the auction is combinatorial, and the
mechanism designer knows nothing about the players.
Combinatorial Auctions and the Ausubel-
Milgrom Example

In auctions of multiple goods, each player i has a
true valuation TVi for the goods for sale: a function
specifying i’s true value TVi(S) for each possible sub-
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set S of the goods. Such an auction is called com-
binatorial when the players’ valuations are arbitrary
and unrelated functions. Combinatorial auctions are
therefore the most general form of auctions, but also
the most difficult one when it comes to collusion. In
fact, their rich structure can be easily exploited by col-
lusive players. Notably, Ausubel and Milgrom [1] have
shown that just two (sufficiently informed) collusive
players may drive to 0 the social welfare (as well as
the revenue!) of the famous VCG mechanism. This is
so despite the fact that the VCG is dominant-strategy
truthful, in essence the best form of equilibrium, and
that at equilibrium it maximizes social welfare.
Implementation in Undominated Strategies
and Rationally Robust Implementation

The classical notion of implementation in undom-
inated strategies [13], and its feasible version [3], al-
though not applied to unrestricted combinatorial auc-
tions, are ancestors of rationally robust implementa-
tion, a notion put forward by [7, 8], and adopted in
this paper as our solution concept. Rationally robust
implementation is recalled in Section 3, but its zest is
first best conveyed by lying as follows: a mechanism
provides a rationally robust implementation of a given
property ℙ if it guarantees ℙ not at an equilibrium,
but at any profile of strategies surviving iterated elim-
ination of strictly dominated strategies.
Robust leveraging of external independent
knowledge

Traditional mechanisms leverage only the internal
knowledge of the players. In an auction, this would be
the knowledge that each player i has of his own true
valuation TVi. However, very little revenue can be
guaranteed by traditional mechanisms in combinato-
rial auctions, with or without collusion [17]. Any hope
to guarantee more revenue (without assuming that the
seller/designer has some convenient knowledge about
the players, such as some suitable Bayesian informa-
tion) rests on a mechanism’s ability to leverage also
the players’ external knowledge. In an auction, this
is essentially the knowledge that each player i has
about the others’ valuations. Quite realistically, in
this paper we work with the original, imperfect ex-
ternal knowledge model of [7]: guaranteed (or lower-
bounded) external knowledge. In essence,

Each i knows a lower-bound, V ij,S , for each TVj(S).

Notice that such external knowledge is not an assump-
tion, since at worst V ij,S could be 0. The mechanism of
[7] leverages this external knowledge in a combinato-
rial auction in a very robust way. Namely, no matter
how many collusive players there may be, no matter
how many secret coalitions they may be partitioned

in, and no matter how the members of each coalition
may coordinate their actions, the revenue of their ra-
tionally robust implementation is always greater than
or equal to
1/2 of 𝕄𝔼𝕎 = maxi∈I𝕄𝔼𝕎i, where 𝕄𝔼𝕎i is the
maximum external welfare known to an independent

i.1

Of course, the more precise the external knowledge
of the players, the better the performance one could
guarantee. As shown in another paper [4], to appear
in ICS 2010, when the players’ external knowledge is
perfect, one can guarantee perfect revenue too, even
in a dreadfully collusive setting.

Note that the external welfare known to a player i
can be interpreted as the best way known to i to sell
the goods to the other players. Since the seller and/or
the mechanism designer is assumed to know nothing,
and is thus less informed than any of the players, be-
ing able to sell the goods roughly as well as some of
the players could —let alone the “best-informed" in-
dependent player!— is a non-trivial guarantee.

1.2 Our Work
As we have seen, coordinated collusive players con-

stitute a major obstacle to mechanism design in gen-
eral and to combinatorial auctions in particular. As
we have seen too, all work so far has focussed on pre-
venting collusion from damaging an auction, either
by trying to (1) “force" collusive players to behave
independently [2, 10, 14–16, 19–21], or (2) “neutral-
ize" collusive players from the auction [7, 17]. In this
paper we put forward a more ambitious question:
Is it possible for a mechanism to leverage collusion?
We believe this question to be central to mechanism
design. If we really want to leverage the players’
knowledge, then we should be able to treat colluders
as a potential reservoir of knowledge to be harvested.
To explain both what our question means and what
we can prove about it, we need to informally clarify a
few things: our collusion model, our solution concept,
the property we strive to achieve, the knowledge we
try to leverage, our benchmark, our notion of collu-
sion leveraging, and then the extent to which we can
provably leverage collusion.
Rational, unrestricted, dynamic, unpunish-
able, and secret collusion

Mechanism design relies on the players’ rationality,
and for it to leverage also the knowledge of collusive

1That is, I stands for the set of independent (i.e., not collu-
sive) players, and 𝕄𝔼𝕎i is the maximum of

∑
j �=i V

i
j,Aj

taken
over all partitions A of the goods among the players, where Aj
denotes the set of the goods that A assigns to player j.
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players, coalitions of players must be rational too. In
this paper we assume that a rational coalition is a
subset of the players coordinating their actions so as
to maximize the sum of the (individual) utilities of
its members. Perhaps other models of rational coali-
tions can be analyzed in the future. But if we want
to understand collusion leveraging, we have to start
somewhere. And ours is not a random place to start,
for two main reasons.
(a) “Maximizing the money coming in" is the best

way for collusive players to enrich themselves.
This is important because players collude in or-
der to further improve their individual utilities.
Of course, different members of a coalition may
have different bargaining powers, and any collu-
sive gain might ultimately be split in different
proportions. But limiting the amount of money
coming in never is the rational thing to do for a
coalition!

(b) It is the traditional model. Indeed, most of the
papers that need to specify a “joint utility func-
tion" for a coalition (e.g., [10]) adopt the same
model.

In all other respects, our collusion model is totally
unrestricted. In particular,
• No player is afraid to collude. (Even if collusion

is severely punished, we model the players as
believing with probability 1 that they will never
be caught.)
• The composition, size, and total number of coali-

tions is totally unrestricted. (All players belong-
ing to the same coalition is not ruled out. Coali-
tions of size 1 correspond to players who have
chosen to remain independent.)
• Members of the same coalition can cooperate

in any way they want. (In particular, they
could make side-payments to one another, or en-
ter contracts with each other that are perfectly
binding —possibly with respect to quite differ-
ent “enforcement systems.")
• Coalitions may be secret. The members of a

coalition are perfectly capable of keeping its ex-
istence secret, if this is to their advantage.
• Coalitions can form dynamically. Of course,

coalitions may pre-exist the choice of a mech-
anism. (E.g., husband and wife, or brother and
sister, may have decided to collude in any case.)
But we want to protect even against a more dan-
gerous case. Namely, we let the players choose,
if they so wish, to form coalitions by means of
the following 3-stage process: (1) All players are
initially independent; (2) A specific mechanism

is announced, and then (3) The players partition
themselves into coalitions in any way they want.
Note: In this paper, we do not specify the
process of coalition formation. Indeed, it is a
strength of our mechanism M that it works no
matter how coalitions are formed. But it is im-
portant to point out that ourM can handle dy-
namic coalitions. In fact, it should be appre-
ciated that any mechanism leveraging dynamic
coalitions also leverages “static" ones, while the
viceversa needs not to hold.

Our model thus has two noteworthy consequences.
1. Whether the players possess “the means to col-

lude" is not an issue. We view this as no big loss.
Realistically, with the advent of modern com-
munication networks, an auctioneer’s ability to
credibly deny his players all means of colluding
is vanishing fast anyway.

2. The “Law" is no longer a credible ally. Whether
we like to admit it or not, our legal system has
been aiding mechanism design in several ways.
In particular, it has boosted the meaningfulness
of equilibria: the law takes care of multi-player
deviations, leaving only single-player deviations
to be dealt with by mathematical analysis. But
as mechanisms start being played over the Inter-
net, legal help is vanishing too. If a combinato-
rial auction is conducted over the Internet, who
has proper jurisdiction? Even if players were re-
quired to make high “safety deposits" in our own
country (so as to vouch for our ability to punish
them and to enforce the final outcome), and even
if we clarified which countries have jurisdiction
over which players, collusion should continue to
worry us. Countries tolerating mass murder-
ers may not care about energetically prosecut-
ing colluders. Accordingly, we are seeking to ad-
dress collusion by mechanisms relying only on
Mathematics, rather than, explicitly or implic-
itly, a “combination" of Mathematics and po-
lice/jail/torture/execution/et cetera.

In sum, our chosen approach is of a safe, Machiavel-
lian realism: namely, any set of players who wishes to
collude, does. If a coalition does not come into being
it is only because its potential members found more
profitable alternatives, or because they could not bar-
gain successfully and failed to reach agreement on how
to split their potential gains.

Rational Play
As already said, we adopt rationally robust im-

plementation as our solution concept. A bit more
precisely, this notion of implementation guarantees a
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property ℙ by identifying (1) a mechanism M and
(2) a corresponding refined subset of strategies Sx for
each agent (player or coalition) x such that
• If everybody is rational, each x will never want

to choose a strategy outside Sx; and
• No matter what strategy in Sx each x actually

chooses, ℙ is guaranteed to hold.
Even this sketchy summary makes it clear that ratio-
nally robust implementation does not rely on equilib-
ria. (Indeed, unless each subset of refined strategies
has cardinality 1, an arbitrary profile of refined strate-
gies may not be an equilibrium.) More generally, ra-
tionally robust implementation does not rely on the
players’ beliefs on how the mechanism will be played.
Indeed, it is robust.

Total Performance
Traditional auctions are designed to maximize ei-

ther social welfare or revenue (i.e., either the sum
of the players’ true values for the goods allocated to
them, or the sum of the prices paid by the players).
Our goal is to maximize total performance, that is,
the sum of the two. There are compelling reasons for
choosing this goal.

1. It is an achievable goal. As self-serving as this
may sound at a superficial level, we note that,
in the presence of collusive players capable of co-
operating without restriction, it is a non-trivial
goal.2

2. It is a natural goal. If we were guaranteed, by
some means, that there will be no collusion in
our auction, we would be only too happy to run
the VCG mechanism and generate perfect so-
cial welfare. But as already mentioned, it was
insightfully shown by Ausubel and Milgrom [1]
that in the VCG mechanism two collusive play-
ers who do not value the goods very much can
bid very high and get all goods while paying
nothing, thereby destroying both social welfare
and revenue. In light of their example, sacrific-
ing some potential social welfare and converting
it to revenue is a quite natural antidote to col-
lusion. Indeed, we do not prevent collusive or
independent players who value the goods very
low from bidding very high and getting all the
goods, but we do guarantee that by so doing they
will pay through their noses.

2In particular, the total performance of a mechanism M de-
signed to guarantee as much revenue as possible in the presence
of collusive players may be quite poor. This is so because M
may only yield modest revenue while sacrificing social welfare
a lot, so that the total performance of M may be just twice a
modest revenue.

3. It is a desirable goal. A traditional motivation
behind the maximization of social welfare is that
of a benevolent government, solely interested in
the happiness of its citizens, rather than in rev-
enue. To be sure, the VCG mechanism perfectly
achieves this classical goal by imposing prices to
the players. But such prices are almost an “af-
terthought," or a “necessary evil": they are just
a means to maximize social welfare. But what is
wrong with revenue? A benevolent government
transforms it into roads, hospitals and other in-
frastructure from which everyone benefits. Tak-
ing this point of view, maximizing the sum of
revenue and social welfare in the presence of col-
lusion is a more meaningful goal for a benevolent
government.

Independent of the above reasons, revenue alone can-
not be meaningfully pursued in our setting. When
all players are allowed to collude without restriction
and the seller is not assumed to have any suitable
(e.g., Bayesian) knowledge about them, no meaning-
ful revenue-only benchmark can be guaranteed. For
example, if all players in an auction collude together,
then it is reasonably clear that no constant fraction
of their value for the items may be extracted as rev-
enue, since the mechanism essentially has to accept
any price the coalition names for themselves.
Knowledge Model

In our combinatorial auctions we adopt the knowl-
edge model of [7]. Again, this means that each player
i not only knows his own true valuation, but, without
any loss of generality, also a (possibly trivial) lower-
bound on the other players’ valuations. That is, the
guaranteed knowledge of each i consists of a valua-
tion profile Ki such that (1) Kii = TVi and (2) for
all other players j and all subsets of the goods S,
0 ≤ Kij(S) ≤ TVj(S).3

The following “union" operation on such guaranteed
knowledge is crucial for us.

Definition 1. If K is a guaranteed-knowledge
profile and C a subset of the players, then KC
denotes the valuation profile such that, for any
player i and any subset S of the goods, KCi (S) =
maxj∈C Kji (S).

In essence, KC is “the most accurate guaranteed
knowledge that the players in C could compute after

3Again following [7], we stress that Ki is not the only thing i
knows. And indeed a player is free to use any additional knowl-
edge when playing our mechanisms. However, if a mechanism
is capable of leveraging the players’ guaranteed knowledge, it is
able to do so no matter what additional knowledge the player
may have.
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truthfully sharing their individual guaranteed knowl-
edge." Notice that KCi coincides with TVi for any
member i of C.
Knowledge-Monotone Benchmarks

A guaranteed-knowledge benchmark is a function B
mapping any possible guaranteed knowledge profile to
a non-negative real number. For the sake of mean-
ingfulness, we focus solely on knowledge-monotone
benchmarks: that is, we demand that “the better the
knowledge of the players, the better the mechanism’s
performance." A bit more formally, we impose a par-
tial order on guaranteed knowledge as follows.

Definition 2. For any guaranteed knowledge K
and K̂ we say that K ≥ K̂ if Kij(S) ≥ K̂ij(S) for
all players i and j and any subset S of the goods.
We say that a guaranteed-knowledge benchmark
B is knowledge-monotone if B(K) ≥ B(K̂)
whenever K ≥ K̂.

Our Benchmark
Recall that the maximum social welfare of a val-

uation profile V , MSW (V ), is the maximum of∑
j Vj(Aj), taken over all partitions A of the goods

among the players —where Aj denotes the set of the
goods that A assigns to player j. Let us now define
the characteristic benchmark of this paper.

Definition 3. (Maximum Known Welfare)
Letting 𝕄𝕂𝕎i(K) = MSW (Ki) for each
guaranteed-knowledge profile K and player i, we
define the maximum known welfare benchmark,
𝕄𝕂𝕎, as follows:

𝕄𝕂𝕎(K) = max
i

𝕄𝕂𝕎i(K).

More generally, for any subset S of the players,
we define 𝕄𝕂𝕎S = maxi∈S𝕄𝕂𝕎i.

Note that 𝕄𝕂𝕎 indeed is a knowledge-monotone
benchmark. Note too that each 𝕄𝕂𝕎i consists of
the maximum social welfare when the players’ true
valuations are precisely as in Ki, and thus consists of
the maximum social welfare i knows he can guarantee
if he were in charge of assigning the goods. Accord-
ingly, 𝕄𝕂𝕎 consists of “the maximum social welfare
that the best-informed player knows how to guaran-
tee." Since, following the purest form of mechanism
design, we assume that all knowledge lies with the
players (and none with the designer), 𝕄𝕂𝕎 is a non-
trivial benchmark, and achieving it within a constant
factor (as we do) is significant. Of course we could
conceive and construct auction instances whose max-
imum known welfare is rather low. But this is missing
the point. When all knowledge lies with the players,

Enabling an ignorant seller to assign the goods
roughly as well as the best informed player is an

attractive goal.

(To be sure, player-knowledge benchmarks have
generated some common confusion. At least some of
it has been clarified in Section 5.1 of [8].)
From 𝕄𝔼𝕎 to 𝕄𝕂𝕎 in a Collusion-Resilient
Way

Note that 𝕄𝕂𝕎 is a benchmark more demanding
than 𝕄𝔼𝕎. Indeed, 𝕄𝔼𝕎 is only defined over the
external knowledge of independent players. By con-
trast, 𝕄𝕂𝕎 allows any player i to assign goods to any
player, including himself. Thus, 𝕄𝕂𝕎 captures the
total (i.e., both internal and external) relevant knowl-
edge of all players (whether independent or collusive).

However, if we are satisfied to leverage just the
knowledge of the independent players, then the two
benchmarks can be related in various ways. In par-
ticular, the following holds. For any c between 0
and 1, one can easily transform a collusion-resilient
mechanism M guaranteeing revenue ≥ c𝕄𝔼𝕎 into a
collusion-resilient mechanism M ′ guaranteeing (1) a
total performance ≥ c

c+1𝕄𝕂𝕎I , where I is the set
of independent players, and (2) revenue greater than
or equal to a fraction c

c+1 of the total knowledge of
the “second-best-informed independent player." Es-
sentially, M ′ runs M with probability 1

c+1 and a
“second-price" auction A′ with complementary proba-
bility. In such an A′, each player bids a value together
with a subset of the goods. The winner is the player
with the highest value. He pays the second highest
value, and gets the subset specified in his bid. All
other goods remain unallocated, and all other play-
ers pay nothing. In particular, we can transform the
mechanism in [7] to a new one guaranteeing a total
performance ≥ 𝕄𝕂𝕎I

3 .
Indeed, collusion resiliency is quite different from

and quite simpler than collusion leveraging. The main
point of this paper is not to leverage the total knowl-
edge of just the independent players, but that of all
players. Let us thus see what this should mean.
Collusion Leveraging

A basic way to express that a mechanism M
achieves a fraction c of 𝕄𝕂𝕎 is provided by the fol-
lowing property:

In every rational play with guaranteed knowledge
K, the total performance ofM is ≥ c·𝕄𝕂𝕎(K).

Let us now put forward a more demanding way to
express thatM achieves a fraction c of 𝕄𝕂𝕎 (or any
other knowledge-monotone benchmark) in a dynamic
collusion model. Recall that such a model envisages a
multi-stage process: in the initial stage, each player is
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independent and has his own knowledge; in the second
stage, M is announced; in the third stage the players
partition themselves into collusive sets as they see fit;
and finally M is played. Recall too that members of
the same collusive set cooperate so as to maximize the
sum of their individual utilities. To this end, they may
need to share some of their knowledge. Accordingly,
the guaranteed knowledge profile in the first and third
stages may be quite different.

Definition 4. We say that M is a collusion-
leveraging mechanism with total performance
c𝕄𝕂𝕎 if

in any rational play with initial guaranteed
knowledge K, M ’s total performance is

≥ c ·𝕄𝕂𝕎(K)
where K is the (fictitious) knowledge profile such
that, for every coalition C in the final stage,
K
i = KC ∀i ∈ C, and Ki = Ki for all inde-

pendent players i.
(It is actually possible to formally strengthen —and
achieve in our case— collusion leveraging by man-
dating another property: collusion rewarding. In-
formally, a mechanism should make it preferable —
subject only to the ability to agree on how to split
the proceeds— for any subset of players to collude.)

Remarks
• By knowledge monotonicity, 𝕄𝕂𝕎(K) ≥
𝕄𝕂𝕎(K). That is, our benchmark can only go
up when players collude.
• Collusion leveraging does not demand that mem-

bers of the same coalition share their knowledge.
Rather, it states that such members ultimately
behave as if they shared their knowledge. In par-
ticular, the members of a coalition might choose
their best joint strategies via a secure multi-
party computation, in which each one of them
uses his own true knowledge as his own private
input. This way, they are able to de facto choose
their best strategies while preserving the privacy
of their individual knowledge to the maximum
possible extent, and thus without “sharing all of
it" in any reasonable sense of the term.
• Collusion leveraging is a goal beyond those con-

sidered in the past. In our terminology, the
traditional effort was directed either at prevent-
ing collusion (i.e., to achieve a desired bench-
mark evaluated at K, rather than at K) or at
neutralizing collusion (i.e., to achieve a desired
benchmark evaluated at the subprofile of K cor-

responding to the independent players in the fi-
nal stage, rather than at the full K).
• Because the benchmark of a collusion-leveraging

mechanism increases with collusion, such a
mechanism might as well explicitly envisage the
presence of collusive players. Indeed, our mech-
anismM of Section 4 goes as far as making spe-
cial “collusive strategies" available to coalitions
of players. In some sense, therefore,

Our mechanism M is at the intersection of
cooperative and non-cooperative game theory.

• By providing strategies for collusive players, our
M de facto assumes that collusion is legal-
ized. Despite going against a long tradition, this
choice is quite logical in our adversarial collusive
setting. Indeed, if coalitions can form whenever
the players want,

Insisting on mechanisms envisaging only
independent players is counter-productive.

Such insistence only ties the hands of the mech-
anism designer, and thus ultimately hurts per-
formance!

Our Main Result
The main result of our paper is the following.

Informal Thm 1: There exists a collusion-leveraging
combinatorial-auction mechanismM whose total per-
formance is 𝕄𝕂𝕎

6 .4

Open Questions
Our paper raises a totally new class of questions.

In particular,
• While we consider benchmarks of strictly in-

creasing meaningfulness, the fraction of them we
are able to achieve strictly decreases: namely,

1/2 of the maximum external welfare known
to any independent player (i.e., [7]);

1/3 of the maximum total welfare known to
any independent player (as discussed above);
and

1/6 of the maximum total welfare known to
any player (i.e., Theorem 1).
Does this “anti-correlation" arise intrinsically, or
is it due to our currently poor tools in a new
environment?
• Eric Maskin (private communication) has asked

whether it would be possible to handle functions
of social welfare and revenue more sophisticated

4By slightly changing our mechanism and complicating its
analysis, we can improve the total performance of our mecha-
nism to � 𝕄𝕂𝕎

1+
√

2 �/2.
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than total performance. For instance, can we en-
gineer mechanisms so as to “initially" privilege
revenue, and then (i.e., after “enough" revenue
has been generated) social welfare? Good ques-
tion, but we are not ready for it yet!
• Could we guarantee better performance if “bet-

ter knowledge" (e.g., a mixture of guaranteed
and Bayesian knowledge) were available? Here,
in line with mechanism design in its purest form,
we mean that more accurate knowledge is avail-
able to the players, not to the seller/designer!
• Are there tight impossibility results for collusion

leveraging? What are the right structural results
for rationally robust implementation? Can we
leverage collusion to a larger extent by better
understanding “collusion formation?"

In sum, there is a lot more to understand and much
more work to look forward to!

1.3 Our Related Forthcoming Work
A related work, and in fact one predating and in-

spiring this paper, is an unpublished manuscript of
[18]. Their paper too aims at leveraging the knowl-
edge of collusive players in a combinatorial auction,
but in a quite different model. On one hand, they as-
sume that at most one coalition of players exists, that
the knowledge that the coalition has about the valua-
tions of the independent players is within an approx-
imation factor k, and that the mechanism designer ia
aware of the value of k. (Note that in many auctions
it is reasonable to assume that competitors can esti-
mate within a factor of 2 each other’s valuations for
the goods.) On the other hand, they can leverage such
knowledge by relying on a simpler solution concept:
namely, their mechanism is dominant-strategy truthful
for independent players and works in “undominated
strategies" for the members of the coalition.

2 Preliminaries
Combinatorial Auctions.

In a combinatorial auction with n players and mul-
tiple goods for sale,

• The true valuation of a player i consists of a
function TVi mapping every subset S of the
goods to a non-negative integer, where TVi(S)
represents the true value that i has for S.
• An allocation A consists of a partition of the

goods, A = A0, A1, . . . , An, where A0 represents
the unallocated goods, and Ai (for i > 0) the
subset of goods allocated to player i.

• An outcome Ω consists of an allocation A and a
price profile P , a vector of integers indexed by
the players. If positive, Pi represents the amount
paid by i, else −Pi represents the amount re-
ceived by i.

We say that a combinatorial auction is unrestricted
to stress that the function TV is not assumed to be
of any special form: each value TVi(S) is independent
of TVj(S′) for any (i, S) �= (j, S′).

As is standard, goods are non-transferable and a
player i’s individual utility depends solely on how
much he pays and on which goods he receives: in an
outcome (A,P ), it consists of TVi(Ai)− Pi.
Extensive-Form Public-Action Auction Mech-
anisms.

We focus solely on auction mechanisms of extensive
form. Thus our mechanisms must specify the deci-
sion nodes (of a game tree), the player(s) acting at
each node, the set of actions available to each acting
player at each node, and the auction outcome (i.e.,
the allocation A and the price profile P ) associated
to each terminal node —leaf of the game tree. Our
mechanisms may actually specify multiple players to
act simultaneously at some decision nodes. Our mech-
anisms also are of public action: that is, each action
becomes common knowledge as soon as it is played.5

A player i’s strategy specifies i’s action at each de-
cision node in which i acts. A play of a mechanismM
consists of a profile of strategies. If σ is such a play,
then
• H(σ) denotes the history of the play, that is the

sequence of decision nodes together with the ter-
minal node of the game tree reached when exe-
cutingM with each player i choosing his actions
according to σi.
• M(σ) denotes the auction outcome (A,P ) asso-

ciated to H(σ).
If M is probabilistic, then both H(σ) and M(σ) are
distributions, respectively over histories and auction
outcomes.

For each player i, a mechanism M must provide a
particular opt-out strategy outi, and must satisfy the
following
opt-out condition: for each player i and each
strategy subprofile σ−i for players other than i,
ui(M(outi � σ−1)) = 0 (with probability 1 if M is
probabilistic).

5We refrain from using the more standard term “perfect-
information" to avoid confusion. Our setting is in fact of “in-
complete information." That is, a player’s true valuation is not
exactly known to his opponents. And mechanisms of “perfect
information and incomplete information" would be too much...
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Generalized Contexts and Auctions.
A traditional context for a combinatorial auction

can be fully specified by the true-valuation profile
TV alone. Indeed, the outcome set, and the players’
utility functions are uniquely determined once TV is
specified. Following [7] ([8] for a better treatment),
we enrich such a traditional context by including the
knowledge that each player has about the valuations
of the other players, as well as the collusion structure.

The external knowledge is formalized without any
recourse to any Bayesian information. It can be
“zero", but when this is not the case, a mechanism
should try to leverage it to its designer’s advantage.

The collusion structure too can be “empty" in the
sense that all players can be independent.

Definition 5. A generalized auction context consists
of three components:

1. The true-valuation profile TV .
2. The collusion structure (ℂ, I), where ℂ is a parti-

tion of the players, and I the set of all players i
such that {i} ∈ ℂ.
We refer to a player in I as independent, to a
player not in I as collusive, to any C ∈ ℂ of
cardinality > 1 as a collusive set. We use the term
agent to denote either an independent player or
a collusive set. Since each player i, collusive or
not, belongs to a single set in ℂ, for uniformity
of presentation we may denote by ℂi the set to
which i belongs.
If A is an agent, then the internal knowledge of
A is TVA, and the utility of A in an outcome
Ω = (A,P ), uA(Ω), is

∑
i∈A TVi(Ai)− Pi.

3. The external-knowledge vector EK: for each agent
A ∈ ℂ, EKA is a set of valuation subprofiles, for
the players outside A, such that TV−A ∈ EKA.

If C is a generalized auction context whose compo-
nents have not been explicitly specified, then by default
we assume that C = (TV C , (ℂC , IC ), EKC ). We say
that (C ,M) is a generalized auction ifM is an auction
mechanism, and C a generalized auction context.

Let us now define the relevant knowledge of an
agent. Essentially this is the outcome with maximum
welfare known to its members.

Definition 6. (Relevant Knowledge) Given a
generalized context C and an agent A, we define
RKC

A , the relevant knowledge of A, to be the outcome
with maximum revenue among all outcomes (A,P )
such that, for all player j

1. If j ∈ A, then Pj = TV C
j (Aj).

2. If j �∈ A, then Vj(Aj) ≥ Pj for all V ∈ EKC
A .

The maximum known welfare of A, 𝕄𝕂𝕎A, is the rev-
enue of RKC

A . The maximum known welfare of C ,
𝕄𝕂𝕎

C , is maxA∈ℂC 𝕄𝕂𝕎A.

Remarks
• A collusion structure specifies separately the set
I for convenience and clarity only.
• Recall that in a collusion-leveraging mechanism

the members of the same collusive set will de
facto behave as if they are sharing their knowl-
edge. Accordingly, in a collusion-leveraging
mechanism, saying that A knows x means that
all players i ∈ A know x.
• RKC

A is the knowledge of agentA that our mech-
anism is capable of using to the designer’s advan-
tage, while TV C

A and EKC
A are the knowledge

that A uses to choose rationally the actions of
its members.
• Since we envisage a dynamic collusion formation,

the generalized context C is that arising at the
end of our third stage, where coalitions are al-
ready formed.
• When the generalized auction context C under

consideration is clear, we may “not use it as a
superscript." For instance, we may simply write
𝕄𝕂𝕎 instead of 𝕄𝕂𝕎

C .

3 Distinguishable Domination and
Rationally Robust Implementation

We adopt the same solution concept and implemen-
tation notion of [8] (see their paper for motivations
and basic properties of the notions). Their notations
and definitions are reported below essentially verba-
tim, except for some slight adjustments to our setting.

Through out this paper, whenever we say that S is
a vector of strategy (sub)sets in a generalized auction
(C ,M), we mean that each SA is a (sub)set of agent
A’s strategies. For such an S, we define the Cartesian
closure of S as S =

∏
A∈ℂC SA, and we define S−A =∏

C∈ℂC ,C �=A SC .

Definition 7. (Distinguishable Strategies.) In
a generalized auction G = (C ,M), let S be a vector
of deterministic-strategy subsets, and let σA and σ′A
be two different strategies for some agent A. Then
we say that σA and σ′A are distinguishable over S if
∃τ−A ∈ S−A such that

H(σA � τ−A) �= H(σ′A � τ−A).6

6If H(σA � τ−A) and H(σ′A � τ−A) are distributions over
the histories of G, then the inequality means that the two dis-
tributions are different.
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If this is the case, we say that τ−A distinguishes σA
and σ′A over S; else, that σA and σ′A are equivalent
over S.

Definition 8. (Distinguishably Dominated
Strategies.) Let G = (C ,M) be a generalized
auction, A an agent, σA and σ′A two strategies of A,
and S a vector of deterministic strategy subsets. We
say that σA is distinguishably dominated (by σ′A) over
S —equivalently that σ′A distinguishably dominates σA
over S— if

1. σA and σ′A are distinguishable over S; and
2. 𝔼[uA(M(σA�τ−A))] < 𝔼[uA(M(σ′A�τ−A))] for

all strategy sub-vectors τ−A distinguishing σA
and σ′A over S.

Definition 9. (Compatible Contexts.) We say
that a generalized context C ′ is compatible with agent
A in a generalized auction G = (C ,M) if: C ′ and
C have the same set of players and the same set of
goods, A ∈ ℂC ′ , TV C ′

A = TV C
A , and EKC ′

A = EKC
A .

Notice that C ′ being compatible with A implies
that RKC ′

A = RKC
A also, since A’s relevant knowledge

is deduced from its internal and external knowledge.

Definition 10. (L1-Rationally Robust Plays) Let
G = (C ,M) be a generalized auction, i a player and A
an agent in G. Let Σ0 =

∏
Σ0
i be a profile of strategy

sets, such that Σ0
i is the set of all possible strategies

of i according to M .
• We define Σ1

C ,A to be the set of strategies in Σ0
A

that are not distinguishably dominated over Σ0

in G, and Σ1
C to be

∏
A∈ℂC Σ1

C ,A.
• We say that a strategy σA ∈ Σ1

C ,A is globally dis-
tinguishably dominated if there exists a strategy
σ′A ∈ Σ1

C ,A, such that for all contexts C ′ com-
patible with A, σ′A distinguishably dominates σA
over Σ1

C ′ , where Σ1
C ′ is defined as Σ1

C but for
auction (C ′,M).
• We denote by Σ2

C ,A the set of all strategies in
Σ1

C ,A that are not globally distinguishably domi-
nated.
• We say that a strategy vector σ is an L1-

rationally robust play of auction G if σA ∈ Σ2
C ,A

for all agent A.

Definition 11. (L1-Rationally Robust Imple-
mentation.) Let C be a class of generalized auction
contexts, ℙ be a property over (distributions of) out-
comes of contexts in C, and M an extensive-form auc-
tion mechanism with simultaneous and public actions.
We say that M L1-rationally robustly implements ℙ if,
for all contexts C ∈ C

1. for each player i, outi �∈ Σ2
C ,i, where Σ2

C ,i is
the subset of strategies for player i, obtained by
taking the i-th component of each σℂi ∈ Σ2

C ,ℂi
.

2. for all L1-rationally robust plays σ of the auction
(C ,M), ℙ holds for M(σ).

Remarks.
• Different from [7, 8] where Σ2

C ,A are explicitly de-
fined for independent players only, here we define
Σ2

C ,A for both independent players and collusive
sets.
• In the definition above, the compatibility of a

generalized context with an agent A is defined
with respect to A’s internal and external knowl-
edge only. However, A may have all other types
of knowledge, and when this is the case then A is
entitled to use it for pruning the compatible con-
texts it should consider. In particular, an agent
may have knowledge about the collusion struc-
ture, as well as knowledge about other players’
external knowledge. Our L1 label in definitions
10 and 11 highlights the fact that we only rely on
the simplest, level-one knowledge (about players
true valuations).
Of course, as per footnote 3, if a mechanism
implements a property ℙ L1-rationally robustly,
then ℙ holds whatever additional information
each A may have.

4 Our Mechanism
In the description of our mechanism,
• {1, . . . , n} is assumed to be the set of players;
• ε, ε1, and ε2 are three —arbitrarily small— con-

stants in (0, 1) such that 2nε2 < ε1.
• an outcome (A,P ) is called reasonable if each Pj

is non-negative;
• an allocationA is said to be for a set C of players

if Aj = ∅ whenever j �∈ C;
• numbered steps refer to steps taken by the play-

ers, “bulleted" ones to steps taken by the mech-
anism.

Mechanism M
• Set Ai = ∅ and Pi = 0 for each player i.

(Outcome (A,P ) will be the final outcome of the
mechanism.)

1. Each player i, simultaneously with the others,
publicly announces three things:
(1) a subset of players including i, Ci (allegedly
the collusive set to which i belongs);
(2) an allocation for Ci, Si (allegedly the alloca-
tion desired by Ci); and
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(3) a reasonable outcome, Ωi = (αi, πi) (allegedly
the relevant knowledge of Ci).
• Set: Ri = rev(Ωi) for each player i, � =

argmaxiRi (ties broken lexicographically), and
R′ = maxi�∈C� Ri.
(We shall refer to player � as the “star player",
and to R′ as the “second highest —announced—
revenue”.)
• For each player i for which Ci includes a player
j such that i /∈ Cj , do:
(1) reset Pi := Pi + R� + ε1 (i.e., impose to i a
fine of R� + ε1 payable to the mechanism/seller)
(2) for each j ∈ Ci such that i /∈ Cj , reset Pi :=
Pi +R� + ε1 and Pj := Pj −R� − ε1 (i.e., have i
pay R� + ε1 to j)
• If there is a player i such that Pi > 0 (i.e., if i has

been fined), ABORT the auction (i.e., no further
money exchanges hands, and all goods remain
unallocated for ever).
• Publicly flip a biased coin c1 which comes up

Heads with probability ε. If Heads: uniformly
and randomly choose a player i, reset � := i and
R′ := 0. (In this case, R′ does not quite corre-
spond to the second highest announced revenue,
but this “mismatch" only happens rarely.)
• Publicly flip a fair coin c2. If Heads: reset A :=
S� and HALT.

2. (If Tails:) Each player i such that i �∈ C� and
π�i ≥ 1 publicly, and simultaneously with the oth-
ers, announces YES or NO (i.e., declares whether
he wants to receive the subset of goods α�i for a
price π�i − ε2)
• Reset allocation and prices as follows:

(1) P� := R′ − nε2;
(2) for each player i such that either i ∈ C� or
π�i = 0, reset Ai := α�i ; and
(3) for each player i such that i �∈ C� and π�i ≥ 1:
if i announced NO, then P� := P� + π�i (i.e., � is
punished due to i announcing NO); else, Ai :=
α�i , Pi := Pi + π�i − ε2, and P� := P� − (π�i − ε2)
(i.e., � is rewarded due to i announcing YES).
• Finally, reset Pi := Pi − ε2(1 − 1

1+Ri ) for each
player i (i.e., to break “utility ties", a small re-
ward is added to each player, increasing with his
announced revenue).

Remarks
• Consistency Check. Notice that our mechanism

checks consistency among collusive players in the
second mechanism step after Step 1. But this
consistency check is quite elementary. In par-
ticular, if (a) i declares that he belongs to the
same collusive set as j and k, while (b) j declares
to collude only with i and (c) k declares to col-

lude only with i, then our mechanism continues
unperturbed, despite the obvious discrepancies
of these declarations. Nonetheless, our elemen-
tary consistency check suffices to guarantee that
our benchmark is achieved in any rational play
of our mechanism, that is, for any profile of Σ2

strategies.
• Small Constants. The mechanism makes use of

3 arbitrarily small constants only for “properly
breaking utility ties."

5 Our Analysis
5.1 Notation

To state our main theorem and lemmas we utilize
the following notation
• Social Welfare of an Allocation. If A is an allo-

cation, then sw(A) denotes the social welfare of
A: that is

sw(A) =
∑

k

TVk(Ak).

• Revenue of an Outcome. If Ω = (A,P ) is an
outcome, then rev(Ω) denotes the revenue of
Ω: that is

rev(Ω) =
∑

k

Pk.

• Hidden Value of an Outcome. If C is an agent
and Ω = (A,P ) is an outcome, then the hidden
value of Ω for C, HiddenVC(Ω), is

HiddenVC(Ω) =
∑

k∈C
TVk(Ak) +

∑

k/∈C
Pk.

(Notice that in an execution of M, if �’s an-
nounced outcome is Ω, then when coin c2 comes
up Tails, the maximum utility that ℂ� can pos-
sibly get by selling the goods according to Ω is
HiddenVℂ�(Ω), disregarding small constants. In
fact, this utility can be substantially decreased
if some players reject “their offers.")

5.2 Statement of Our Lemmas
Our main theorem is based on five lem-

mas, stated below but proven in the
full version of our paper (available at
http://people.csail.mit.edu/silvio/Selected
Scientific Papers/Mechanism Design/).

Lemma 2 actually is an immediate corollary of the
first two lemmas of [7], but the others are new.

The statements of our lemmas refer to a play σ
of a game (C ,M), where C = (TV, (ℂ, I), EK) is a
generalized context, andM our mechanism of Section
4. The relevant knowledge of C is denoted by RK.
For short, we redefine Σ1 = Σ1

C and Σ2 = Σ2
C .
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Lemma 1. For all agents C and all σC ∈ Σ1
C, the

following two properties hold in Step 1:
P1. for all i ∈ C, Ci ⊆ C (that is, i never includes a

player outside C in his announced collusive set);
and

P2. for any two different players i1, i2 ∈ C, i2 ∈ Ci1
if and only if i1 ∈ Ci2 (that is, C’s members
declare their collusive sets consistently with each
other).

Lemma 2. For all agents C and all σC ∈ Σ1
C , if

� /∈ C, then in Step 2, for all players i in C \C� such
that π�i ≥ 1:
• i announces YES whenever TVi(α�i ) ≥ π�i , and
• i announces NO whenever TVi(α�i ) < π�i .

Lemma 3. For all agents C and all σC ∈ Σ1
C , if

� ∈ C, then in Step 2, for all players i in C \C� such
that π�i ≥ 1, i always announces YES.

Lemma 4. For all agents C, all σC ∈ Σ2
C , and

player j ∈ C such that j is the lexicographical first
player among all players i ∈ C with rev(Ωi) =
maxk∈C rev(Ωk), we have that HiddenVC(Ωj) ≥
rev(RKC) (that is, C’s members do not “underbid"
on the hidden value of their announced outcomes).

Lemma 5. For all agents C and all σC ∈ Σ2
C , we

have that maxk∈C rev(Ωk) ≥ rev(RKC)
3 (that is, C’s

members do not “underbid too much" on the revenue
of their announced outcomes).

5.3 Statement and Proof of Our Theorem
Theorem 1. For all generalized contexts C and all
L1-rationally robust plays σ of (C ,M), we have that

𝔼[rev(M(σ))] + 𝔼[sw(M(σ))] ≥ (1− ε)𝕄𝕂𝕎

6
− ε1.

Proof. First of all, it should be obvious from our lem-
mas that, for each player i, outi �∈ Σ2

i . Now let’s
proceed with the rest of the proof.

Let C be the agent such that rev(RKC) = 𝕄𝕂𝕎.
Notice that by Lemma 1, in execution σ, the mecha-
nism does not abort before Step 2.

When c1 = Heads, no matter whom the star player
is, we have that: (1) the expected social welfare is
𝔼[sw(M(σ))|c1 = Heads] ≥ 0, because TVi(S) ≥ 0
for any player i and any subset S of the goods; and (2)
the expected revenue is 𝔼[rev(M(σ))|c1 = Heads] >
− ε12 , because when and only when c2 = Tails, the star
player pays at least R′ − nε2 = −nε2 to the mecha-
nism and the mechanism gives back total reward less
than nε2 to the players. Therefore 𝔼[sw(M(σ))|c1 =
Heads] + 𝔼[rev(M(σ))|c1 = Heads] > − 2nε2

2 > − ε12 .

When c1 = Tails, the mechanism does not reset the
value of � and R′. By the way that ties are broken, the
star player is the lexicographically first player in his
collusive set among the players who have announced
the maximum revenue in Step 1. We distinguish two
cases.

Case 1: � ∈ C.
In this case we have the following observations:
(1) By Lemma 4, HiddenVC(Ω�) ≥

rev(RKC).
(2) When c2 = Tails, the revenue that � pays

to the mechanism is at least R′ − nε2 ≥
−nε2.

(3) By Lemma 3, when c2 = Tails, every k ∈
C \ C� with π�k ≥ 1 announces YES, and
thus the social welfare generated from play-
ers in C is

∑
k∈C TVk(α�k), and the revenue

generated from them is 0, because for each
player k ∈ C \ C� with π�k ≥ 1, the mecha-
nism charges k with price π�k − ε2, but re-
wards the star player the same amount.

(4) By Lemma 1, k �∈ C� for all players k �∈ C,
and thus when c2 = Tails, any such k with
π�k ≥ 1 gets to announce YES or NO in
Step 2. By Lemma 2, for each such k,
if k announces YES, then we have that
TVk(α�k) ≥ π�k, therefore the social welfare
generated due to this announcement is at
least π�k, and the revenue generated is 0
(again the money paid by k goes to �); if
k announces NO, then the social welfare
generated due to this announcement is 0,
but the revenue generated is π�k, because
the star player is punished by π�k. There-
fore the sum of the social welfare and rev-
enue generated due to the announcements
made by the players outside C is at least∑
k �∈C π

�
k.

(5) When c2 = Tails, the reward given to
each player i in the last step is ε2(1 −

1
1+rev(Ωi) ) < ε2.

Accordingly, when c2 = Tails, we have that

rev(M(σ)) + sw(M(σ))

>
∑

k∈C
TVk(α�k) +

∑

k �∈C
π�k − 2nε2

= HiddenVC(Ω�)− 2nε2 >𝕄𝕂𝕎− ε1.

Because rev(M(σ)) = 0 and sw(M(σ)) ≥ 0
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when c2 = Heads, we have that

𝔼[rev(M(σ))|c1 = Tails]
+𝔼[sw(M(σ))|c1 = Tails]

≥ 𝕄𝕂𝕎− ε1
2

,

and thus

𝔼[rev(M(σ))] + 𝔼[sw(M(σ))]

≥ − εε1
2

+ (1− ε) · 𝕄𝕂𝕎− ε1
2

≥ (1− ε)𝕄𝕂𝕎

6
− ε1.

Case 2: � �∈ C.
In this case, by Lemma 1, C� ∩ C = ∅; and
by Lemma 5, maxk∈C rev(Ωk) ≥ rev(RKC)

3 .
Therefore R′ ≥ rev(RKC)

3 , by definition of
R′. When c2 = Tails, the star player pays
at least R′ − nε2 to the mechanism, and the
reward given back by the mechanism to the
players is at most nε2. Thus rev(M(σ)) ≥
R′−2nε2 > rev(RKC)

3 −ε1 = 𝕄𝕂𝕎

3 −ε1. Because
sw(M(σ)) ≥ 0 always, we have that

𝔼[rev(M(σ))|c1 = Tails]
+𝔼[sw(M(σ))|c1 = Tails]

≥ 𝕄𝕂𝕎

6
− ε1

2
.

Therefore

𝔼[rev(M(σ))] + 𝔼[sw(M(σ))]

≥ − εε1
2

+ (1− ε) · (𝕄𝕂𝕎

6
− ε1

2
)

≥ (1− ε)𝕄𝕂𝕎

6
− ε1.

Q.E.D.
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