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Abstract: Consider a game where Alice generates an integer and Bob wins if he can factor that integer.
Traditional game theory tells us that Bob will always win this game even though in practice Alice will win given
our usual assumptions about the hardness of factoring.
We define a new notion of bounded rationality, where the payoffs of players are discounted by the computation
time they take to produce their actions. We use this notion to give a direct correspondence between the
existence of equilibria where Alice has a winning strategy and the hardness of factoring. Namely, under a
natural assumption on the discount rates, there is an equilibrium where Alice has a winning strategy iff there
is a linear-time samplable distribution with respect to which Factoring is hard on average.
We also give general results for discounted games over countable action spaces, including showing that any
game with bounded and computable payoffs has an equilibrium in our model, even if each player is allowed a
countable number of actions. It follows, for example, that the Largest Integer game has an equilibrium in our
model though it has no Nash equilibria or ε-Nash equilibria.
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1 Introduction
Game theory studies the strategic behavior of self-

interested rational agents when they interact. In the
traditional setting of game theory, agents are sup-
posed to be perfectly rational, in terms of knowing
what their strategic options and the consequences of
choosing these options are, as well as being able to
model perfectly the rationality of other agents with
whom they interact. However, often in practice, when
human beings are involved in a strategic game-playing
situation, they fail to make perfectly rational deci-
sions. Herbert Simon first developed this “bounded
rationality” perspective.

In the past couple of decades various models of
bounded rationality [1, 4, 9, 19, 21, 24] have been
defined and studied by game theorists and computer
scientists. In this paper, we introduce a new notion of
bounded rationality based on the perspective of com-
putational complexity. We argue that it is natural,
and prove that it has some nice properties and can be
used to obtain new connections between game theory
and computational complexity.

The main idea is to discount the payoffs of play-
ers in a game based on how much time they take
to play their actions, with different players possibly
discounted at different rates. Of course, we need to
define what it means for a player to take time to
play its action. This naturally pre-supposes that each
player has some computational mechanism for play-

ing its strategy - in this paper, as in the recent work
by Halpern and Pass[12], we adopt the probabilistic
Turing machine as our computational model. This
is a computational model which is universal, and is
also generally considered to be realizable in Nature.
Furthermore, it capture complexity via running time
and can be used to realize games with countable ac-
tion spaces, unlike say if we were to use finite au-
tomata: the model typically considered by game the-
orists when studying bounded rationality.

In this paper, we use exponential discounting,
meaning that the payoff goes down by a factor (1−δ)t
after time t, where δ is a constant. Our main results
also hold for other notions of discounting, as we dis-
cuss in Section 1.2.

The notion of discounting is far from new [10, 15,
26] - indeed much of economic theory depends on it.
It is a basic economic assumption that people value a
dollar a year from now less than a dollar today. The
discount 1 − δ for a specific period is chosen so that
an agent is indifferent between receiving 1− δ dollars
now and 1 dollar at the end of the period.

Discounting is commonly used for computing cu-
mulative payoffs in repeated games. We emphasize
that we discount based on computation time, which
means that the notion of discounting can now even
be used for one-shot games even when there is no
natural notion of input size. The idea of discount-
ing based on computation time was developed by
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Fortnow [8], where he used it for a variaton on the
“program equilibria” framework devloped by Tennen-
holtz [27]; moreover, a single discount rate is used for
all players.

Our notion of discounted time has several benefits.
First, it bounds rationality endogenously rather than
exogenously. By this, we mean that the bound on an
agent’s rationality is not imposed from outside, but
rather arises from the agent’s own need to maximize
its utility.

Second, discounting has some nice mathematical
properties. It’s time-independent - discounting for r
steps starting at a time t0 yields the same relative de-
crease in payoff as discounting for r steps starting at
an earlier or later time. Given a discount factor 1− δ,
the discounted payoff behaves like a linear function
for small t and like an exponential function for large
t, which accords well with our intuitions for how we
value computational resources in the real world. We
might only be marginally more gratified by a compu-
tational task finishing in 1 second than one finishing in
2 seconds, but we would certainly be far more annoyed
if a task finished in 20 minutes than in 10 minutes.

Also, the discounting model is philosophically ele-
gant in that it unifies time as viewed by economists
and time as viewed by computer scientists. Time is
an important concept both in economics and in com-
putational complexity, and we model it in a way that
is consistent with the perspectives of both fields.

We use asymmetric discounting in our model - dif-
ferent players may have different discount factors.
There are a couple of reasons for this. First, play-
ers might have asymmetric roles in a game, and in
this case it is natural to give them discount factors.
For example, a cryptographic protocol can be inter-
preted as a game where players are either honest or
adversarial. In this setting, it makes sense to model
the adversary as more patient and therefore having
discount rate δ closer to 1.

However, even if all the players are equally patient
with respect to real time, it still makes sense to give
them different discount factors. This is because dis-
counting is done as a function of computational time
rather than real time, and the relationship between
computational time and real time depends on the
power of technology. If one player has a much faster
computer than the others, then it is effectively more
patient, in that it has a smaller discount factor. For
example, consider a two-player game where the play-
ers are equally patient in that the payoff for each
player halves after 1 second of real time. Suppose,
however, that Player 1 has a computer with a clock
rate of 106 operations per second, and Player 2 has

a computer with a clock rate of 1012 operations per
second. Then the discount rate δ1 for Player 1 is ap-
proximately 10−6 and the discount rate δ2 for Player
2 is approximately 10−12.

This is a further advantage of our model, in that it
factors in the power of technology. Many games today
play out in a virtual setting, eg. the game between
someone sending their credit card information and a
malicious adversary seeking to steal their identity, or
an electronic auction, or even computer chess. In all
these cases, the power of technology has a critical im-
pact on strategy and success in the game, which is not
modeled adequately by traditional game theory. Not
only do we model this via the discount rates, but our
notion of uniform equilibrium also implicitly models
how technology evolves with time.

Our model exhibits some nice phenomena for gen-
eral classes of games. We define a new notion of equi-
librium for our model, which we call “uniform equilib-
rium”. We show that for finite games, there’s a uni-
form equilibrium corresponding to every Nash equilib-
rium. For games where each player has a countable
action space, the situation is even more interesting.
It’s known that Nash equilibria do not exist in gen-
eral in this case. However, under mild assumptions,
namely that the payoffs are bounded and computable,
we show that uniform equilibria always exist even in
this case.

As an example, consider the Largest Integer game,
where each player outputs a number and the player
outputting the largest number wins the entire pot
of money at stake (with the players sharing the pot
equally if they output the same number). This is an
archetypal example of a game which has no Nash equi-
libria or even approximate Nash equilibria. The ab-
sence of Nash equilibria means that traditional game
theory provides no predictive or explanatory frame-
work for how the game will actually play out.

The Largest Integer game does have a uniform equi-
librium in our framework, and there is an intuitive
explanation of this. Essentially, the Largest Integer
game models oneupmanship, where each player is try-
ing to outdo the other. What is not modeled by tra-
ditional game theory is that the players expend con-
siderable resources in this process, which affects their
“effective payoff”. Indeed, as more and more resources
are required, at some point the players become essen-
tially indifferent between winning and losing. In our
case, the resource is time; the equilibrium situation
corresponds to both players spending so much time
coming up with and writing down a large number that
their payoffs are driven to zero by their discount fac-
tors.
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1.1 The Factoring Game
Perhaps the most interesting results in this pa-

per concern a close relationship between equilibria in
discounted games and the computational complexity
of problems. We illustrate this using the Factoring
game.

The Factoring game is a puzzle in the theory of
bounded rationality. Consider the following game be-
tween two players Alice and Bob. Alice sends an in-
teger n ⩾ 2 to Bob, who attempts to find its prime
factorization. If Bob succeeds, he “wins” - he gets a
large payoff and Alice gets a small payoff; if he fails,
the opposite happens.

If formulated as a game in the conventional way,
Bob always has a winning strategy. However, in prac-
tice, one would expect Alice to win, since factoring is
believed to be computationally hard. This is the puz-
zle: to find a natural formulation of the game that
captures the intuition that Alice should win if factor-
ing is indeed computationally hard.

The Factoring game was first introduced by Ben-
Sasson, Kalai and Kalai [3] and also considered by
Halpern and Pass [12]. Neither gives an explicit so-
lution to the puzzle, instead they give general frame-
works in which to study games with computational
costs. Indeed, Ben-Sasson, Kalai and Kalai say in the
Future Work section of their paper that “it would be
interesting to make connections between asymptotic
algorithmic complexity and games”.

We show that the structure of equilibrium payoffs in
the discounted time version of the game corresponds
closely to the computational complexity of factoring.
Specifically, if Factoring is in probabilistic polynomial
time on average, Bob always wins; if not, there are
equilibria in which Alice gets a large payoff. This re-
sult assumes that the discount rates of the two players
are polynomially related - we motivate this assump-
tion in Section 4. If there’s a different relationship
between the discount rates, then there’s a correspond-
ing different complexity assumption which character-
izes when Alice has a winning strategy. In the sim-
plest interpretation of our model, where discount rates
are determined by the power of technology, it can be
empirically tested how discount rates vary with each
other.

What makes this connection with asymptotic com-
plexity somewhat surprising is that the notion of in-
put length is not explicitly present in our model. In-
stead, it arises naturally from the discounting crite-
rion and our notion of uniform equilibrium.

The Factoring game is relevant not only to game
theory, but also to the foundations of cryptography.
There has been a lot of research into the connections

between game theory and cryptography [7, 14], but
much of this has focused on multi-party computation.
One can define an analogue of the Factoring game
for any one-way function and obtain similar results;
there’s nothing special about Factoring being used in
the proofs. This game-theoretic perspective might be
useful in studying the tradeoff between efficiency of
encryption and security in cryptosystems. In general,
it would be interesting to investigate a perspective
where the success of a cryptosystem depends on the
adversary being “bounded rational” rather than com-
putationally bounded in some specific sense.

1.2 Further Discussion of the Model
Here, we further discuss various features of our

model and compare it to alternative ones.
Our criteria for a reasonable model is that it should

be general, i.e., be relevant to a class of situations
rather than a single specific situation, and that it
should have explanatory power, i.e., not only should
it simply correspond to an observed phenomenon but
provide some further insight. For comparative pur-
poses, in the context of the Factoring game, one can
think of some alternative models that predict a win
for Alice. For example, one could imagine that the
players have a fixed finite amount of time to make a
decision, with Alice given say 10 seconds to choose
her number, and Bob 100 seconds to respond with
the prime factors. It’s clear that if Bob can’t factor
a random large number (which could be generated
quickly by Alice), he loses, however this is an unsat-
isfactory model in many respects. First, it deals with
a very specific situation, so it cannot say anything
about computational complexity or how equilibria de-
pend on the power of technology. Second, the model
is inherently non-robust. Bob might be able to factor
Alice’s number in 101 seconds - in a real-life situation,
this difference shouldn’t affect his payoff too much,
but in this model, it does. By adopting a flexible
model of bounded rationality, where payoffs degrade
continuously with time, we avoid such pathological
effects.

One way to make the fixed-time model more general
is quantify over the time limit: to say, for example,
that if Alice is allowed t units of time, then Bob is al-
lowed t2 units of time. This kind of approach is taken
when formulating the notion of “computational equi-
librium” [7, 28] where they limit the set of machines
being used to those that run in some security param-
eter where our model makes no such restriction on
machines but control time with utility. Another prob-
lem with the computational equilibrium model is that
though it might be consistent with the observed phe-
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nomenon, it’s unclear why the assumptions the model
makes should hold. In such a case, the model is simply
a way to re-formulate a phenomenon, rather than an
explanation for it. In contrast, in our model, there are
clear motivations for the choices made. Discounting
is based on time preference of utility, which is well
established and extensively used in economics [10].
Also our interpretation of discount rates in terms of
the power of current technology matches the intuition
that a player armed with a more powerful computer
should be able to make a more rational decision, i.e.,
more in its self-interest. Finally, our use of asymmet-
ric discount rates models asymmetries in the roles of
players and in the power of technology available to
them.

Regarding some of the more specific choices made,
one could question why we use exponential discount-
ing rather than some other form of discounting. Ex-
ponential discounting is still the discounting model of
choice in economics and game theory, but there have
been arguments made that other models such as “hy-
perbolic discounting” more accurately represent hu-
man time preference of utility [10]. As it turns out,
the exact choice of discounting model does not mat-
ter very much to us - our main results on the Fac-
toring game and the general result on bounded-payoff
games (Theorems 3, 1 and 7) go through even in the
hyperbolic discounting model and, we suspect, in any
reasonable model of discounting.

Another issue which can be debated is whether each
player’s utility is discounted only by its own computa-
tional time or by some function of its computational
time and the computational time of the other players.
In a strategic situation, it seems natural to penalize a
player only for its own computation. Consider a two-
player simultaneous-move game, where each player
plays without knowledge of the other player’s action.
Suppose Player 1 plays first in this game. Should
Player 1 be charged for Player 2’s time as well, since
the outcome is determined only after Player 2 has
played? We think not, since Player 1 can use its ex-
tra time doing other things, garnering utility in other
ways. Of course, if one player plays first, that might
seem to “sequentialize” the game. For our model to
apply, there has to be a mechanism in place to ensure
that the players do in fact act independently.

Our model can, in principle, deal with both pos-
itive and negative payoffs - discounting predicts, as
seems intuitive, that positive payoffs should motivate
agents to play quickly, while negative payoffs should
cause agents to procrastinate. However, in this paper,
we deal only with games with positive payoffs. This is
because it’s tricky to define what happens if the first

player’s computation finishes within a finite time but
the second player’s strategy computation never halts.
In some sense, this corresponds to the second player
not playing the game at all. With strictly positive
payoffs, we can be guaranteed that in an equilibrium
situation, all players will play within a finite time -
it is in the interest of all players to play as quickly
as possible. A way to avoid the issue with positivity
of payoffs would be to give players preference order-
ings on outcomes rather than ascribing real payoffs,
as is often done in game theory [23], and have the
preference orderings vary with computational time.
Though perhaps a more accurate model, this has the
disadvantage of being very cumbersome mathemati-
cally.

1.3 Related Work
Bounded rationality is a rich area, with lots of work

in the past couple of decades. We survey some of
that work and clarify the relationship to our ideas,
with an emphasis on more recent work. There are
several excellent surveys and references on bounded
rationality [2, 4, 13, 25].

Early work focused mainly on bounded rational-
ity in the context of the repeated Prisoner’s Dilemma
game, where strategies are modeled as finite automata
[1, 11, 21, 24]. There were some works during this
period which modeled strategies by Turing machines
[18, 19], but these works were concerned with Tur-
ing machine size as a complexity measure rather than
time. There has also been a good deal of work in
the economics literature studying the consequences
for economics of the constraint that agents act in com-
putable ways [4, 5, 22], but these works do not deal
with computational complexity.

Recently there has been a resurgence of interest in
modeling strategies as general Turing machines. We
note especially the two papers [3, 12] which discuss the
Factoring game. Rather than specifying an explicit
solution to the puzzle of the Factoring game, these
works provide general frameworks and results for tak-
ing computational costs into account when playing
games. Our contribution in this paper is in provid-
ing a concrete and natural model which captures the
cost of computational time, and using it to solve the
Factoring puzzle.

Other recent works [8, 27] consider computer pro-
grams as strategies, but in the context of a differ-
ent kind of equilibrium known as the program equi-
librium, where rationality is modeled by letting each
player’s program have as input the code of the other
player’s program. As mentioned earlier, Fortnow [8]
considers discounted computation time in this context
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to obtain a broader range of program equilibria rather
than to model bounded rationality, and he allows only
for a single discount factor.

The idea of discounting time has also been proposed
in the completely different context of verification [6].

2 Preliminaries
We review standard concepts for two-player games.

For a more detailed treatment, refer to the books by
Osborne and Rubinstein [23] and Leyton-Brown and
Shoham [17].

In this paper, we only consider one-shot games of
perfect information, where each player makes a sin-
gle move. We represent these games in normal form
as a four tuple G = (A1, A2, u1, u2), where Ai is
the action space for player i. The utility function
ui : A1×A2 → �⩾0 is a payoff function specifying the
payoff that accrues to player i depending on the ac-
tions played by the two players. We consider both the
simultaneous version where both players play their ac-
tions simultaneously and the sequential version where
player 2 can base his action on the action taken by
player 1.

As mentioned before, we assume in this paper that
payoff functions are always non-negative.

Strategies describe how the player’s choose their ac-
tions. A pure strategy for Player 1 is simply an el-
ement of A1. For simultaneous-move games, a pure
strategy for player 2 is just an element of A2. For
sequential games, a pure strategy for player 2 is a
function from A1 into A2. We use Si to represent the
pure strategy space for player i and we extend the
utility functions ui to strategies in the natural way.

A mixed strategy for a player is a probability dis-
tribution over its pure strategies. The payoff for a
game using the mixed strategies is just the expected
payoff when each player chooses their strategies inde-
pendently from their chosen distributions.

A pure-strategy Nash equilibrium (NE) is a pair
of strategies (s1, s2) ∈ S1 × S2 such that for any
s∗1 ∈ S1 and s∗2 ∈ S2, u1(s1, s2) ⩾ u1(s∗1, s2) and
u2(s1, s2) ⩾ u2(s1, s∗2). A pair of strategies is an η-NE
if neither player can increase its payoff by more than
η by playing a different strategy, given that their op-
ponent plays the same strategy as before. For small
η, the players might be satisfied with an η-NE rather
than a pure NE, since they might be indifferent to
small changes in their payoff function.

A mixed-strategy Nash equilibrium is a pair of
mixed strategies for which neither player can increase
their expected payoff by playing a different mixed
strategy, assuming that their opponent plays the same
mixed strategy as before. The notion of an η-NE for

mixed strategies is defined in an analogous way to the
definition for pure strategies.

The famous theorem of Nash [20] states that every
game over compact action spaces has a mixed-strategy
Nash equilibrium. When we say “Nash equilibrium”
in this paper, we mean a mixed-strategy Nash equi-
librium unless otherwise stated.

3 Our Model
The normal-form representation of a game does not

say anything about how a strategy is actually imple-
mented by a player. Depending on the method of
implementation used, there might be further costs in-
curred - the analysis of these costs may itself be game-
theoretic. This insight is formalized by the notion of
a metagame. Given a game G, the metagame is a new
game which augments G by modeling outside factors
which are relevant to playing G. Thus a metagame
aims to be a more accurate model of how G might
play out in the real world.

We consider the machine metagame, which pre-
sumes that a strategy is implemented by some com-
putational process. We model the computational pro-
cess as a probabilistic Turing machine, which is a very
general model of computation. By the Church-Turing
thesis, probabilistic Turing machines can compute any
function that is effectively computable. The motiva-
tion for considering probabilistic machines is the idea
that randomness is also a resource available in the real
world.

In the machine metagame corresponding to a game
G = (A1, A2, u1, u2), actions for Player i are proba-
bilistic Turing machines rather than elements of Ai.
Since we only consider countable strategy sets, for
each i the elements of Ai may be represented by bi-
nary strings in some canonical way, with each string
representing a strategy and each strategy represented
by a string. If a probabilistic TM played by Player 1
outputs a string x with probability p(x), this is inter-
preted as Player 1 playing a strategy x with probabil-
ity p(x) in the game G.

Now that strategies are Turing machines, compu-
tational issues can be factored into the game, even
though for a fixed game, there is no natural notion of
an “input size.” We address this issue by discounting
each player’s payoff by the time taken to produce a
(representation of a) strategy. The discount factors
for the two players might be different, reflecting the
possibilities that the game is asymmetric between the
two players, and that the two players have differing
amounts of computational resources.

Given a game G = (A1, A2, u1, u2), we formally de-
fine the (ε, δ)-discounted version of G. This is the dis-

147



L. FORTNOW AND R. SANTHANAM

counted time machine metagame corresponding to G,
where the player’s computation times are discounted
by 1 − ε and 1 − δ respectively. In this game, each
player’s action space is the class of all probabilistic
Turing machines. Each player’s Turing machine gets
as input �1/ε� and �1/δ� in binary - this corresponds
to the players having full information about the game.
If the game is extensive, Player 2’s Turing machine
gets as additional input the output of Player 1’s Tur-
ing machine.

We formally specify how payoffs are determined.
We first consider the case where both player’s Tur-
ing machines halt on all computation paths. Given
a computation path z of a probabilistic TM, let t(z)
denote the length of the computation path (i.e., the
time taken by the computation), f1(z) ∈ A1 the ac-
tion in A1 corresponding to the output of the path
z, and f2(z) ∈ A2 the action in A2 corresponding to
the output of the path z. Then the payoff u1(M,N)
of Player 1 corresponding to Player 1 playing a prob-
abilistic Turing machine M and Player 2 playing N
is the expectation over computation paths z and w
of M and N respectively of (1− ε)tzu1(f1(z), f2(w)).
Similarly, the payoff u2(M,N) of Player 2 is the ex-
pectation of (1− δ)twu2(f1(z), f2(w)).

In addition, we require a convention for payoffs on
non-halting paths. In this case, a player whose ma-
chine does not halt gets payoff 0 (corresponding to
discounting for infinite time), and if the other player’s
machine does halt, the player gets the maximum pos-
sible payoff over all actions in A1 of playing its action,
discounted by the computation time of playing its ac-
tion.

We define two new equilibrium concepts, which cor-
respond to equilibria that are robust when the dis-
count rates ε and δ tend to zero. Our motivation
for being interested in this limiting case is that com-
putational costs grow smaller and smaller with time
(or equivalently, computational power increases with
time) - this corresponds to ε and δ approaching 0.

We say that a pair of probabilistic machines (M,N)
is a uniform Nash equilibrium (NE) if for every pair
of machines (M ′, N ′),

lim inf
ε,δ→0

u1(M,N)− u1(M ′, N) ⩾ 0

and
lim inf
ε,δ→0

u2(M,N)− u2(M,N ′) ⩾ 0.

We say that (M,N) is a strong uniform NE of the
discounted game if there is a function f such that
(M,N) is an f(ε, δ)-NE for the (ε, δ)-discounted game,
for some function f where f(ε, δ) tends to 0 when both
ε and δ tend to 0.

As the name indicates, the notion of a strong uni-
form NE is a stronger concept since it requires a fixed
equilibrium strategy pair to be resilient in the limit
against deviating strategies which might depend on ε
and δ. In contrast, a uniform NE is only required to
be resilient in the limit against other fixed strategies.

The definition of uniform equilibrium above as-
sumes that ε and δ are independent - i.e., the equilib-
rium condition holds irrespective of how δ varies with
ε, as long as they both tend to 0. In some of our re-
sults, we will be concerned with the situation where
δ is a function of ε such that δ → 0 when ε → 0. We
will abuse notation by referring to the corresponding
notion of equilibrium, where the limit is now taken
only as ε→ 0, also as a uniform equilibrium.

We say that a payoff pair (u, v) is a uniform equilib-
rium payoff if there is a uniform equilibrium (M,N)
such that u1(M,N) → u and u2(M,N) → v in the
discounted game when ε, δ → 0

The above equilibrium concepts are defined for pure
strategy NEs, but the definitions extend easily to
mixed strategy NEs.

All the definitions above can be generalized easily
to N -player games for N > 2 and indeed the results
of the Section 5 all hold for N -player games as well.

4 The Factoring Game
In our formulation of the Factoring game, the win-

ning player receives a payoff of 2 (before discounting)
and the losing player receives a payoff of 1. The pre-
cise values of these payoff are not important for our
main results.

The (ε, δ)-discounted time version of the Factoring
game is defined in the usual way. In our presentation
here, we choose δ = εc, for some constant c > 1. The
Factoring game is naturally asymmetric. First, it is
sequential: Alice chooses an number, and then Bob
acts based on knowledge of Alice’s number. Also, the
natural application of the Factoring game is to cryp-
tography, with Alice using a cryptosystem and Bob
trying to break it. In this context, by the polynomial-
time Church-Turing thesis, the computational model
Bob uses is at most polynomially faster than that of
Alice.

Note that analogues of our results also go through
for other dependences of δ on ε. The choice we make
is partly intended to illustrate that our model can
capture one of the typical assumptions of complexity-
theoretic cryptography.

We first show that if Factoring is easy in the worst
case, then every uniform NE of the discounted game
yields payoff 2 to Bob.
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Theorem 1 If for all linear-time samplable distribu-
tions D, Factoring can be solved in probabilistic poly-
nomial time with success probability 1− o(1) over D,
then for all sufficiently large c, the (ε, εc)-discounted
version of the Factoring game has a uniform Nash
equilibrium with payoff (1, 2), and (1, 2) is the only
uniform equilibrium payoff.

This result follows from the following lemma, which
gives a tighter connection between the feasibility of
Factoring and the uniform equilibrium payoffs of the
discounted game.

Lemma 2 If, for all linear-time samplable distribu-
tions D. Factoring can be solved in probabilistic time
o(nc) with success probability 1 − o(1) over D, then
there is a uniform Nash equilibrium of the (ε, εc)-
discounted version of the Factoring game yielding a
payoff of (1, 2). Moreover, if c > 1, then every uni-
form equilibrium yields payoff (1, 2).

Proof. We first show the existence of the claimed
uniform equilibrium giving a payoff of (1, 2), and then
show that this is the only uniform equilibrium payoff
achievable.

The following pair of probabilistic machines (M,N)
gives a pure-strategy uniform equilibrium with payoff
(1, 2). M simply outputs the number 2. N uses the
trivial deterministic algorithm for Factoring running
in exponential time to find a prime factorization for
the number produced by M .

As ε→ 0, the payoff for this pair of strategies tends
to (1, 2). We now show that (M,N) is a uniform NE
for the game.

Since the payoff for Bob is bounded above by 2, irre-
spective of what it does, it’s clear that the advantage
it can gain from playing a different strategy tends to
zero as ε tends to zero. We still need to show that
Alice can’t do any better in the limit.

Let S be any (mixed) strategy for Alice - S is
a probability distribution over probabilistic TMs.
Whenever S outputs a number, player 1 gets pay-
off at most 1, since Bob factors the number. When
S does not output a number, player 1 gets payoff 0;
thus, in either case, Alice’s payoff is at most 1. This
shows that Alice can’t do better than playing M .

Showing that (1, 2) is the only uniform equilibrium
payoff possible is more involved. For the purpose of
contradiction, let (a, b) be a uniform equilibrium pay-
off, where either a �= 1 or b �= 2. We derive a contra-
diction.

We first consider the case a �= 1. It cannot be the
case that a < 1, since Alice can always get payoff at
least 1 in the limit by just outputting 1, irrespective

of what Bob does. Thus it must be the case that
1 < a ⩽ 2.

Now we show that b = 2. Let (S, T ) be a uniform
NE with payoff (a, b). Let γ(ε) be the probability that
S outputs a number with length at most 1/ε, where
the probability is over the randomness of choosing
a strategy, as well as the randomness in playing one
(since a pure strategy is a probabilistic TM). We show
that γ(ε)→ 1 as ε→ 0. For the sake of contradiction,
suppose that the limit infimum of γ(ε) is less than
α < 1. This means that we can choose ε arbitrarily
small for which S outputs a number with length at
least 1/ε with probability at least 1−α. Conditioned
on outputting such a number, the payoff of Alice is
at most 2(1− ε)1/ε which tends to 2/e < 1 as ε → 0.
From the previous para, we know that Alice gets pay-
off at least 1 from playing S, hence from an averaging
argument, we can choose ε arbitrarily small for which
there is a probability β bounded away from 0 that Al-
ice outputs a number of length at most 1/ε and gets
a payoff greater than 1. We show that in this case,
Bob can improve its payoff by a non-trivial amount
by playing a different strategy T ′.

When defining T ′, we use the assumption that Fac-
toring is easy on average for all linear-time samplable
distributions (note that this assumption was not used
in the argument that there’s a uniform equilibrium
with payoff (1, 2)). Consider the linear-time sam-
plable distribution D on inputs of length |1/ε| defined
as follows: Simulate S independently k/β times for
1/ε computation steps (where k is a constant to be
decided later), and output the first number produced
by S of length at most |1/ε|, padded up to length
|1/ε|, outputting an arbitrary number of that length
if all the runs of S give numbers that are too long.
Clearly D is linear-time samplable. Here we use the
fact that Factoring is paddable to any given length
(padding here just involves multiplication by a power
of two). There is some algorithm A that works with
success probability 1− o(1) over D, by assumption.

Consider the following strategy T ′ for Bob: it looks
at the number output by Alice. If this number is at
most 1/ε bits long, it applies A to this number. If the
number is longer, it plays strategy T . The process of
looking at the number and deciding what to do based
on its length takes time O(1/ε), but if c > 1, then
(1 − εc)O(1/ε) → 1 when ε → 0, and hence this addi-
tive term incurs a negligible discount for Bob. Con-
ditioned on Alice outputting a number that’s at least
1/ε bits long, Bob’s payoff is the same in the limit
when playing strategy T ′ as when playing strategy
T . In the other case, Bob gets a payoff of at least
2(1 − e−k) in the limit (since he successfully factors
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while using (o(1/δ) time), which for large enough k
is strictly better than it did when playing strategy
T , given our assumption that Alice had a probabil-
ity bounded away from 0 of outputting a number at
most 1/ε bits long and getting a payoff greater than
1 (which would imply Bob got a payoff less than 2).
This is a contradiction to (S, T ) being a uniform NE.

Thus, we get that γ(ε) → 1 as ε → 0. But then
the strategy of Bob which simply applies the o(nc)
factoring algorithm to the number output by Alice
gets a payoff of 2 in the limit. This implies that b = 2.

If a ⩾ 1 and b = 2, it must be the case that (a, b) =
(1, 2) for the uniform NE (S, T ), since the expected
payoff of any pair of strategies in this game is bounded
above by 3.

Next, we show an essentially converse. If Factoring
is hard on average, then there is a uniform NE for the
discounted game with payoff (2, 1).

Theorem 3 Suppose there is a linear-time samplable
distribution D for which there is no probabilistic poly-
nomial time algorithm correctly factoring with success
probability Ω(1) over D on inputs of length n for in-
finitely many n. Then for every constant c ⩾ 1, there
is a uniform NE for the (ε, εc)-discounted version of
the Factoring game with payoff (2, 1).

The key to the proof of Theorem 3 is in the following
Lemma 4 which, similar to above, makes a stronger
connection between c and the running time of a fac-
toring algorithm. The uniform NE which we show
to exist is a simple one where Alice plays a random
number of length approximately 1/ε and Bob halts
immediately without output. We show that any de-
viating strategy for Bob which gets him an improved
payoff in the limit can be transformed into a proba-
bilistic polynomial-time algorithm which factors well
on average.

Lemma 4 Suppose there is no algorithm for factor-
ing running in time ncpolylog(n) for large enough in-
put length n, and succeeding on a Ω(1) fraction of in-
puts for infinitely many input lengths n. Then there
is a uniform NE for the (ε, εc)-discounted version of
the Factoring game with payoff (2, 1).

Proof. The following pair of strategies (M,N) is
a uniform NE. M selects a number of length n(ε) =
�1/ε��1/ log(�1/ε�)� at random and outputs the num-
ber. N halts immediately without output.

First we show that this gives payoff (2, 1). It’s
clear that the payoff for N is 1 since it halts with-
out output. Therefore the undiscounted payoff for M
is 2. We show that the discounting makes a negligi-
ble difference to this, since M doesn’t need to spend

too much time generating a random number of length
n(ε). Specifically, given the number �1/ε� on its in-
put tape, M computes n(ε) in unary and stores it on
a separate tape - this can be done in time O(n(ε)). It
then generates a random number on the output tape,
using the computed value of n(ε) to ensure the num-
ber is of the right length. The total time taken by M
is O(n(ε)) = O(1/(ε log(1/ε))), and the discounting
due to this is (1− ε)O(n(ε)), which is 1 in the limit as
ε→ 0.

Next we show (M,N) is a uniform NE. Alice has
payoff bounded above by 2 for any strategy it plays,
so clearly it cannot do better with a different strategy
S. The bulk of the work is showing that Bob cannot
do better.

Suppose, on the contrary that there is a strategy T
for Bob such that the strategy pair (M,T ) yields pay-
off at least 1+γ for Bob for arbitrarily small ε, where
γ > 0. We show how to extract from T an algorithm
that factors efficiently on average on infinitely many
input lengths.

Choose a infinite sequence ε1, ε2 . . . such that for
each i, 1 ⩽ i ⩽ ∞, the strategy pair (M,T ) yields
payoff at least 1 + γ for Bob in the (εi, εci)-discounted
game, and n(εi) > n(εi−1). Such a sequence exists by
the assumption that (M,N) is not a uniform NE.

We show that there must exist a pure strategy N
for Bob such that there is an infinite set I for which
(M,N) yields payoff at least 1 + γ/2 for Bob for all
εi such that i ∈ I. This argument takes advantage of
the fact that the Factoring game has payoffs bounded
above by 2. By a Markov argument, it must be the
case for each i ∈ ℕ that the pure strategies in the
support of T which yield payoff at least 1 + γ/2 must
have probability weight at least γ/2. Now, if each
pure strategy only yields payoff at least 1+γ/2 finitely
often, then we can choose i large enough so that the
pure strategies yielding payoff at least 1 + γ/2 in the
(εi, εci )-discounted game have probability weight less
than γ/2 in the support of the mixed strategy T ,
which is a contradiction.

Let B = {n(εi), i = 1 ∈ I}. B is an infinite set, by
assumption.

We use N to define a probabilistic algorithm A for
solving Factoring well on average on all large enough
input lengths in B, contradicting the assumption of
the theorem. Given an number x of length n, A sim-
ply runs N on x log(n) times independently, halting
each run after time nc�log(n)c+2�. If any of these runs
outputs numbers y1 and y2 such that y1 ∗ y2 = x, A
outputs these numbers, otherwise it outputs nothing.
The running time of A is O(nc log(n)c+3). We prove
that for at least an Ω(1) fraction of strings of length
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n for infinitely many n, A factors correctly with prob-
ability 1− o(1).

The idea is to analyze the payoff for Bob from the
strategy (M,N), and show that an expected payoff
greater than 1 means that a significant fraction of
computation paths must halt quickly and factor cor-
rectly. Given a number x of length n(ε) ∈ B and a
computation path z of N when given x, let Ixz = 1
if path z terminates in a correct factoring of x and 0
otherwise, txz be the time taken along path z, and pxz
be the probability of taking path z. We have that, for
any x, Σzpxz = 1. Let f(x) = Σz(1+Ixz)pxz(1−δ)txz ,
where δ = εc. Then the payoff of Bob is Σxf(x)/2n(ε).
By assumption, this quantity is at least 1+γ/2. By a
Markov argument, this implies that for at least a γ/4
fraction of strings x of length n(ε), f(x) ⩾ 1 + γ/4.

Fix any such x. We classify the computation paths
z for the computation of N on x into three classes.
The first is the set of z for which Ixz = 0. This set
contributes at most Σzpxz(1 − δ)txz ⩽ Σzpxz ⩽ 1 to
f(x). The next class is the set of z for which Ixz = 1
and txz ⩾ 2 log(1/δ)/δ. This set contributes at most
Σz2pxz(1 − δ)2 log(1/δ)/δ ⩽ Σz2pxzδ ⩽ 2δ = o(1) to
f(x) (here the o(1) refers to dependence on n(ε) as
ε → 0). Thus we have that Σz∈Zpxz ⩾ γ/4 − o(1),
where Z is the set of z for which Ixz = 1 and txz <
2 log(1/δ)/δ.

This means that with probability at least γ/4 over
strings x of size n(ε) ∈ B, N halts in time at most
2 log(1/δ)/δ and outputs factors of x with probabil-
ity at least γ/4− o(1). This implies that for all large
enough n ∈ B, with probability at least γ/4 − o(1)
over numbers of size n, N halts in time at most
nc�log(n)c+2� and factors x with probability at least
γ/4− o(1) (we’re simply upper bounding the time as
a function of n rather than of δ).

Since A amplifies the success probability of N by
running it log(n) times independently, the success
probability of A is at least 1− o(1) on a Ω(1) fraction
of inputs, for infinitely many input lengths.

Essentially the same proof gives a more general ver-
sion of Lemma 4 - if there is some linear-time sam-
plable distribution D such that no probabilistic algo-
rithm running in time ncpolylog(n) achieves an Ω(1)
success probability for Factoring over D, then there is
a uniform Nash equilibrium for the (ε, εc)-discounted
Factoring game achieving a limit payoff of (2, 1). The
only difference is that M plays a random number se-
lected according to D, and we argue with respect to
this distribution rather than with respect to the uni-
form distribution when defining the factoring algo-
rithm A. Theorem 3 follows immediately from this
more general version.

Unlike in the case of Lemma 2, this is not the only
uniform Nash equilibrium when Factoring is hard. In-
deed, an examination of the proof of Lemma 2 shows
that we did not actually use the assumption when
showing there was a uniform NE with payoff (1, 2); the
assumption was only to prove the second part of the
theorem. Thus, even when Factoring is hard, there is
a uniform NE with payoff (1, 2).

However, an important point to note is that the dis-
counted Factoring game is a sequential game, where
Alice plays first. Thus, even though there might be a
uniform NE with payoff (1, 2), Alice can control which
Nash equilibrium is reached, and it is natural for it
to select the equilibrium giving it a higher payoff.
The key question in the discounted Factoring game
is whether there exists a uniform NE giving Alice a
payoff greater than 1 - Lemma 2 shows that when Fac-
toring is easy, there isn’t, and Lemma 4 shows that
when Factoring is hard on average, there is. This
is somewhat related to the notion of subgame-perfect
equilibria in traditional game theory [17]. It’s an in-
teresting challenge to define an appropriate notion of
subgame-perfection for our model which could also be
used in a variation of our model where both Alice and
Bob are discounted by the total time taken by the two
of them.

If one interprets Alice getting a payoff higher than
1 as Player 1 “winning” the game, this result is in
close accordance with intuition. Alice wins the game
if and only if Factoring is hard. In practice, Factoring
is believed to be hard, and therefore in practice, we
expect Alice to win the game, and not Bob as tradi-
tional game theory would predict.

The uniform equilibrium in the statement of
Lemma 2 yielding a payoff of (1, 2) is in fact also a
strong uniform equilibrium - this follows easily from
the proof. Can Alice hope for a strong uniform equi-
librium yielding it a payoff of 2 in the case that Fac-
toring is hard? The answer is no.

Theorem 5 Consider the (ε, δ) discounted version of
Factoring, where δ = o(ε). Let (S, T ) be any strong
uniform NE of this game.Then the payoff pair corre-
sponding to (S, T ) is (1, 2).

Proof. The proof is very similar to the proof of the
second part of Lemma 2, except that we can no longer
use the assumption that Factoring is in polynomial
time. But we can use an alternate strategy Nε for
Bob which plays the role of the factoring algorithm in
the proof of Lemma 2.
Nε simply implements a look-up table, which stores

the numbers which S may output, along with their
factors. Nε need only store numbers of length 1/ε,
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together with their factors. The key is that just by
encoding the look-up table in its state machine, Nε
can find the factors of the number output by S in
time O(1/ε), and since δ = o(ε), this means that the
discount factor is 1 in the limit. The rest of the argu-
ment is the same as in the proof of the second part of
Theorem 2.

Of course the dependence of the strategy of Bob on
ε is essential, since we know that there is a uniform
equilibrium yielding Alice a payoff of 2 in the limit.
Moreover, the proof illustrates why the notion of a
strong uniform NE might be too strong an equilibrium
concept - Bob can push Alice’s limit payoff down to
1, but the proof involves it playing strategies whose
sizes grow exponentially in 1/ε! For small values of ε,
this is clearly infeasible.

The issue here is that there is a tradeoff between
hardware and time. Computations can be made very
efficient by exponentially increasing hardware, but in
the physical world, both hardware and time are costly.
Our model explicitly captures the idea of time being
costly through discounting, but the expense of hard-
ware is captured implicitly in the uniform equilibrium
concept.

There are other ways of defining equilibrium con-
cepts which can capture the cost of hardware in a
more explicit manner. For instance, we could define
an f(ε, δ)-resilient uniform NE as a uniform NE where
no player gains in the limit by playing a pure strategy
whose size is bounded by f(ε, δ). Since a pure strat-
egy is just a probabilistic Turing machine, “size” has
a natural representation - it’s the number of bits re-
quired to explicitly present the state space, transition
function and alphabet of the Turing machine. A uni-
form NE as we define it an O(1)-resilient uniform NE,
while strong uniform NE are f(ε, δ)-resilient uniform
NE for f arbitrarily large.

Now let us consider f(ε, δ)-resilient NE where δ
is polynomially bounded in ε, and f is polynomi-
ally bounded in 1/ε. By using essentially the proof
of Theorem 4, as well as the fact that a probabilis-
tic Turing machine of size K and operating in time
T can be simulated by a probabilistic Boolean cir-
cuit of size O(K + T )2, we get that there there is an
f(ε, δ)-resilient uniform NE giving Alice a payoff of 2
in the limit, unless Factoring can be solved correctly
by polynomial-size circuits on an Ω(1) fraction of in-
puts, for large enough input lengths.

Thus, not only does is the difference between feasi-
bility and infeasibility of factoring captured by a dif-
ference in the structure of equilibria for the Factoring
game, but by a natural modification of the notion of
uniformity, we can capture the difference between uni-

formity and non-uniformity! This raises the possibil-
ity that there might be interesting concrete complex-
ity notions that might be captured by game theory as
well - we need not restrict attention to what happens
in the limit as ε→ 0. Perhaps there are novel notions
of complexity that can be extracted from the game-
theoretic viewpoint, which give a better understand-
ing of the gap between finite complexity and asymp-
totic complexity?

We conclude this section by discussing our choice
of parameters for the Factoring game, and showing
that the results are robust to the choices we make.
First, we examine the payoffs. Any choice of payoffs
which are all positive and for which Bob gets strictly
more (resp. Alice gets strictly less) if Bob succeeds in
factoring will yield essentially equivalent results.

Second, we discuss the discount factors. Our choice
of dependence of δ on ε was made to illustrate nicely
the correspondence between infeasibility and the ex-
istence of equilibria yielding Alice a high payoff. But
the polynomiality of the dependence is not critical to
our proofs - in general, if 1/δ = f(1/ε) for some func-
tion f , then our results hold when feasibility means
solvability in time o(f(n)) and infeasibility means un-
solvability on average in time slightly more than f(n).

In the special case that δ = ε, we get that Alice has
a winning strategy under the natural assumption that
Factoring is not in quasi-linear time on average.

5 Properties of Discounted Time
Games

The most fundamental results in a theory of games
of a given form concern existence of equilibria. Here
we prove a couple of results of this form. The first
result shows that the concept of uniform equilibrium
for the discounted version of a finite game corresponds
nicely to the concept of Nash equilibrium for the orig-
inal game. The second result complements this by
showing that discounted games might have equilibria
that the original game does not possess.

We show that any Nash equilibrium in a finite game
G translates to a strong uniform Nash equilibrium
yielding the same uniform payoff in the discounted
version of G.

Theorem 6 Let G be a finite two-player game.
Given any Nash equilibrium (S, T ) of G, there is a
strong uniform Nash equilibrium (S′, T ′) of the dis-
counted version of G which yields the same payoff in
the limit as ε, δ → 0.

Proof. We assume that G is a finite two-player game
in normal form. If G is sequential and given in ex-
tensive form, we just consider the image normal-form
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game, which is known to inherit its equilibria from
the sequential game.

Let (S, T ) be a (possibly mixed-strategy) NE of G.
We define a strategy pair (S′, T ′) for the discounted
version of G, and argue that this is a strong uniform
Nash equilibrium for the discounted version, with the
same payoffs for both players in the limit. Given any
pure strategy s1 of a player in G, choose in an ar-
bitrary way a Turing machine Ms1 which ignores its
input and halts after outputting a representation of
s1. If S gives probability p1 to strategy s1, then we
give machine Ms1 probability p1 in S′. T ′ is defined
in an analogous way given T .

The key point is that irrespective of the way the
representative machines for strategies are chosen, they
are guaranteed to halt in finite time. As δ and ε ap-
proach zero, the discount factors approach one, and
hence the payoff in the discounted game from playing
(S′, T ′) approaches the payoff from playing (S, T ) in
G.

It still remains to be shown that (S′, T ′) is an η-NE
for the discounted game, where η → 0 when ε, δ → 0.
This would imply that (S′, T ′) is a strong uniform
NE for the discounted game. We show that player
1 cannot gain a significant advantage from playing
a different mixed strategy S′1 - the analogous result
holds for Player 2 as well.

Any mixed strategy S′1 in the discounted game can
be transformed into a mixed strategy S1 in G - each
pure strategy is given the same probability of being
played in G as it has of being output by a probabilistic
TM in the discounted game (the probability weight
of non-halting computation paths is assigned to an
arbitrary strategy in S1). Because of the discounting,
the payoff that Player 1 can get by playing S′1 in the
discounted game is at most the payoff that he can get
by playing S1 in G. But the payoff by playing S in G
is at least the payoff by playing S1 in G, and the payoff
by playing S′ in the discounted game approaches the
payoff by playing S in G as ε, δ → 0. This shows that
the advantage of playing S′1 in the discounted game
must tend to zero as ε, δ tend to zero, for an arbitrary
S′1, implying that (S′, T ′) is a strong uniform NE for
the discounted game.

Consider the Largest Integer Game where both
players simultaneously play integers. The player play-
ing the largest integer receives a payoff of 100 with
each receiving 50 if they play the same integer. This
game has no Nash equilibrium or even an almost Nash
equilibrium (Nash’s theorem doesn’t apply because
the action space is not compact).

Next we show that almost-NEs exist, not only for
the Largest Integer game for but any countable game

with bounded payoffs. The basic idea of the proof is
to approximate the discounted countable game by a
finite game, and then reduce the existence of uniform
equilibria in the discounted countable game to the
existence of NEs in the corresponding finite game.

Theorem 7 Let G be a two-player game with
bounded payoffs where both players have a countable
number of actions. Then for each ε, δ > 0, the (ε, δ)-
discounted time version of G has an (ε+ δ)-NE.

Proof. Let G be as stated in the theorem, and let
K ⩾ 1 be an upper bound on payoffs for G. Consider
the (ε, δ)-discounted time version of G. We show how
to approximate the discounted game by a finite game
Gε,δ and then use the existence of Nash equilibria in
the finite game to show the existence of approximate
Nash equilibria in the discounted game.

The finite game Gε,δ is the subgame of the dis-
counted game where the first player plays proba-
bilistic Turing machines of description size at most
22K2/ε2 , and the second player plays probabilistic Tur-
ing machines of size at most 22K2/δ2 . By Nash’s theo-
rem, this game has a mixed-strategy Nash equilibrium
(S1, T1). We show that (S1, T1) is an (ε + δ)-NE for
the discounted game.

We show that for any mixed strategy pair (S, T ) in
the discounted game, there is a mixed strategy pair
(S′, T ′) in Gε,δ such that u2(S, T ′) ⩾ P2(S, T ) − δ,
and u1(S′, T ) ⩾ P1(S, T ) − ε. This implies that any
NE for Gε,δ is an (ε+ δ)-NE for the discounted game.

Let (S, T ) be a mixed strategy pair in the dis-
counted game. We show how to construct a strat-
egy T ′ in Gε,δ for Player 2 such that u2(S, T ′) ⩾
u2(S, T ) − δ. The corresponding result for Player 1
follows by a symmetric argument.

The argument is a “probability-shifting” argument
- we will show how to transfer probability from prob-
abilistic machines in the support of T with size more
than 22K2/δ2 to probabilistic machines with descrip-
tion size smaller than that number without damag-
ing the payoff of Player 2 too much. Specifically, the
payoff of Player 2 will not decrease by more than δ
conditional on that strategy being played, and hence
there will not be more than a δ decrease in total.

Let N be a probabilistic machine of size more than
22K2/δ2 which has non-zero weight in T . We define
a corresponding machine N ′ of size at most 22K2/δ2 ,
and transfer all the probability weight of N to N ′ in
T ′. Essentially, N ′ will be indistinguishable from N
relative to the discounting.

The key observation is that we don’t need to take
into account computation paths inN of length greater
than K2/δ2, because the strategies output on such
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computation paths are so radically discounted that
we may as well assume they yield zero payoff, with-
out incurring too much damage to the overall payoff.
N ′ behaves like N “truncated” to K2/δ2 steps, out-
putting a strategy for G if N does within that time,
and looping otherwise.

We cannot simply simulate N using a universal ma-
chine and a clock, since the simulation takes too much
of a time overhead and does not preserve the payoff
to within a small additive overhead. Instead we simu-
late N in hardware - this is much more time efficient.
Specifically, we’re interested in the behavior of N only
for the first K2/δ2 time steps. We can define a Tur-
ing machine N ′ with description size at most 22K2/δ2

which encodes the relevant behavior of N ′ entirely in
its finite state control. This simulation incurs no time
overhead at all.

Now, we calculate the maximum damage to Player
2’s payoff from playing N ′ instead of N . There is no
damage to the payoff from computation paths of N
which terminate within K2/δ2 steps. Thus the loss in
payoff is bounded above by (1 − δ)K2/δ2

K, which is
at most δ if K ⩾ 1. This finishes the argument.

In case the payoffs of the game G are computable,
we get a stronger version of Theorem 7 in that uniform
equilibria are guaranteed to exist.

Theorem 8 Let G be a two-player game where each
player has a countable number of actions, and sup-
pose the payoffs are bounded and computable. Then
the discounted time version of G has a uniform equi-
librium.

Proof Sketch. The proof is similar to the proof of
Theorem 7, but we take advantage of the fact that
payoffs are computable. As in the proof of Theo-
rem 7, we can define a finite truncated version of
the game such that the almost-Nash equilibria of the
truncated game are also almost-Nash equilibria of the
discounted game. In order to ensure uniformity, how-
ever, we have to produce a fixed pair of strategies such
that as ε, δ → 0, neither can gain a non-zero amount
in the limit by using a different strategy.

The basic idea is to define a strategy pair (M,N)
such that M and N deterministically compute an
almost-Nash equilibrium of the truncated game, with
M proceeding to play the strategy of player 1 in the
computed almost-Nash equilibrium, and N proceed-
ing to play the strategy of player 2. There are two
obstacles to this approach. The first is the compu-
tational obstacle, but this can be circumvented since
the entries of the payoff matrix for the truncated game
can be estimated to any desired accuracy using sam-
pling and the computability of the payoffs of the origi-

nal game, and then the Lemke-Howson algorithm [16]
can be used to find almost-equilibria of the truncated
game.

The second obstacle is that computing an almost-
Nash equilibrium of the truncated game incurs a sub-
stantial time overhead, which already drives the pay-
offs of the two players down before they play the
strategies corresponding to the almost-Nash equilib-
rium, not to mention the simulation overhead from us-
ing a single machine (M or N) to find an almost-Nash
equilibrium for all ε, δ > 0. This obstacle is overcome
using the idea of “miniaturization” - given discount
rates ε and δ respectively, the players pretend that
their discount rates are ε′ and δ′ instead, where 1/ε′
and 1/δ′ grow very slowly as a function of 1/ε and 1/δ.
ε′ and δ′ are chosen so that the players can compute
an almost-Nash equilibrium of the (ε′, δ′)-discounted
game quickly enough that their payoffs in the (ε, δ)-
discounted game are hardly affected by this computa-
tion, and that playing the strategies for the truncated
game takes relatively little time as well. The point
is that this is still an (ε′ + δ′)-NE for the discounted
game, and that ε′, δ′ → 0 as ε, δ → 0. Hence it is a
uniform Nash equilibrium.

The bounded-payoff assumption in Theorems 7 and
8 is essential for the conclusion to hold. Indeed, con-
sider the two-player game where Player 1 derives a
payoff of 2i from playing integer i and Player 2 a pay-
off of 2j from playing integer j. It is not hard to see
that this game does not even have almost-NEs in the
discounted game.

Theorem 7 shows that the discounted version of the
Largest Integer Game does have almost-NEs. For the
Largest Integer game, in fact, there is a strong uni-
form equilibrium which yields a payoff of 0 for both
players, and every uniform equilibrium gives payoff 0
to both players in the limit. This is intuitive: the
Largest Integer game is a game of oneupmanship,
where each player tries to outdo the other by pro-
ducing a larger number. In the process, they exhaust
their computational resources (or alternatively, end
up spending an inordinate amount of time) and end
up with nothing.

In general, uniform equilibrium is a strong notion of
equilibrium, since there should be no gain in deviating
irrespective of how ε, δ → 0. Suppose we know more
about the relationship of ε and δ, say that δ < ε2, i.e.,
Player 2 always has more computational power. In
this case there are equilibria in which Player 2 wins,
say by outputting 2(1− ε)3/2 while Player 1 outputs
(1 − ε)3/2. This is again in accordance with intu-
ition - if the players are asymmetric, the more pa-
tient/computational stronger player should win this
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game (the discount rate can be seen, depending on
the situation, as either an index of patience or of com-
putational power).
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