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Abstract: We study the design of mechanisms in combinatorial auction domains. We focus on settings
where the auction is repeated, motivated by auctions for licenses or advertising space. We consider models
of agent behaviour in which they either apply common learning techniques to minimize the regret of their
bidding strategies, or apply short-sighted best-response strategies. We ask: when can a black-box approximation
algorithm for the base auction problem be converted into a mechanism that approximately preserves the original
algorithm’s approximation factor on average over many iterations? We present a general reduction for a broad
class of algorithms when agents minimize external regret. We also present a mechanism for the combinatorial
auction problem that attains an O(

√
m) approximation on average when agents apply best-response dynamics.
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1 Introduction
We consider problems in the combinatorial auction

(CA) domain, where m objects are to be allocated
among n potential buyers in order to maximize to-
tal value, subject to problem-specific feasibility con-
straints. These packing problems are complicated
by game-theoretic issues: the buyers might benefit
from misrepresenting their values to an allocation al-
gorithm. This prompts us to design mechanisms that
use payments to encourage reasonable behaviour. The
well-known VCG mechanism solves incentive issues
by inducing truth-telling as a dominant strategy, but
is infeasible for computationally intractible problems.
Indeed, for many interesting problems (such as com-
binatorial auctions), there are large gaps between the
best-known approximation factors attainable by effi-
cient truthful mechanisms and those possible in purely
computational settings. For some problems, these
large gaps are essential [28].

In this extended abstract we consider the problem
of designing mechanisms that implement approxima-
tion algorithms for combinatorial auction problems
without the use of dominant-strategy truthfulness.
We are motivated by the domain of repeated auctions,
where an auction problem is resolved multiple times
with the same objects and bidders1. These include,
for example, auctions for advertising slots [14], band-
width auctions (such as the FCC spectrum auction),
and airline landing rights auctions [10]. In these set-

1One might alternatively allow preferences and participants
to change over time, but sufficiently slowly compared to the
rate of auction repetition.

tings a mechanism for the (one-shot) auction problem
corresponds to a repeated game to be played by the
agents.

The question of how to model agent behaviour in
repeated games has been studied extensively in the
economic and algorithmic game theory literature (see
Chapters 17-21 of [27] and references therein). Many
proposed models assume that agents choose strategies
(or distributions thereover) at equilibrium, where no
agent has incentive to unilaterally deviate. However,
as has been noted elsewhere [4, 16], there are a num-
ber of reasons to believe such models are unrealistic:
equilibria are computationally hard to find in general,
and may not exist without the presence of agents who
randomize over strategies for no reason other than to
preserve the stability of the system. Even when pure
equilibria exist, agents may not necessarily converge
to an equilibrium (of the single-round game) or agree
on which equilibrium (of the extended-form game) to
choose. In light of these concerns, we will focus our
attention on two models of agent behaviour that do
not make equilibrium assumptions, and have gained
recent interest in the algorithmic game theory litera-
ture.

In the first model, agents can play arbitrary se-
quences of strategies for the repeated auction, under
the assumption that they obtain low regret relative to
the best fixed strategy in hindsight. More precisely,
the average external regret of each bidder must tend
to 0 as the number of auction rounds increases. These
regret-minimizing bidders can be seen as agents that
learn how to bid intelligently (relative to any fixed
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strategy benchmark) from the bidding history of past
auction iterations. Note that we require no assump-
tions about the synchrony or asynchrony of updates;
arbitrary sets of agents can update their strategies
concurrently. The regret-minimization assumption is
motivated by the existence of simple, efficient algo-
rithms that minimize external regret for linear opti-
mization problems [21, 22]. Under this model, our
goal is to design an auction mechanism that achieves
an approximation to the optimal social welfare on av-
erage over sufficiently many rounds of the repeated
auction. This is precisely the problem of designing a
mechanism with bounded price of total anarchy, in-
troduced by Blum et al [4].

In the second model, we assume that agents choose
strategies that are myopic best-responses to the cur-
rent strategies of the other agents. Such bidding be-
haviour is best motivated in settings where agents up-
date their declarations asynchronously. We model this
behaviour as follows: on each auction round, an agent
is chosen uniformly at random, and that agent is given
the opportunity to change his strategy to the current
myopic best-response. As in the regret-minimization
model, our goal is to design auction mechanisms that
achieve approximations to the best possible social wel-
fare on average over sufficiently many auction rounds,
with high probability over the random update order.
This is closely related to the concept of the price of
(myopic) sinking, introduced by Goemans et al [16].

Our goal in this area of study is to decouple compu-
tational issues from game-theoretic concerns. A full
(and admittedly ambitious) solution in our domain
would be a black-box conversion of a given approxi-
mation algorithm into a mechanism that implements2

the same approximation ratio, on average over suffi-
ciently many auction rounds, given our models of bid-
der behaviour. Our primary research question, par-
tially addressed herein, is to what extent such imple-
mentations are possible.

1.1 Our Contribution
We design mechanisms that are based on a par-

ticular class of approximation algorithms for combi-
natorial auction problems: those that are monotone
and satisfy the loser-independence property. An al-
gorithm is monotone if, whenever a bidder can win
some set S by declaring a value of v for it, then he
could also win any subset of S with any declared value
at least v. This monotonicity condition characterizes
truthfulness when bidders are single-minded (meaning

2Throughout the paper we use the term “implement” in the
economic sense of constructing a mechanism that obtains the
desired properties when used by rational agents.

that each agent has value for only a single set), but
not for general auction problems [24]. Roughly speak-
ing, an algorithm is loser-independent if the outcome
for an agent depends only on those agents who would
win if he did not participate, and on their declared
values for their winnings. This extends a notion of
loser-independence for single-parameter problems, in-
troduced by Chekuri and Gamzu [8], to general auc-
tion problems. This class of algorithms includes many
natural algorithms for well-studied packing problems,
including greedy algorithms for CAs [24], convex bun-
dle auctions [1], and unsplittable flow problems [7].

Our first main result is that any monotone loser-
independent c-approximate algorithm can be imple-
mented as a mechanism with price of total anarchy
at most c + 1. That is, if agents minimize their ex-
ternal regret, the average social welfare obtained by
our mechanism approaches a (c+1) approximation to
the optimal social welfare as the number of rounds in-
creases. Our mechanism is a black-box reduction from
an algorithm for a one-shot auction iteration, and the
same mechanism is applied each auction round. The
form of our mechanism is very simple: on each round,
it applies a simple modification to the bidders’ dec-
larations, then runs the approximation algorithm on
the modified declarations and charges critical prices
(i.e. an agent who wins a set pays the smallest amount
he could have declared for that set and won it, given
the declarations of the other bidders).

Our implementation does not depend on the spe-
cific algorithms used by the agents to minimize their
regret; only that their regret vanishes as the num-
ber of rounds increases. The rate of convergence to
our approximation bound will depend on the rate at
which the agents’ regret vanishes.

We demonstrate that our mechanism is resilient
to the presence of byzantine agents, in the following
sense. If each agent either applies regret-minimizing
strategies or makes arbitrary declarations (but never
declares more than his true value for a set), then the
mechanism attains a (c+ 1) approximation to the op-
timal welfare obtainable by the regret-minimizing bid-
ders. The no-overbidding assumption is necessary,
as otherwise a byzantine agent could bid arbitrarily
highly and prevent any welfare from being obtained.
This assumption is also motivated by viewing byzan-
tine agents as players that do not understand how to
participate intelligently in the auction and thus likely
to bid conservatively.

We then study the best-response model of bid-
der behaviour, in which we focus specifically on the
combinatorial auction problem. We present a mech-
anism that implements an O(s) approximation for
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cardinality-restricted combinatorial auctions, where
set allocations have size at most s. We then extend
this to a mechanism that implements an O(

√
m) ap-

proximation for general combinatorial auctions. We
attain these approximation ratios with high proba-
bility as long as the number of rounds is superlin-
ear in n. We point out that while truthful mecha-
nisms with similar approximation ratios are known
for single-minded combinatorial auctions, our results
are significant improvements over what is currently
known to be achieveable with deterministic truthful
algorithms for general CAs.

Returning to the general implementation of mono-
tone loser-independent c-approximate algorithms, we
conjecture that the black-box reduction used in the
regret-minimization setting also implements an O(c)
approximation, on average over sufficiently many
rounds, in the model of best-response bidders. We
leave the resolution of this conjecture as an open prob-
lem.

Our results require a mild game-theoretic assump-
tion, which is that bidders will not apply strategies
that are (strictly) dominated by easily-found alterna-
tives. This is precisely the assumption that agents
choose only algorithmically undominated strategies,
as introduced by Babaioff et al [2]. This assumption
is discussed further in Section 3.1. Additionally, the
mechanisms we introduce for best-response bidders
apply a technique known in implementation theory
as virtual implementation, where an alternative social
choice rule is applied with vanishingly small proba-
bility [20]. We view this not as an introduction of
randomness into the algorithm being implemented,
but rather as the introduction of a trembling-hand
consideration into the solution concept that encour-
ages reasonable behaviour when best-response agents
must distinguish between otherwise equally beneficial
strategies.

1.2 Regret Minimization
We now discuss external regret minimization in fur-

ther detail. The external regret of a sequence of dec-
larations is the difference between the average utility
obtained by an agent (i.e. value of goods received mi-
nus payment) and the maximum average utility that
the agent could have obtained by making a single
fixed declaration each round. An online algorithm
for generating declarations is regret-minimizing if its
regret vanishes as a function of the number of auction
rounds.

How should an agent bid in order to minimize his
external regret? A simple and efficient algorithm
due to Kalai and Vempala [22] solves linear optimiza-

tion problems with regret that vanishes at a rate of
O(1/
√
T ). Their algorithm requires access to an exact

best-response oracle. Kakade et al [21] show how to
use a γ-approximate best response oracle to achieve a
γ-approximation to the best fixed declaration in hind-
sight.

The mechanisms we construct in this paper have
the property that the strategy selection problem for
each agent reduces to a linear optimization problem
over the space of desired object sets. Thus, in set-
tings where each agent has only polynomially many
desired sets (e.g. when each agent’s type is assumed to
be representable by a polynomial number of mutually
exclusive bids), it is a simple matter to implement ef-
ficient best-response oracles and regret-minimization
algorithms. In general, however, agents may have ex-
ponentially large strategy spaces3. In such cases an ef-
ficient regret-minimization algorithm or best-response
oracle would likely have to be tailored to the valua-
tion access model (e.g. oracle queries, succinct repre-
sentations, etc.) and to the structure of the particular
problem and algorithm being implemented. The ex-
ploration of such issues for specific problem settings
is left as an avenue for future research.

1.3 Related Work
Truthful mechanisms for the combinatorial auction

problem have been extensively studied. For general
CAs, Hastad’s well-known inapproximability result
[18] shows that it is hard to approximate the prob-
lem to within Ω(

√
m) assuming NP �= ZPP . The

best known deterministic truthful mechanism for CAs
with general valuations is a bundling auction that at-
tains an approximation ratio of O( m√

logm
) [19]. A

randomized O(
√
m)-approximate mechanism that is

truthful in expectation was given by Lavi and Swamy
[23]. Dobzinski, Nisan and Schapira [13] then gave an
O(
√
m)-approximate universally truthful randomized

mechanism.
Many variations on the combinatorial auction prob-

lem have been considered in the literature. Bartal et
al [3] give a truthful O(Bm

1
B−2 ) mechanism for multi-

unit combinatorial auctions with B copies of each ob-
ject, for all B ≥ 3. Dobzinski and Nisan [12] con-
struct a truthful 2-approximate mechanism for multi-
unit auctions, and Dobzinski and Dughmi [11] con-
struct a randomized FPTAS for the multi-unit auc-
tion problem that is truthful in expectation. Many
other problems have truthful mechansisms ([7, 24, 26])
when bidders are restricted to being single-minded.
Borodin and Lucier [5] study the limited power of

3More specifically, the corresponding linear optimization
problem may have exponential dimension.
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certain classes of greedy algorithms for truthfully ap-
proximating CA problems.

Implementation at equilibrium, especially for the
alternative goal of profit maximization, has a rich
history in the economics literature; see, for exam-
ple, Jackson [20] for a survey. For the goal of opti-
mizing social welfare, Christodoulou et al [9] consider
implementing a combinatorial auction by simultane-
ous Vickrey auctions, and show that this obtains a 2-
approximation at every Bayes-Nash equilibrium when
agents’ valuations are submodular. Gairing et al [15]
characterize the Bayes-Nash equilibria of a routing
game and study its worst-case performance at equi-
librium.

For general combinatorial auction problems, Lucier
and Borodin [6] give a black-box reduction from any
monotone c-approximate greedy algorithm to a mech-
anism that obtains a c+O(log c) approximation at ev-
ery Bayes-Nash equilibrium. Their results are similar
in flavour to our own, though their focus is on single-
shot auctions at equilibrium; the process by which
such an equilibrium is reached is left open. By con-
trast, we study the evolution of bidder behaviour in
repeated auctions, and demonstrate that it is possible
to implement approximation algorithms in settings
where convergence to equilibrium is not guaranteed.

The study of regret-minimization goes back to the
work of Hannan on repeated two-player games [17].
Kalai and Vempala [22] extend the work of Hannan
to online optimization problems, and Kakade et al [21]
further extend to settings of approximate regret mini-
mization. Blum et al [4] apply regret-minimization to
the study of inefficiency in repeated games, coining
the phrase “price of total anarchy” for the worst-case
ratio between the optimal objective value and the av-
erage objective value when agents minimize regret.

Properties of best-response dynamics in repeated
games, and especially the question of convergence to
a pure equilibrium, is well-studied (see Chapter 19
of [27]). The study of average performance of best-
response dynamics as a metric of game inefficiency,
the so-called “price of sinking,” was introduced by
Goemans et al [16].

Babaioff et al [2] study implementation of algo-
rithms in undominated strategies, which is a relax-
ation of the dominant strategy truthfulness concept.
They focus on a variant of the CA problem in which
agents are assumed to have “single-value” valuations,
and present a mechanism to implement such auctions
in a multi-round fashion. By comparison, mechanisms
in our proposed model solve each instance of an auc-
tion in a one-shot manner, and our solution concept
assumes that the auction is repeated multiple times.

1.4 Organization
We review mechanism design fundamentals and de-

fine relevant problem and algorithm classes in Sec-
tion 2. In Section 3 we present our general reduction
for the regret-minimization model of agent behaviour.
We then consider the best-response bidder model in
Section 4, where we present mechanisms for the com-
binatorial auction problem. Conclusions and open
problems are discussed in Section 5. Some proofs have
been omitted from this extended abstract and may be
found in the full version of the paper.

2 Model and Definitions
In general we will use boldface to represent vectors,

subscript i to denote the ith component, and subscript
−i to denote all components except i, so that, for
example, v = (vi,v−i).

We consider the domain of combinatorial auction
problems, where n agents desire subsets of a set M of
m objects. An allocation profile is a collection of sub-
sets X1, . . . , Xn, where Xi is thought of as the subset
allocated to agent i. A particular problem instance is
defined by the set of feasible allocation profiles that
are permitted. For example, the general combinato-
rial auction problem requires that all allocated sub-
sets be disjoint. Each agent i has a privately-held
valuation function ti : 2M → ℝ, his type, that assigns
a value to each allocation. We assume that valua-
tion functions are monotone and normalized so that
v(∅) = 0. A valuation function v is single-minded if
there exists S ⊆ M and x ≥ 0 such that v(T ) = x
if S ⊆ T and v(T ) = 0 otherwise. We will write ∅
for the zero valuation, and (S, x) for a single-minded
declaration for S at value x.

An allocation rule A assigns to each valuation pro-
file v a feasible outcome A(v); we write Ai(v) for the
allocation to agent i. We write A for both an alloca-
tion rule and an algorithm that implements it.

An allocation rule is loser-independent if, when-
ever v−i, v′−i satisfy A(∅,v−i) = A(∅,v′−i) and
vj(Aj(∅,v−i)) = vj(Aj(∅,v′−i)) for all j �= i, then
A(vi,v−i) = A(vi,v′−i). In other words, agent i’s per-
ception of the behaviour of A depends only on those
agents who would win if agent i did not participate,
and on their declared values for their winnings.

A payment rule P assigns a vector of n payments to
each valuation profile. A direct revelation mechanism
M is composed of an allocation rule A and a payment
rule P . The mechanism proceeds by eliciting a valu-
ation profile d of declarations from the agents, then
applying the allocation and payment rules to d. The
utility of agent i for mechanismM, given declaration
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profile d, is ui(d) = ti(Ai(d)) − Pi(d). We think of
each agent as wanting to choose di to maximize ui(d).

The social welfare obtained by allocation profile
X, given type profile t, is SW (X, t) =

∑
i ti(Xi).

Given fixed type profile t, we write SWopt for
maxX{SW (X, t)}, and SWA(d) =

∑
i ti(A(d)).

When D = (d1,d2, . . . ,dT ) is a sequence of valua-
tion profiles, we write SWA(D) = 1

T

∑
t SWA(dt) for

the average welfare obtained over all declarations in
D. We will sometimes replace subscript A by M, in
which case the social welfare is for the allocation rule
ofM. Note that algorithm A is a c-approximation if
SWA(t) ≥ 1

cSWopt for all t.
Given allocation rule A, agent i, declaration profile

d−i, and set S, the critical price θAi (S,d−i) for S is
the minimum value that agent i could bid on set S
and be allocated S by A given fixed d−i. That is,
θAi (S,d−i) = inf{v : ∃di, di(S) = v,Ai(di,d−i) = S}.

We say that a declaration di is weakly dominated by
declaration di′ for agent i if ui(di,d−i) ≤ ui(di′,d−i)
for all d−i, and furthermore there exists some d′−i
such that ui(di,d′−i) < ui(di

′,d′−i).
Declaration sequence D = (d0,d1, . . . ,dT ) mini-

mizes external regret for agent i if, for any fixed dec-
laration di,

∑
t ui(dti,dt−i) ≥

∑
t ui(di,dt−i) + o(T ).

That is, the utility of agent i approaches the utility
of the optimal fixed strategy in hindsight.

Declaration sequence D = (d0,d1, . . . ,dT ) is an
instance of response dynamics if, for all 1 ≤ t ≤ T ,
profiles dt−1 and dt differ on the declaration of at
most one player. Response dynamics D is an instance
of best-response dynamics if, whenever dt−1 and dt
differ on the declaration of agent i, dti maximizes agent
i’s utility given the declarations of the other bidders.
That is, dti ∈ arg maxd{ui(d,dt−i)}.

3 Regret-Minimizing Bidders
In this section we prove that if agents avoid algo-

rithmically dominated strategies and minimize exter-
nal regret, then a loser-independent monotone algo-
rithm A can be converted into a mechanism with al-
most no loss to its average approximation ratio over
sufficiently many rounds. The mechanism, MA, is
described in Figure 1. Mechanism MA proceeds by
first simplifying the declaration given by each agent,
then passing the simplified declarations to algorithm
A. The resulting allocation is paired with a payment
scheme that charges critical prices.

3.1 Strategy Selection
The simplification process SIMPLIFY essentially

converts any declaration into a single-minded declara-
tion (and does not affect declarations that are already

MechanismMA:

Input: Declaration profile d = d1, . . . , dn.

1. d′ ← SIMPLIFY(d).
2. Allocate A(d′), charge critical prices.

Procedure SIMPLIFY:

Input: Declaration profile d = d1, . . . , dn.

1. For each i ∈ [n]:
2. Choose Si ∈ arg maxS{di(S)}, breaking

ties in favour of smaller sets.
3. d′i ← (Si, di(Si)).
4. Return (d′1, . . . , d′n).

Figure 1: Mechanism for regret-minimizing bidders, based
on monotone allocation algorithm A. Uses subprocedure
SIMPLIFY.

single-minded). We will therefore assume without loss
of generality that agents make single-minded declara-
tions, as additional information is not used by the
mechanism.4

Fix a particular combinatorial auction problem and
type profile t, and let A be some monotone approx-
imation algorithm. Let d be a declaration profile;
we suppose each di is a single-minded bid for set Si.
We draw the following conclusion about the bidding
choices of rational agents.

Lemma 3.1. Declaration di is an undominated strat-
egy for agent i if and only if di(Si) = ti(Si).

Proof. For all d−i, MA(di,d−i) either allocates Si
or ∅ to agent i. Thus agent i’s utility for declar-
ing di, ui(di,d−i), is ti(Si) − θMA

i (Si,d−i) when
di(Si) > θMA

i (Si,d−i), and 0 otherwise. A declara-
tion of di(Si) = ti(S) therefore maximizes ui(di,d−i)
for all d−i.

On the other hand, if di(Si) �= ti(Si), let di′ be the
single-minded declaration for Si at value ti(Si). Then
for any d−i such that θiA(Si,d−i) lies between di(Si)
and ti(Si), ui(di′,d−i) > ui(di,d−i). For simplicity
we will assume such a d−i exists; handling the general
case requires only a technical and uninteresting exten-
sion of notation5. Declaration d′i therefore dominates
declaration di.

4We note, however, that this is not the same as assuming
that agents are single-minded; our results hold for bidders with
general private valuations.

5If θiA(Si,d−i) never lies between di(Si) and ti(Si) for any
d−i, then MA(di,d−i) =MA(di′,d−i) for all d−i, so di and
di
′ are equivalent strategies. We can therefore think of di as
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Recall our assumption that agents apply only al-
goritmically undominated strategies; Lemma 3.1 then
implies that each agent will declare her true value for
the set on which she makes her single-minded bid. We
note that this assumption is not without loss of gen-
erality for regret-minimizing bidders, even in mecha-
nisms that are dominant strategy truthful. For exam-
ple, in a Vickrey auction of a single object, the dec-
laration profile in which one agent bids much higher
than anyone’s true value and all other agents bid 0
forms an equilibrium, and thus all agents experience
zero regret. However, as has been argued elsewhere
[6, 9, 25], such strategy profiles seem unnatural: the
overbidding agent risks obtaining negative utility if
another agent changes declaration, and the underbid-
ding agents gain nothing by bidding 0 instead of their
true values. We believe it is reasonable to assume
that agents will avoid such risky behaviour and re-
strict themselves to undominated strategies.

One implication of Lemma 3.1 is that the strate-
gic choice of an agent participating in mechanism
MA reduces to a linear optimization problem. On
each round, we can think of agent i as choosing set
Si, which is the set he will attempt to win that
round. Once Si is chosen, an undominated decla-
ration for agent i is determined: the single-minded
declaration for Si at value ti(Si). Given that agent
i chooses set Si, his utility will be ti(Si) − wi, where
wi = min{ti(Si), θAi (Si,d−i)} is the price for set Si,
determined by the declarations of the other agents,
capped at ti(Si). As a corollary, if an agent’s val-
uation is representable as a polynomial number of
mutually exclusive bids, then the regret-minimization
algorithm of Kalai and Vempala [22] can be used to
efficiently choose strategies that minimize external re-
gret.

3.2 Performance of MA
We now proceed with bounding the social welfare

obtained by MA. Let A1, . . . , An be an optimal as-
signment for types t. Suppose that D = d1, . . . ,dT is
a sequence of declarations to our mechanism. The def-
inition of regret minimization then immediately im-
plies the following.

Lemma 3.2. If agent i minimizes his external
regret in bid sequence D, then 1

T

∑
t(ti(A(dt)) +

θi
A(Ai,dt−i)) ≥ ti(Ai)− o(1).

Proof. Let d′i be the single-minded declaration for set
Ai at value ti(Ai). From the definition of regret min-

being “the same” as a single-minded declaration for Si at value
ti(Si). We will ignore this technical issue for the remainder of
the paper, in the interest of keeping the exposition simple.

imization,

1
T

∑
t

ui(dti,dt−i) ≥
1
T

∑
t

ui(d′i,dt−i)− o(1)

≥ 1
T

∑
t

(
ti(Ai)− θAi (Ai,dt−i)

)− o(1)

= ti(Ai)− 1
T

∑
t

θAi (Ai,dt−i)− o(1).

Since ui(dti,dt−i) ≤ ti(A(dt)) for all t, the result fol-
lows.

Assume now that algorithm A is loser independent.
We can then relate the value of the solution returned
by an algorithm to the critical prices of the sets in an
optimal solution.

Lemma 3.3. If A is a monotone loser-independent
c-approximate algorithm, then

∑
i di(A(d)) ≥

1
c

∑
i θ
A
i (Ai,d−i).

Proof. Choose ε > 0. For each i, let d′i be the point-
wise maximum between di and the single-minded dec-
laration for set Ai at value θAi (Ai,d−i) − ε. The
definition of loser independence implies that criti-
cal prices are the same under declaration profiles
d and d′, and moreover A(d′) = A(d). Since
A is a c-approximate algorithm,

∑
i d
′
i(A(d′)) ≥

1
c

∑
i d
′
i(Ai) ≥ 1

c

∑
i(θAi (Ai,d−i) − ε). Additionally,

since d′i(T ) = di(T ) whenever di(T ) ≥ θAi (T,d−i)
(from the definition of d′i), we have d′i(A(d′)) =
di(A(d)) for all i. We conclude that

∑
i di(A(d)) ≥

1
c

∑
i(θAi (Ai,d−i)− ε) for all ε > 0, as required.

We are now ready to proceed with the proof of our
main result in this section.

Theorem 3.4. Any monotone loser-independent c-
approximate algorithm can be implemented as a mech-
anism with c+ 1 price of total anarchy.

Proof. Let D = d1, . . . ,dT be a sequence of
declarations in which all agents minimize exter-
nal regret. By Lemma 3.2, 1

T

∑
t(ti(A(dt)) +

θAi (Ai,dt−i)) ≥ ti(Ai) − o(1). Summing over all
i, we have 1

T

∑
t

∑
i(ti(A(dt)) + θAi (Ai,dt−i)) ≥

SWOPT − (n)(o(1)). By Lemma 3.3, this im-
plies 1

T

∑
t

∑
i(ti(A(dt)) + cdti(A(dt))) ≥ SWOPT −

(n)(o(1)). We know dti(A(dt)) = ti(A(dt)) for all i
and t by Lemma 3.1, so we conclude

(c+ 1)SWA(D) = (c+ 1) 1
T

∑
t

∑
i

ti(A(dt))

≥ SWOPT − (n)(o(1)).
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Since the term hidden by the asymptotic notation
vanishes with T and does not depend on n, we ob-
tain the desired result.

Theorem 3.4 is very general, as it applies to a num-
ber of known algorithm for various problem settings.
For example, Theorem 3.4 yields an O(

√
m) imple-

mentation of the combinatorial auction problem [24],
an s + 1 implementation of the combinatorial auc-
tion problem where sets are restricted to cardinality s
(using a simple greedy algorithm), an O(Bm1/(B−1))
implementation of the unsplittable flow problem with
minimum edge capacity B [7], and an O(R4/3) im-
plementation of the combinatorial auction of convex
bundles in the plane where R is the maximum aspect
ratio over all desired bundles [1].

We note that, since agents experience no regret at
a pure Nash equilibrium, an immediate corollary to
Theorem 3.4 is that any monotone loser-independent
c-approximate algorithm can be implemented as a
mechanism with c + 1 price of anarchy. We remark
that an alternative proof of this result has been given
recently using a different mechanism construction [6].

Also, the rate at which the welfare obtained byMA
converges to an average that is a c + 1 approxima-
tion to optimal depends on the rate of convergence
of players’ external regret to 0. The average welfare
obtained after T rounds will have an additive loss of
(n)(r(T )), where r(T ) is the average regret experi-
enced by an agent after T rounds. Assuming that
agents apply algorithms that minimize regret at a rate
of r(T ) = o(1/

√
T ), which is attainable using the al-

gorithm of Kalai and Vempala [22], the additive error
term is at most a constant when T is at least quadratic
in n.

3.3 Resilience to Byzantine Agents
Suppose that in addition to regret-minimizing

agents, the auction participants include byzantine
agents. The only restriction we impose on the be-
haviour of such agents is that they do not overbid on
any set; that is, di(S) ≤ ti(S) for any S and byzan-
tine agent i. We can motivate this restriction either
through our characterization of undominated strate-
gies in Lemma 3.1, or by thinking of byzantine players
as not understanding how to participate rationally in
the auction, and hence likely to be conservative in
the way that they bid. Under this assumption, since
Lemma 3.3 holds for any declaration profile, we easily
obtain the following generalization of Theorem 3.4.
Proposition 3.5. Suppose A is a monotone loser-
independent c-approximate algorithm and D is a dec-
laration sequence for MA. If N ⊆ [n] is a col-
lection of agents that minimize regret in D, and

the remaining agents never bid more than their true
values on any set in D, then 1

T

∑
t SWA(dt) ≥

1
c+1
∑
i∈N SWopt + |N |(o(1)).

3.4 Importance of Loser-Independence
We note that the loser independence property is

necessary for Theorem 3.4, as the following example
demonstrates.
Example 3.6. Consider an auction problem in which
no agent can be allocated more than s objects, and
moreoeverM = A∪B where |A| = |B| = m/2 and the
mechanism can either allocate objects in A or objects
in B, but not both. Consider the algorithm that takes
the maximum over two solutions: a greedy assignment
of subsets of A, and a greedy assignment of subsets
of B. This algorithm obtains an s+ 1 approximation,
but is not loser-independent.

Consider now an instance of the problem in which
a single agent desires all of B with value 1, and each
of m/2 agents desires a separate singleton in A with
value 1−ε. Suppose that the agent desiring B declares
his valuation truthfully, but the other agents declare
the zero valuation. On this input, the algorithm un-
der consideration obtains only an m/2 approximation
to the optimal solution. However, this set of declara-
tions forms a Nash equilibrium, and hence each agent
has zero regret under this input profile. Thus, even if
agents minimize their regret, our mechanism may ob-
tain a very poor approximation to the optimal social
welfare over arbitrarily many auction rounds.

4 Best-Response Agents
In this section we consider the problem of design-

ing mechanisms for agents that apply myopic best-
response strategies asynchronously. Recall that in our
model agents are chosen for update uniformly at ran-
dom, one per round. In order to keep our exposition
clear, we will make two additional assumptions about
the nature of the best-response behaviour (which can
be removed, as we discuss in Section 4.3). First,
we will suppose that in the initial state every bid-
der makes the empty declaration ∅. Second, we sup-
pose that if a bidder is chosen for update but cannot
improve his utility, he will choose to maintain his pre-
vious strategy. These assumptions will simplify the
process of characterizing best-response strategies of
agents, and in particular the statement of Lemma 4.4
in the next section. It is possible to remove these as-
sumptions, at the cost of a minor modification to the
mechanisms we propose. We defer a more complete
discussion to Section 4.3.

We begin our analysis of myopic bidding strategies
by considering mechanismMA from Section 3 (given
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a monotone loser-independent algorithm A). It is
tempting to guess that the best-response dynamics
for this mechanism will necessarily converge to equi-
librium, but the following example shows that this is
not the case.
Example 4.1. Consider a combinatorial auction with
6 agents and 4 objects, say {a, b, c, d}, under the fea-
sibility constraint that each agent can receive at most
2 items. Let A be the greedy allocation rule that
allocates sets greedily by value. We consider an in-
put instance given by the following set of true values
(where the value for a set not listed is taken to be the
maximum over its subsets).

player set value
1 {a, b} 4
1 {d} 6
2 {a} 2
2 {b, c} 5
3 {c} 4
4 {d} 5

Suppose the auction is resolved by mechanismMA,
and agents apply best-response dynamics. Agents 3
and 4 are single-minded and hence always maximize
their utility by declaring truthfully. Agents 1 and
2 each have a strategic choice to make when bid-
ding: which of their two desired sets should they bid
upon? Note that once this decision is made, the way
each agent bids is determined by Lemma 3.1 (i.e. bid
truthfully for the desired set). It can be verified that
from each of the resulting 4 possible declaration pro-
files, some player has incentive to change declaration.
Thus, starting from one of these four declaration pro-
files6, the best-response dynamics will never converge
to equilibrium.

The example above motivates a study of the av-
erage social welfare of MA over multiple rounds of
best-response dynamics. We conjecture that, on aver-
age, the best-response dynamics on mechanism MA
approximates the optimal social welfare to within a
constant factor of the approximation ratio of the orig-
inal algorithm A.

Conjecture 4.2. If A is a monotone loser-
independent c-approximate algorithm, then MA has
O(c) price of (myopic) sinking.

We leave the resolution of Conjecture 4.2 as an open
problem. As partial progress, we construct alternative
mechanisms that are more amenable to best-response
analysis. These mechanisms are tailored specifically

6Such a profile can be reached from the initial empty state
by choosing agent 3 for update, followed by 4, 1, and then 2.

to the general combinatorial auction problem and
to combinatorial auctions with cardinality-restricted
sets.

The primary tool we will use is the following proba-
bilistic lemma, which pertains to any mechanism in a
best-response setting. Suppose M is a mechanism,
and D is a sequence of best-response declarations
for M. For any d, let P1(d) = P1(d−i) be some
property of d that does not depend on di, and let
P2(d) = P2(di) be some property depending only on
di.

Lemma 4.3. Suppose that, for any d, if P1(d−i) is
false, then any best response by agent i, di, satisfies
P2(di). Then for all ε > 0, if best-response dynamics
is run for T > ε−1n steps, there will be at least (1

2 −
ε)T steps t for which either P1(dt−i) or P2(dti) is true,
with probability at least 1− e−Tε2/32n.

Proof (sketch). Let Bti be the event that neither
P1(dt−i) nor P2(dti) is true, and let Ati denote the event
that P2(dti) is true. Our goal is to bound the number
of occurrances of Bti .

Note that if Bti occurs and agent i is chosen for up-
date on step t+ 1, then At+1

i occurs (by assumption).
Alternatively, if Ati occurs but agent i is not chosen
for update on step t + 1 then At+1

i occurs, since Ai
depends only on the declaration of agent i. Events
Ati and Bti can therefore be compared to a random
walk on {0, 1}, where at each step the current state
changes with probability 1/n. The number of occur-
rances of Bti is dominated by the number of occur-
rances of 0 in such a random walk. A straightforward
application of the method of bounded average differ-
ences shows that this value is concentrated around its
expectation, which is at most T2 + n

2 . Thus, as long
as T > ε−1n, the number of occurrances of Bti will
be at most T (1

2 + ε) with high probability, giving the
desired bound. Additional details appear in the full
version of the paper.

4.1 A Mechanism for s-CAs
Consider the s-CA problem, which is a combinato-

rial auction in which no agent can be allocated more
than s objects. An algorithm that greedily assigns
sets in descending order by value obtains an (s + 1)
approximation.7 Call this algorithm AsCA. We will
construct a mechanism MsCA based on AsCA; it is
described in Figure 2. This algorithm simplifies in-
coming bids (in the same way asMA) and runs algo-
rithm AsCA to find a potential allocation. However,
an additional condition for inclusion in the solution is
imposed: the value declared for a set must be larger

7And an s approximation for single-minded declarations.
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MechanismMsCA:

Input: Declaration profile d = d1, . . . , dn.

1. d′ ← SIMPLIFY(d), say di′ = (Si, vi)
2. (T1, . . . , Tn)← AsCA(d′).
3. For each i such that Ti �= ∅:
4. Ri ← {j : Sj ∩ Ti �= ∅}.
5. pi ←

∑
j∈Ri dj(Sj).

6. If di′(Ti) ≤ pi, set Ti ← ∅, pi ← 0.
7. Allocate T1, . . . , Tn, charge critical prices.

Figure 2: MechanismMsCA, an implementation of greedy
algorithm AsCA for the s-CA problem.

than the sum of all bids for intersecting sets. Po-
tential allocations that satisfy this condition are allo-
cated, and the mechanism charges critical prices (that
is, the smallest value at which an agent would be al-
located their set by MsCA, which is not necessarily
the same as the critical price for AsCA). We claim
thatMsCA obtains an O(s) approximation to the op-
timal social welfare on average over sufficiently many
rounds of best-response dynamics.

We note that since our mechanism implements
a monotone algorithm and charges critical prices,
Lemma 3.1 implies that undominated strategies for
agent i involve choosing a set Si and making a single-
minded bid for Si at value ti(Si). We will therefore
assume that agents bid in this way.

Suppose that d is a declaration profile, where each
di is a single-minded declaration for some set Si.
For any set T ⊆ M , define Ri(d, T ) = {j : j �=
i, Sj ∩ T �= ∅}. We also define Qi(d, T ) = {j : j ∈
Ri(d, T ), dj(Sj) < ti(T )}. That is, Ri(d, T ) is the set
of bidders other than i whose single-minded declared
sets intersect T , and Qi(d, T ) is the subset of those
bidders whose single-minded declared values are less
than agent i’s true value for T . Note that Ri on line
4 of MsCA is precisely Ri(d′, Ti). We say that d is
separated for agent i if

∑
j∈Qi(d,Si) dj(Sj) ≤ di(Si)

and d is separated if it is separated for every bid-
der. Since an agent gains positive utility only if the
declaration is separated for him, and since the initial
(empty) declaration profile is separated, we draw the
following conclusion.

Lemma 4.4. At each step of the best-response dy-
namics for mechanism MsCA, the declaration profile
submitted by the agents will be separated.

For the remainder of the section we will assume that
declaration profiles are separated. Under this assump-

tion, the behaviour of mechanismMsCA simplifies in
a fortuitous way.

Proposition 4.5. If d is separated, then MsCA
allocates Si to agent i precisely when di(Si) >
maxj∈Ri(Si,d) dj(Sj).

Proof. Note thatMsCA allocates Si to agent i if and
only if AsCA allocates Si to agent i on input d′ and
di(Si) >

∑
j∈Ri(d,Si) dj(Sj).

Suppose that di(Si) > maxj∈Ri(Si,d) dj(Sj). Then
AsCA(d′) allocates Si to agent i, and further-
more Qi(Si,d) = Ri(Si,d). Since d is separated,
di(Si) >

∑
j∈Qi(Si,d) dj(Sj) and therefore di(Si) >∑

j∈Ri(Si,d) dj(Sj). We conclude that Si will be al-
located to agent i by MsCA. On the other hand, if
di(Si) ≤ maxj∈Ri(Si,d) dj(Sj), then certainly di(Si) ≤∑
j∈Ri(Si,d) dj(Sj), so Si is not allocated to agent i by
MsCA.

Let A1, . . . , An be an optimal allocation with re-
spect to the agents’ true types t.

Proposition 4.6. If d is separated and∑
j∈Ri(d,Ai) dj(Sj) <

1
2 ti(Ai), then any utility-

maximizing declaration for agent i, di, will be
a single-minded declaration for some Si with
di(Si) ≥ 1

2 ti(Ai).

Proof. It can be verified that θMsCA

i (Ai,d−i) =∑
j∈Ri(d,Ai) dj(Sj), so agent i would obtain utility at

least 1
2 ti(Ai) by making a single-minded declaration

for set Ai at value ti(Ai). His utility-maximizing dec-
laration must therefore make at least this much util-
ity, and hence is a bid for some set Si with di(Si) =
ti(Si) ≥ 1

2 ti(Ai).

For declaration profile d, let G denote the set of
agents i for which either

∑
j∈Ri(d,Ai) dj(Sj) ≥ 1

2 ti(Ai)
or di(Si) ≥ 1

2 ti(Ai). We can then bound the social
welfare obtained byMsCA with respect to the optimal
assignment to agents in G.

Lemma 4.7.

SWMsCA(d) ≥ 1
4(s+ 1)

∑
i∈G
ti(Ai).

We are now ready to bound the average social wel-
fare of our mechanism, over sufficiently many rounds,
with respect to the approximation factor of algorithm
A.

Theorem 4.8. Choose ε > 0 and suppose D =
d1, . . . , dT is an instance of best-response dynamics
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with random player order, where agents play undom-
inated strategies, and T > ε−1n. Then

SWMsCA(D) ≥
(

1− 2ε
8(s+ 1)

)
SWopt(t)

with probability at least 1− ne−Tε2/32n.

Proof. Let Gt be the set of agents G from Lemma
4.7 on step t (i.e. with respect to declaration dt).
Lemma 4.3 and Proposition 4.6 together imply that
each agent i will be in Gt for at least (1

2 − ε)T val-
ues of t, with probability at least 1− e−Tε2/32n. The
union bound then implies that this occurs for every
agent with probability at least 1− ne−Tε2/32n. Con-
ditioning on the occurrance of this event, Lemma 4.7
implies

SWMsCA(D) = 1
T

∑
t

SWMsCA(dt)

≥ 1
4(s+ 1)T

∑
t

∑
i∈Gt
ti(Ai)

≥ 1
4(s+ 1)T

∑
i

T

(
1
2
− ε
)
ti(Ai)

≥
(

1− 2ε
8(s+ 1)

)
SWopt(t).

as required.

If we take ε to be a small constant and assume
T = Ω(n1+δ) for some δ > 0, we conclude that
SWMsCA(D) > 1

O(s)SWopt(t) with high probability.
Thus MsCA implements an O(s) approximation to
the s-CA problem for best-response bidders, on av-
erage, when the number of rounds is superlinear in
n.

4.2 A Mechanism for General CAs
Consider the following algorithm for the general CA

problem: try greedily assigning sets, of size at most√
m, by value; return either the resulting solution or

the allocation that gives all items to a single agent,
whichever generates more welfare. This algorithm is
an O(

√
m) approximation [26]. We will construct a

mechanism MCA based on this algorithm; it is de-
scribed in Figure 3. MCA essentially implements two
copies of MsCA: one for sets of size at most

√
m

(which we will call M√mCA), and one for allocat-
ing all objects to a single bidder. MCA then takes
the maximum of the two solutions. We add one ad-
ditional modification: with vanishingly small prob-
ability γ, MCA ignores bids for M and behaves as
M√mCA. The purpose of this modification is to en-
courage agents to bid on small sets, even when the

MechanismMCA:
Input: Declaration profile d = d1, . . . , dn.

1. d′ ← SIMPLIFY(d), say di′ = (Si, vi)
2. With probability γ:
3. For all i with Si =M , di′ ← ∅.
4. Let (T1, . . . , Tn)←M√mCA(d′).
5. If ∃i : Si =M :
6. Let j ← arg maxj{d′j(M) : Sj =M}.
7. If d′j(Sj) >

∑
k �=j:Sk=M d

′
k(Sk) and

d′j(Sj) >
∑
i d
′
i(Ti):

8. Set Tj ←M , Ti ← ∅ for all i �= j
9. Allocate T1, . . . , Tn, charge critical prices.

Figure 3: MechanismMCA, a best-response implementa-
tion of a greedy algorithm for the CA problem. Parame-
ter γ > 0 is an arbitrarily small positive constant. Note
M√

mCA isMsCA from Figure 2 with s =
√
m.

presence of a high-valued bid for a large set would
seem to indicate that bidding on small sets is fruit-
less.

The analysis of the average social welfare obtained
byMCA closely follows the analysis for MsCA. Our
high-level approach is to apply this analysis twice:
once for allocations of sets of size at most

√
m, and

once for allocations of all objects to a single bidder.
The primary complication is that the bidding choice of
an agent may be influenced by the mechanism’s choice
of whether or not to allocate M to a single bidder;
this can be handled by a careful analysis of utility-
maximizing declarations. The details are deferred to
the full version of the paper. We obtain the following
result.

Theorem 4.9. Choose ε > 0 and suppose D =
d1, . . . , dT is an instance of best-response dynamics
with random player order, where agents play undom-
inated strategies, and T > ε−1n. Then

SWMCA(D) ≥
(

1− 2ε
O(
√
m)

)
SWopt(t)

with probability at least 1− 2ne−Tε2/32n.

If we take ε to be a small constant and assume
T = Ω(n1+δ) for some δ > 0, we conclude that
SWMCA(D) > 1

O(
√
m)SWopt(t) with high probability.

ThusMCA implements an O(
√
m) approximation to

the general CA problem for best-response bidders, on
average, when the number of rounds is superlinear in
n.
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4.3 Removing Additional Assumptions
Recall that we made two additional assumptions

in our model of best-response dynamics: that each
bidder makes the empty declaration ∅ in the initial
state, and that if a bidder is chosen for update, but
cannot improve his utility, he will choose to maintain
his previous strategy. We used these assumptions to
argue that agents make only separated declarations
when participating in mechanismsMsCA andMCA.

These assumptions can be removed as follows. We
modify mechanisms MsCA and MCA so that, with
vanishingly small probability, an alternative alloca-
tion rule is used8. This alternative rule chooses an
agent at random and assigns him all objects (or a
randomly chosen maximal feasible set of objects) at
no cost as long as the input declaration is separated
for that agent. Under this modified mechanism, any
separated declaration by agent i results in positive
expected utility. Since any non-separated declaration
results in a utility of 0, it must be that the utility-
maximizing declaration by any agent must be sepa-
rated.

It follows that after each bidder is chosen at least
once for update, and every step thereafter, the in-
put declaration will be separated. Thus, with high
probability, every declaration after O(n log n) steps
will be separated. Lemma 4.4 will therefore hold af-
ter O(n log n) steps of best-response dynamics, with
high probability; the remainder of the analysis then
proceeds as before.

5 Conclusions and Future Work
We considered the problem of designing mech-

anisms for use with regret-minimizing and best-
response bidders in repeated combinatorial auctions.
We presented a general black-box construction for
the regret-minimization model, which implements
any monotone loser-independent approximation algo-
rithm. For the best-response model, we constructed
an O(

√
m)-approximate mechanism for the combina-

torial auction problem.
One direction for future research is to extend our

results to implement additional algorithms. Our best-
response mechanisms made specific use of the struc-
ture of greedy CA algorithms, but it seems likely that
our approach can be generalized. It would also be
worthwhile to explore efficient algorithms for minimiz-
ing regret and determining best-responses when agent

8As discussed in Section 1.1, this perturbation can be viewed
as a trembling-hand variation of the best-response solution con-
cept, rather than an introduction of randomness into the allo-
cation algorithms.

types are exponential (e.g. general combinatorial auc-
tions), possibly tailored to particular problem settings
and algorithms. Another question of note is whether
Conjecture 4.2 is true, and the mechanism we pro-
posed for regret-minimizing bidders also yields good
performance for best-response bidders. More gener-
ally, can our techniques be modified to apply to algo-
rithms that are not loser-independent? A broader re-
search topic is to explore other models for reasonable
bidder behaviour, which may admit different mecha-
nism implementations.
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