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Abstract: Many natural games can have a dramatic difference between the quality of their best and worst
Nash equilibria, even in pure strategies. Yet, nearly all work to date on dynamics shows only convergence to
some equilibrium, especially within a polynomial number of steps. In this work we study how agents with some
knowledge of the game might be able to quickly (within a polynomial number of steps) find their way to states of
quality close to the best equilibrium. We consider two natural learning models in which players choose between
greedy behavior and following a proposed good but untrusted strategy and analyze two important classes of
games in this context, fair cost-sharing and consensus games. Both games have extremely high Price of Anarchy
and yet we show that behavior in these models can efficiently reach low-cost states.
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1 Introduction
There has been substantial work in the machine

learning, game theory, and (more recently) algo-
rithmic game theory communities on understanding
the overall behavior of multi-agent systems in which
agents follow natural learning dynamics such as (ran-
domized) best/better response and no-regret learn-
ing. For example, it is well known that in potential
games, best-response dynamics, in which players take
turns each making a best-response move to the cur-
rent state of all the others, is guaranteed to converge
to a pure-strategy Nash equilibrium [24, 27]. Signifi-
cant effort has been spent recently on analyzing vari-
ous properties of these dynamics and their variations,
in particular on their convergence time [1, 26]. No
regret dynamics have also been long studied. For ex-
ample, a well known general result that applies to
any finite game is that if players each follow a “no-
internal-regret” strategy, then the empirical distribu-
tion of play is guaranteed to approach the set of cor-
related equilibria of the game [17–19].

There has also been a lot of attention recently on
fast convergence of both best response and regret min-
imization dynamics to states with cost comparable
to the Price of Anarchy of the game [4, 15, 26, 28],
whether or not that state is an equilibrium. This line
of work is justified by the realization that in many
cases the equilibrium nature of the system itself is less
important, and what we care more about is having the

dynamics reach a low-cost state; this is a position we
adopt as well.

However, while the above results are quite general,
the behavior or equilibrium reached by the given dy-
namics could be as bad as the worst equilibrium in the
game (the worst pure-strategy Nash equilibrium in
the case of best-response dynamics in potential games,
and the worst correlated equilibrium for no-regret al-
gorithms in general games). Even for specific efficient
algorithms and even for natural potential games, in
general no bounds better than the pure-strategy price
of anarchy are known. On the other hand, many im-
portant potential games, including fair cost-sharing
and consensus games, can have very high-cost Nash
equilibria even though they also always have low-cost
equilibria as well; that is, their Price of Anarchy is
extremely high and yet their Price of Stability is low
(we discuss these games more in Section 1.1). Thus, a
guarantee comparable with the cost of the worst Nash
equilibrium can be quite unsatisfactory.

Unfortunately, in general there have been very few
results showing natural dynamics that lead to low
cost equilibria or behavior in games of this type, es-
pecially within a polynomial number of steps. For
potential games, it is known that noisy best-response
in which players act in a “simulated-annealing” style
manner, also known as log-linear learning, does have
the property that the states of highest probability
in the limit are those minimizing the global poten-
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tial [8, 9, 23]. In fact, as temperature approaches 0,
these are the only stochastically-stable states. How-
ever, as we show in Appendix A.2, reaching such
states with non-negligible probability mass may easily
require exponential time. For polynomial-time pro-
cesses, Charikar et al. [11] show natural dynamics
rapidly reaching low-cost behavior in a special case
of undirected fair cost-sharing games; however, these
results require specialized initial conditions and also
do not apply to directed graphs.

In this paper we initiate a study of how to aid dy-
namics, beginning from arbitrary initial conditions,
to reach states of cost close to the best Nash equi-
librium. We propose a novel angle on this problem
by considering whether providing more information
to simple learning algorithms about the game being
played can allow natural dynamics to reach such high
quality states. At a high level, there are two barriers
to simple dynamics performing well. One is compu-
tational: for directed cost-sharing games for instance,
we do not even know of efficient centralized proce-
dures for finding low-cost states in general. As an
optimization problem this is the Directed Steiner For-
est problem and the best approximation factor known
is min(n1/2+ε, N4/5+ε,m2/3N ε) where n is the num-
ber of players, N is the number of vertices and m is
the number of edges in the graph [12, 16]. The other
barrier is incentive-based: even if a low-cost solution
were known, there would still be the issue of whether
players would individually want to play it, especially
without knowing what other players will choose to
do. For example, low-cost solutions might be known
because people analyzing the specific instance being
played might discover and publish low cost global be-
haviors. In this case, individual players might then
occasionally test out their parts of these behaviors,
using them as extra inputs to their own learning al-
gorithm or adaptive dynamics to see if they do in fact
provide benefit to themselves. The question then is
can this process allow low cost states to be reached
and in what kinds of games?

Motivated by this question, in this paper we develop
techniques for understanding and influencing the be-
havior of natural dynamics in games with multiple
equilibria, some of which may be of much higher so-
cial quality than others. In particular we consider a
model in which a low cost global behavior is proposed,
but individual players do not necessarily trust it (it
may not be an equilibrium, and even if it is they do
not know if others will follow it). Instead, players use
some form of experts learning algorithm where one
expert says to play the best response to the current
state and another says to follow the proposed strategy.

Our model imposes only very mild conditions on the
learning algorithm each player uses: different players
may use completely different algorithms for deciding
among or updating probabilities on their two high-
level choices. Assume that the players move in a ran-
dom order. Will this produce a low-cost solution (even
if it doesn’t converge to anything)? We consider two
variations of this model: a learn-then-decide model
where players initially follow an “exploration” phase
where they put roughly equal probability on each ex-
pert, followed by a “commitment” phase where based
on their experience they choose one to use from then
on, and a smoothly adaptive model where they slowly
change their probabilities over time. Within each we
analyze several important classes of games. In par-
ticular, our main results are that for both fair cost-
sharing and consensus games, these processes lead to
good quality behavior.

Our study is motivated by several lines of work.
One is the above-mentioned work on noisy best-
response dynamics which reach high-quality states
but only after exponentially many steps. Another is
work on the value of altruism [29] which considers how
certain players acting altruistically can help the sys-
tem reach a better state. The last is the work in [5]
which considers a central authority who can temporar-
ily control a random subset of the players in order to
get the system into a good state. That model is re-
lated to the model we consider here, but is much more
rigid because it posits two classes of players (one that
follows the given instructions and one that doesn’t)
and does not allow players to adaptively decide for
themselves. (See Section 1.2 for more discussion).

1.1 Our Results
As described above we introduce and analyze two

models for guiding dynamics to good equilibria, and
within these models we prove strong positive results
for two classes of games, fair cost sharing and consen-
sus games. In n-player fair cost sharing games, play-
ers choose routes in a network and split the cost of
edges they take with others using the same edge; see
Section 3 for a formal definition. These games can
model scenarios such as whether to drive one’s own
car to work or to share public transportation with
others (see Figure 1 for a simple example) and can
have equilibria as much as a factor of n worse than
optimal even though they are always guaranteed to
have low-cost equilibria that are only O(logn) worse
than optimal as well. In consensus games, players are
nodes in a network who each need to choose a color,
and they pay a cost for each neighbor of different color
than their own (see Section 4). These again can have
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Figure 1 A directed cost-sharing game, that models
a setting where each player can choose either to drive
its own car to work at a cost of 1, or share public
transportation with others, splitting an overall cost
of k. For any 1 < k < n, if players arrive one a time
and each greedily chooses a path minimizing its cost,
then the cost of the equilibrium obtained is n, whereas
OPT has cost only k.

a wide gap between worst and best Nash equilibrium
(in this case, cost Ω(n2) for the worst versus 0 for the
best).

Our main results for these games are the following.
For fair cost-sharing, we show that in the learn-then-
decide model, so long as the exploration phase has
sufficient (polynomial) length and the proposed strat-
egy is near-optimal, the expected cost of the system
reached is O(log(n) log(nm)OPT). Thus, this is only
slightly larger than that given by the price of stabil-
ity of the game. For the smoothly-adaptive model, if
there are many players of each type (i.e., associated
to each (si, ti) pair) we can do even better, with high
probability achieving cost O(log(nm)OPT), or even
O(OPT) if the number of players of each type is high
enough. Note that with many players of each type the
price of anarchy remains Ω(n) though the price of sta-
bility becomes O(1). For consensus games, we show
that so long as players place probability β > 1/2 on
the proposed optimal strategy, then with high prob-
ability play will reach the exact optimal behavior
within a polynomial number of steps. Moreover for
certain natural graphs such as the line and the grid,
any β > 0 is sufficient. Note that our results are ac-
tually stronger than those achievable in the more cen-
tralized model of [5], where one needs to make certain
minimal degree assumptions on the graph as well.

In both our models it is an easy observation that
for any game, if the proposed solution is a good equi-
librium, then in the limit the system will eventually
reach the equilibrium and stay there indefinitely. Our
interest, however, is in polynomial-time behavior.

1.2 Related Work
Dynamics and Convergence to Equilibria: It
is well known that in potential games, best-response
dynamics, in which players take turns each making a
best-response move to the current state of all the oth-
ers, is guaranteed to converge to a pure-strategy Nash
equilibrium [24, 27]. Significant effort has been spent
recently on the convergence time of these dynam-
ics [1, 26], with both examples of games in which such
dynamics can take exponential time to converge, and
results on fast convergence to states with cost compa-
rable to the Price of Anarchy of the game [4, 15].

Another well known general result that applies to
any finite game is that if players each follow a “no-
internal-regret” strategy, then the empirical distribu-
tion of play is guaranteed to approach the set of cor-
related equilibria of the game [17–19]. In particular,
for good no-regret algorithms, the empirical distribu-
tion will be an ε-correlated equilibrium after O(1/ε2)
rounds of play [7]. A recent result of [20] analyzes a
version of the weighted-majority algorithm in conges-
tion games, showing that behavior converges to the
set of weakly-stable equilibria. This implies perfor-
mance better than the worst correlated equilibrium,
but even in this case the guarantee is no better than
the worst pure-strategy Nash equilibrium.

Noisy best-response has been shown in the limit
to reach states of minimum global potential [8, 9, 23],
and thus provide strong positive results in games with
a small gap between potential and cost. However,
this convergence may take exponential time, even for
fair cost-sharing games. In particular we show in Ap-
pendix A.2 that if one makes many copies of the edges
of cost 1 in the example of Figure 1, reaching a state
with sufficiently many players on the shared path to
induce others to follow along would take time expo-
nential in k even if the algorithm can arbitrarily vary
its temperature parameter. For details see Appendix
A.2.

An alternative line of work assumes that the system
starts empty and players join one at a time. Charikar
et al. [11] analyze fair cost sharing in this setting on
an undirected graph where all players have a common
sink. Their model has two phases: in the first, play-
ers enter one at a time and use a greedy algorithm to
connect to the current tree, and in the second phase
the players undergo best-response dynamics. They
show that in this case a good equilibrium (one that is
within only a polylog(n) factor of optimal) is reached.
We discuss this result further in Appendix A. We
remark here that for directed graphs, it is easy to
construct simple examples where this process reaches
an equilibrium that is Ω(n) from optimal (see Fig-

202



CIRCUMVENTING THE PRICE OF ANARCHY: LEADING DYNAMICS TO GOOD BEHAVIOR

ure 1). For scheduling on unrelated machines with
makespan cost function, the natural greedy algorithm
to assign incoming jobs is anO(m) approximation and
a more sophisticated online algorithm guarantees an
O(logm) approximation [3]. This implies that in a
two phase model, where in the first phase the jobs
join one at a time and use the greedy algorithm (or
that of [3]), and in the second phase they perform a
best response dynamics, achieves cost within a factor
O(m) (or O(logm)) of optimal. This is in contrast to
the unbounded Price of Anarchy in general.
Taxation: There has also been work on using taxes
to improve the quality of behavior [13, 14]. Here the
aim is via taxes to adjust the utilities of each player,
such that the only Nash equilibria in the new game
correspond to optimal or near-optimal behavior in the
original game. In contrast, our focus is to identify how
dynamics can be made to reach a good result without
changing the game or adjusting utilities, but rather
by injecting more information into the system.
Public service advertising: Finally, the public ser-
vice advertising model of [5] also uses the idea of a
proposed strategy in order to move players into a
good equilibrium. In the model of [5], the players
only once select (randomly) between following the
proposed strategy or not. Players then stick with
their decision while those that decided not to follow
the proposed strategy settle on some equilibrium for
themselves (given the other players actions are fixed).
Then, in the last phase all players perform a best re-
sponse dynamics to converge to a final equilibrium
(the convergence is guaranteed since the discussion
is limited to potential games). In contrast, in our
models the players continuously randomly re-select
between following the proposed strategy or perform-
ing a best response. This continuous randomization
makes the analysis of our dynamics technically more
challenging. Conceptually, the benefit of our model
is that the players are “symmetric” and can continu-
ously switch between the two alternatives, which bet-
ter models selfish behavior. This continuous process is
what enables the players to both explore and exploit
the two alternative actions.

2 A Formal Framework
2.1 Notation and Definitions

We start by providing general notations and defini-
tions. A game is denoted by a tuple

G = 〈N, (Si), (costi)〉
where N is a set of n players, Si is the finite action
space of player i ∈ N , and costi is the cost func-

tion of player i. The joint action space of the play-
ers is S = S1 × . . . × Sn. For a joint action s ∈ S
we denote by s−i the actions of players j �= i, i.e.,
s−i = (s1, ..., si−1, si−1, ..., sn). The cost function of
player i maps a joint action s ∈ S to a real non-
negative number, i.e., costi : S → ℝ

+. Every game
has associated a social cost function cost : S → ℝ

that maps a joint action to a real value. In the cases
discussed in this paper the social cost is simply the
sum of players’ costs, i.e.,

cost(s) =
n∑

i=1
costi(s).

The optimal social cost is

OPT(G) = min
s∈S

cost(s).

We sometimes overload notation and use OPT for a
joint action s that achieves cost OPT(G).

Given a joint action s, the Best Response (BR)
of player i is the set of actions BRi(s) that mini-
mizes its cost, given the other players actions s−i,
i.e., BRi(s−i) = arg mina∈Si costi(a, s−i).

A joint action s ∈ S is a pure Nash Equilibrium
(NE) if no player i ∈ N can benefit from unilaterally
deviating to another action, namely, every player is
playing a best response action in s, i.e., si ∈ BRi(s−i)
for every i ∈ N . A best response dynamics is a process
in which at each time step, some player which is not
playing a best response switches its action to a best
response action, given the current joint action. In this
paper we focus on potential games, which have the
property that any best response dynamics converges
to a pure Nash equilibrium [24].

Let N (G) be the set of Nash equilibria of the game
G. The Price of Anarchy (PoA) is defined as the ratio
between the maximum cost of a Nash equilibrium and
the social optimum, i.e.,

max
s∈N (G)

cost(s)/OPT(G).

The Price of Stability (PoS) is the ratio between the
minimum cost of a Nash equilibrium and the social
optimum, i.e.,

min
s∈N (G)

cost(s)/OPT(G).

For a class of games, the PoA and PoS are the maxi-
mum over all games in the class

2.2 The Model
We now describe the formal model that we con-

sider. Initially, players begin in some arbitrary state,
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which could be a high-cost equilibrium or even a state
that is not an equilibrium at all. Next an entity, per-
haps the designer of the system or a player who has
studied the system well, proposes some better global
behavior B. B may or may not be an equilibrium be-
havior, our only assumption is that it have low overall
cost. Now, players move one at a time in a random
order. Each player, when it is their turn to move,
chooses among two options. The first is to simply be-
have greedily and to make a best-response move to the
current configuration. The second option is to follow
their part of the given behavior B. These two high-
level strategies (best-response or follow B) are viewed
as two “experts” and the player then runs some learn-
ing algorithm aiming to learn which of these is most
suitable for himself. Note that best-response is an ab-
stract option — the specific action it corresponds to
may change over time.

Because moves occur in an asynchronous manner,
there are multiple reasonable ways to model the feed-
back each player gives to its learning algorithm: for
instance, does it consider the average cost since the
player’s previous move or just the cost when it is the
player’s turn to go, or something in between? In ad-
dition, does it get to observe the cost of the action
it did not take (the full information model) or only
the action it chose (the bandit model)? To abstract
away these issues, and even allow different players to
address them differently, we consider here two models
that make only very mild assumptions on the kind of
learning and adaptation made by players.
Learn then Decide model: In this model, players

follow an “exploration” phase where each time it
is their turn to move, they flip a coin to decide
whether to follow the proposed behavior B or to
do a best-response move to the current configura-
tion. We assume that the coin gives probability
at least β to B, for some constant β > 0. Finally,
after some common time T ∗, all players switch to
an “exploitation” phase where they each commit
in an arbitrary way based on their past experi-
ence to follow B or perform best response from
then on. (The time T ∗ is selected in advance.)

The above model assumes some degree of coordina-
tion: a fixed time T ∗ after which all players make
their decisions. One could imagine instead each player
i having its own time T ∗i at which it commits to one
of the experts, perhaps with the time itself depending
on the player’s experience. In the Smoothly-Adaptive
model below we even more generally allow players to
smoothly adjust their probabilities over time as they
like, subject only to a constraint on the amount by
which probabilities may change between time steps.

Smoothly Adaptive model: In this model, there
are no separate exploration and exploitation
phases. Instead, each player i maintains and ad-
justs a value pi over time. When player i is chosen
to move, it flips a coin of bias pi to select between
the proposed behavior or a best-response move,
choosing B with probability pi. We allow the
players to use arbitrary adaptive learning algo-
rithms to adjust these probabilities with the sole
requirement that learning proceed slowly. Specif-
ically, using pti to denote the value of pi at time
t, we require that

|pti − pt+1
i | ≤ ∆

for a sufficiently (polynomially) small quantity
∆, and furthermore that for all i, the initial
probability p0i ≥ p0 for some overall constant
0 < p0 < 1. Note that the algorithm may up-
date pi even in time steps at which it does not
move. The learning algorithm may use any kind
of feedback or weight-updating strategy it wants
to (e.g., gradient descent [30, 31], multiplicative
updating [10, 21, 22]) subject to this bounded
step-size requirement.
We say that the probabilities are (T, β)-good if
for any time t ≤ T we have for all i, pti > β.
(Note that if ∆ < (p0 − β)/T then clearly the
probabilities are (T, β)-good.)

We point out that while one might at first think that
any natural adaptive algorithm would learn to favor
best-response (always decreasing pi), this depends on
the kind of feedback it uses. For instance, if the al-
gorithm considers only its cost immediately after it
moves, then indeed by definition best-response will
appear better. However, if it considers its cost imme-
diately before it moves (comparing that to what its
cost would have been had it chosen the other alter-
native) or even the sum total cost since its previous
move, then B might appear better. Our model allows
users to update in any way they wish, so long as the
updates are sufficiently gradual.

Finally, as mentioned in the introduction, in both
our models it is an easy observation that for any game,
if the proposed solution is a good equilibrium, then
in the limit (as T ∗ → ∞ in the Learn-then-Decide
model or as ∆→ 0 in the Smoothly Adaptive model)
the system will eventually reach the equilibrium and
stay there indefinitely. Our interest, however, is in
polynomial-time behavior.

3 Fair Cost Sharing
The first class of games we study in this paper, be-

cause of its rich structure and wide gap between price
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of anarchy and price of stability, is that of fair cost
sharing games. These games are defined as follows.
We are given a graph G = (V,E), which can be di-
rected or undirected, where each edge e ∈ E has a
nonnegative cost ce ≥ 0. There is a set N = {1, ..., n}
of n players, where player i is associated with a source
si and a sink ti. The strategy set of player i is the set
Si of si − ti paths. In an outcome of the game, each
player i chooses a single path Pi ∈ Si. Given a vector
of players’ strategies s = (P1, . . . , Pn), let xe be the
number of agents whose strategy contains edge e. In
the fair cost sharing game the cost to agent i is

costi(s) =
∑

e∈Pi

ce
xe

and the goal of each agent is to connect its termi-
nals with minimum total cost. The social cost of an
outcome s = (P1, ..., Pn) is defined to be

cost(P1, ..., Pn) =
∑

e∈∪iPi
ce.

It is well known that fair cost sharing games are po-
tential games [2, 24] and the price of anarchy in these
games is Θ(n) while the price of stability is H(n) [2],
whereH(n) =

∑n
i=1 1/i = Θ(logn). In particular, the

potential function for these games is

Φ(s) =
∑

e∈E

xe∑

x=1
ce/x,

which satisfies the following inequality:

Fact 1 In fair cost sharing, for any s ∈ S we have:
cost(s) ≤ Φ(s) ≤ H(n) · cost(s).

For ease of notation, we assume in this section that
the proposed strategy B is the socially optimal be-
havior OPT, so we can identify POPTi = PBi as the
behavior proposed by B to player i. If B is different
from OPT, then we simply lose the corresponding
approximation factor.

Overview of the Results and Analysis: Our
main results for fair cost sharing are the following.
If we have many players of each type (the type of a
player is determined by its source si and destination
ti) then in both the learn-then-decide and smoothly
adaptive models we can show that with high proba-
bility, behavior will reach a state of cost within a log-
arithmic factor of OPT within a polynomial number
of steps. Moreover, for the learn-then-decide model,
even if we do not have many players of each type we
can show that the expected cost at the end of the pro-
cess will be low.

The high level idea of the analysis is that we first
prove that so long as each player randomizes with
probability near to 50/50, with high probability the
overall cost of the system will drop to within a log-
arithmic factor of OPT in a polynomial number of
steps; moreover, at that point both the best response
and the proposed actions are pretty good strategies
from the individual players point of view. To finish
the analysis in the “Learn then Decide” model, we
show that in the remaining steps of the exploration
phase the expected cost does not increase by much; us-
ing properties of the potential function, we then show
that in the final “decision” round T ∗, the overall po-
tential cannot increase substantially either, which in
turn implies a bound on the increase in overall cost.

For the adaptive model, one key difficulty in the
analysis is to show that if the system reaches a state
where the social cost is low and both abstract actions
are pretty good for most players, the cost never goes
high again. We are able to show that this indeed is the
case as long as there are many players of each type,
no matter how the players adjust their probabilities
pti or make their choice between best-response and
following the proposed behavior.

3.1 The Main Arguments
We begin with the following key lemma that is

useful in the analysis of both learn-then-decide and
smoothly adaptive models.

Lemma 2 Consider a fair cost sharing game. There
exists a T = poly(n), such that if the probabili-
ties are (T, β)-good for constant β > 0, then with
high probability the cost at time T will be at most
O(OPT log(mn)).

Moreover, if we have at least c log(nm) players
of each (si, ti) pair for sufficiently large constant c,
then with high probability the cost at time T will be
O(OPT).

Proof: We begin with the general case. Let nopte de-
note the number of players who use edge e in OPT.
We partition edges into two classes. We say an edge
is a “high traffic” edge if nopte > c log(nm) where c is
a sufficiently large constant (c = 32/β suffices for the
argument below). We say it is a “low traffic” edge
otherwise.

Define T0 = 2n logn. With high probability, by
time T0 each player has had a chance to move at least
once. We assume in the following that this indeed is
the case. Note that as a crude bound, at this point
the cost of the system is at most n2 ·OPT (each player
will move to a path of cost-share at most OPT and
therefore of actual cost at most n ·OPT). Next, by
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Chernoff bounds and the union bound, our choice of
c implies that with high probability each high-traffic
edge e has at least βnopte /2 players on it at all time
steps T ∈ [T0, T0 +n3]; in particular, Chernoff bounds
imply that each of the at most mn3 events has prob-
ability at least 1 − e−βnopte /8 ≥ 1 − 1/(mn)4. In the
remaining analysis, we assume this indeed is the case
as well.

Let OPTi denote the cost of player i in OPT, so
that OPT =

∑
iOPTi. Our assumption above im-

plies that for any time step T under consideration, if
player i follows the proposed strategy POPTi , its cost
will be at most c log(nm)OPTi. In particular, its
cost on the low-traffic edges in POPTi can be at most
a factor c log(nm) larger than its cost on those edges
under OPT, and its cost on high-traffic edges is at
most a 2/β factor larger than its cost on those edges
under OPT.

We now argue as follows. Let costT denote the
cost of the system at time T . If

costT ≥ 2c log(nm)OPT,

then the expected cost of a random player is at least

2c log(nm)OPT/n.

On the other hand, if player i is chosen to move at
time T , from the above analysis its cost after the
move (whether it chooses B or best response) will be
at most c log(nm)OPTi. The expected value of this
quantity over players i chosen at random is at most
c log(nm)OPT/n. Therefore, if

costT ≥ 2c log(nm)OPT,

the expected drop in potential at time T is at least

c log(nm)OPT/n.

Finally, since the cost at time T0 was at most n2 ·
OPT, which implies by Fact 1 the value of the po-
tential was at most n2(1 + log(n))OPT, with high
probability this cannot continue for more than O(n3)
steps. Formally, we can apply Hoeffding-Azuma
bounds for supermartingales as follows: let us define
Q = c log(nm)OPT and

∆T = max(ΦT − ΦT−1 +Q/n,−2Q)

and consider running this process stopping when
costT < 2Q. Let

XT = Φ0 + ∆1 + . . .+ ∆T .

Then throughout the process we have

E[XT |X1, . . . , XT−1] ≤ XT−1

and
|XT −XT−1| ≤ 2Q,

where the first inequality holds because our analysis
showing an expected decrease in potential of at least
Q/n is true even if we cap all decreases to a maximum
of 2Q as in the definition of ∆T . So, by Hoeffding-
Azuma (see Theorem 10 in Appendix B), after n3

steps in the non-stopped process with high probability
we would have

XT −X0 ≤ 1
2
n2Q,

which is not possible since by definition ofXT we have

ΦT ≤ Φ0 + (XT −X0)− TQ/n
which would be negative. Therefore, with high proba-
bility stopping must occur before this time as desired.

Finally, if we have at least c log(mn) players of each
type, then there are no low-traffic edges and so we do
not need to lose the c log(mn) factor in the argument.

We now present a second lemma which will be used
to analyze the “Learn then Decide” model.

Lemma 3 Consider a fair cost sharing game in the
Learn-then-Decide model. If the cost of the system at
time T1 is O(OPT log(mn)), and T = T1 +poly(n) <
T ∗, then the expected value of the potential at time T
is O(OPT log(mn) log(n)).

Proof: First, as argued in the proof of Lemma 2, with
high probability for any player i and any time t ∈
[T1, T ], the cost for player i to follow the proposed
strategy at time t is at most c log(nm)OPTi for some
constant c. Let us assume below that this is indeed
the case.

Next, the above bound implies that if the cost at
time t ∈ [T1, T ] is costt, then the expected decrease in
potential caused by a random player moving (whether
following the proposed strategy or performing best
response) is at least

(costt − c log(nm)OPT)/n;

in particular, costt/n is the expected cost of a ran-
dom player before its move, and c log(nm)OPT)/n
is an upper bound on the expected cost of a random
player after its move. Note that this is an expecta-
tion over randomness in the choice of player at time
t, conditioned on the value of costt. In particular,
since this holds true for any value of costt, we can
take expectation over the entire process from time T1
up to t, and we have that if

E[costt] ≥ c log(nm)OPT
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then
E[Φt+1] ≤ E[Φt],

where Φt is the value of the potential at time step t.
Finally, since Φt ≤ log(n)costt, this implies that if

E[Φt] ≥ c log(nm) log(n)OPT

then
E[Φt+1] ≤ E[Φt].

Since for any value of costt we always have

E[Φt+1] ≤ E[Φt] + c log(nm)OPT/n,

this in turn implies by induction on t that

E[Φt] ≤
c log(nm) log(n)OPT + c log(nm)OPT/n

for all t ∈ [T1, T ], as desired.
Our main result in the “Learn then Decide” model

is the following:

Theorem 4 For fair cost sharing games in the Learn
then Decide model, a polynomial number of explo-
ration steps T ∗ is sufficient so that the expected cost
at any time T ′ ≥ T ∗ is O(log(n) log(nm)OPT).

Proof: From Lemma 2, there exists T = poly(n)
such that with high probability the cost of the system
will be at most O(OPT log(mn)) at some time T1 ∈
[T ∗−T, T ∗]. From Lemma 3, this implies the expected
value of the potential at time T ∗ right before the fi-
nal exploitation phase is O(OPT log(mn) log(n)). Fi-
nally, we consider the decisions made at time T ∗.
When a player chooses to make a best-response move,
this can only decrease potential. When a player
chooses B, this could increase potential. However,
for any edge e in the proposed solution B, the total
increase in potential caused by edge e over all players
who have e in their proposed solution is at most

ce ·H(nopte ) = O(ce logn).

This is because whenever a new player makes a de-
cision to commit to following the proposed strategy
and using edge e, all previous players who made that
commitment after time T and whose proposed strat-
egy uses edge e are still there. Thus, the total increase
in potential after time T ∗ is at most O(OPT logn).

Since after all players have committed, potential
can only decrease, this implies that the expected
value of the potential at any time T ′ ≥ T ∗ is
O(OPT log(mn) log(n)). Therefore, the expected
cost at time T ′ is at most this much as well, as de-
sired.

We now use Lemma 2 to analyze fair cost sharing
games in the adaptive learning model when the num-
ber of players ni of each type (i.e., associated to each
(si, ti) pair) is large.

Theorem 5 Consider a fair cost sharing game in the
adaptive learning model satisfying ni = Ω(m) for all
i. There exists a T1 = poly(n) such that if the proba-
bilities are (T1, β)-good for constant β > 0, then with
high probability, for all T ≥ T1 the cost at time T is
O(log(nm)OPT).

Moreover, there exists constant c such that if ni ≥
max[m, c log (mn)] then with high probability, for all
T ≥ T1 the cost at time T is O(OPT).

Proof: First, by Lemma 2 we have that with high
probability at some time T0 ≤ T1, the cost of the
system reaches O(OPT log(mn)). The key to the ar-
gument now is to prove that once the cost becomes
low, it will never become high again. To do this we
use the fact that ni is large for all i. Our argument
which follows the proof of Theorem 4.3 in [6] is as
follows.

Let U be the set of all edges in use at time T0 along
with all edges used in B. In general, we will insert
an edge into U if it is ever used from then on in the
process, and we never remove any edge from U , even
if it later becomes unused. Let c∗ be the total cost of
all edges in U . So, c∗ is an upper bound on the cost
of the current state and the only way c∗ can increase
is by some player choosing a best response path that
includes some edge not in U . Now, notice that any
time a best-response path for some (si, ti) player uses
such an edge, the total cost of all edges inserted into
U is at most c∗/ni, because the current player can
always choose to take the path used by the least-cost
player of his type and those ni players are currently
sharing a total cost of at most c∗. Thus, any time
new edges are added into U , c∗ increases by at most a
multiplicative (1 + 1/ni) factor. We can insert edges
into U at most m times, so the final cost is at most

cost(T0)(1 + 1/ni∗)m,

where ni∗ = mini ni. This implies that as long as
ni∗ = Ω(m) we have cost(T ) = O(cost(T0)) for
all T ≥ T0. Thus, overall the total cost remains
O(OPT log(mn)).

If ni ≥ max[m, c log(mn)], we simply use the im-
proved guarantee provided by Lemma 2 to say that
with high probability the cost of the system reaches
O(OPT) within T0 ≤ T1 time steps, and then apply
the charging argument as above in order to get the
desired result.
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Variations: One could imagine a variation on our
framework where rather than proposing a fixed behav-
ior B, one can propose a more complex strategy such
as “follow B until time step T ∗ and then follow B′” or
“follow B until time step T ∗ and then perform best-
response”. In the latter case, the Smoothly-Adaptive
model with (T ∗, β)-good probabilities becomes essen-
tially a special case of the Learn-then-Decide model
and all results above for the Learn-then-Decide model
go through immediately. On the other hand, this type
of strategy requires a form of global coordination that
one would prefer to avoid.

4 Consensus Games
Another interesting class of games we consider is

that of consensus games. Here, players are vertices
in an n-vertex graph G, and each have two choices
of action, red or blue. Players incur a cost equal to
the number of neighbors they have of different color,
and the overall social cost is the sum of costs of each
player. The potential function for consensus games is
simply half the social cost function, or equivalently
the number of edges having endpoints of different
color. While in these games optimal behavior is triv-
ial to describe (all red or all blue for a total cost of 0)
and is an equilibrium, they also have extremely poor
equilibria as well. For example consider two cliques
of n/2 vertices each, with each node also having αn/2
neighbors in the other clique for some 0 < α < 1. In
this case, there is a Nash equilibrium with one clique
red and one clique blue, for an overall cost of Ω(n2).1
This is substantially worse than optimal (either by
an Ω(n2) or infinite factor, depending on whether one
allows an additive offset or not).

Unlike in the case of fair cost-sharing games, for
consensus games there is no hope of quickly achieving
near-optimal behavior for all β > 0. In particular, for
any β < 1/2 there exists α > 0 in the example above
such that if players choose the proposed strategy B
with probability β, with high probability all nodes
have more neighbors performing best response than
following B. Thus, it is easy to see by induction that
no matter what strategy B is, all best-response players
will remain with their initial color. Moreover, this
remains true for exponentially in n many steps.2 On

1Intuitively one can think of this example as two countries,
one using English units and one using the metric system, nei-
ther wanting to switch.

2Of course, in the limit as the number of time steps T →
∞ eventually we will observe a sequence in which all players
select B, and if B is an equilibrium the system will then remain
there forever. Thus if B is “all blue” the system will in the
limit converge to optimal behavior. However, our interest is in
polynomial time convergence.

the other hand, this argument breaks down for β >
1/2. In fact, we will show that for β > 1/2, for any
graph G, the system will in polynomial time reach
optimal behavior (if B = OPT).

It is interesting to compare this with the central-
ized model of [5] in which a central authority takes
control of a random constant fraction of the players
and aims to use them to guide the selfish behavior
of the others. In that setting, even simple low-degree
graphs can cause a problem. For instance, consider
a graph G consisting of n/4 4-cycles each in the ini-
tial equilibrium configuration red, red, blue, blue. If
the authority controls a random β fraction of players
(for any constant β < 1), with high probability a con-
stant fraction of the 4-cycles contain no players under
the authority’s control and will remain in a high-cost
state. On the other hand, it is easy to see that this
specific example will perform well in both our learn-
then-decide or smoothly-adaptive models. We show
that in fact all graphs G perform well, though this
requires care in the argument due to correlations that
may arise.

We assume that the proposed behavior B is the
optimal behavior “all blue” and prove that with high
probability the configuration will reach this state after
O(n log2 n) steps. We begin with a simple preliminary
lemma.

Lemma 6 If X1, . . . , Xd are {0, 1}-valued random
variables with Pr(Xi = 1) ≥ p, then no matter how
they are correlated,

Pr(MAJORITY(X1, . . . , Xd) = 1) ≥ 2p− 1.

Proof: The expected number of 1’s is at least pd. It
is also at most

d · pMAJ + (d/2) · (1− pMAJ )

where

pMAJ = Pr(MAJORITY(X1, . . . , Xd) = 1)).

Solving, we get pMAJ ≥ 2p− 1.
We now present our main result of this section.

Theorem 7 In both Learn-then-Decide and
Smoothly-Adaptive models, for any constant β > 1/2,
if the proposed behavior B is optimal then with high
probability play will become optimal in O(n log2 n)
steps. For the Smoothly-Adaptive model we assume
behavior is (cn log2 n, β)-good for sufficiently large
constant c.

Proof: In both models the dynamics contain two
random processes: the random order in which players
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move and the random coins flipped by the players to
determine how they want to move. In order to prove
the theorem it will be helpful to separate these two
processes and consider them each in turn.

First, consider and fix a random sequence S of play-
ers to move. Let T1 denote the time by which all play-
ers have moved at least once according to S, and more
generally let Tt+1 denote the time by which all players
have moved at least once since time Tt. Since players
move i.i.d. in a random order, with high probability
Tt+1 ≤ Tt + 3n log(n) for all t = 1, . . . , n. We assume
in the following that this indeed is the case; in fact, we
can allow S to be an arbitrary, adversarially-chosen
sequence subject to this constraint.

Fixing S, we now consider the coin flips of the indi-
vidual players. We will prove by induction that each
player has probability at least qt of being blue at time
Tt (not necessarily independently) for

qt = (1− γ)qt−1 + γ for γ = 2β − 1.

Equivalently, we can write this as

1− qt = (1− qt−1)(1− γ).
Since γ > 0 (because β > 1/2), this in turn implies
that t = O(log n) is sufficient to reach 1− qt ≤ 1/n2,
meaning that with high probability all nodes are blue
as desired.

We prove this bound on qt as follows. Consider the
nodes who move at times Tt−1 + 1, Tt−1 + 2, . . . , Tt
in order. When some node v moves, by induction
each neighbor w of v has probability at least qt of
being blue (though these may not be independent).
By assumption, v chooses B with some probability
β′ ≥ β > 1/2 and chooses best-response with prob-
ability 1 − β′. Therefore, the probability v becomes
blue is at least:

β′ + (1− β′)Pr(majority of nbrs of v are blue)
≥ β′ + (1− β′)(2qt−1 − 1) (by Lemma 6)
= (1− (2β′ − 1))qt−1 + (2β′ − 1)
≥ (1− γ)qt−1 + γ (for γ = 2β − 1)

as desired. Thus, with high probability all nodes are
blue by time Tt for t = O(log n), and by our assump-
tion on S this occurs within O(n log2 n) steps.

The general result above requires β > 1/2, and as
noted earlier there exists graphs G and initial configu-
rations such that the process will fail for any β < 1/2.
On the other hand, for several “nice” graphs such as
the line or grid, any constant β > 0 is sufficient. For
this we assume that best-response will only ask to
switch color if the new color is strictly better than the
current color.

Theorem 8 For the line and d-dimensional grid
graphs (constant d), for any β > 0, if the proposed
action B is optimal then with high probability play
will reach optimal in poly(n) steps. For the case of
the Smoothly-Adaptive model we assume behavior is
(T, β)-good for T a sufficiently large polynomial in n.

Proof: Assume B is “all blue”. On the line, if any
two neighbors become blue, they will remain blue in-
definitely. Similarly in the grid, if any d-dimensional
cube becomes blue, the nodes in the cube will also re-
main blue indefinitely. On the line, any neighbors, in
any two consecutive steps, have probability at least
β2/n2 of becoming blue, and on the d-dimensional
grid, any cube, in any 2d consecutive steps, has prob-
ability at least (β/n)2d of becoming all blue. There-
fore with high probability all nodes become blue in a
polynomial number of steps.

5 Conclusions and Future Directions
In this paper we initiate a study of how to aid dy-

namics, beginning from arbitrary initial conditions,
to reach states of cost close to the best Nash equilib-
rium. We propose a novel angle on this problem by
considering how providing more information to simple
learning algorithms about the game being played can
allow the dynamics to reach such low-cost states. We
show that for fair cost-sharing and consensus games,
proposing a good solution and allowing users to adap-
tively decide for themselves between that solution and
best-response behavior will efficiently lead to near-
optimal configurations, so long as users adapt suffi-
ciently slowly. Both of these games have the property
that all by itself, random best response may easily end
up in a high-cost state: cost Ω(n ·OPT) for fair cost-
sharing and cost Ω(n2) for consensus, whereas with
this additional aid the states reached have cost only
polylog(n)·OPT for cost-sharing and 0 for consensus.

Open questions and future directions
Our results for fair cost sharing games in the adap-

tive learning model hold only for the case when the
number of players ni of each type is large. One nat-
ural open question is whether similar positive results
can be shown for the general case, i.e., when the num-
ber of players ni of each type is arbitrary. It would
also be interesting to broaden the types of learning
algorithms the players can use. In particular, for the
Smoothly Adaptive model, how large a learning rate
∆ (or for the Learn-then-Decide model, how small a
cutoff time T ∗) can one allow and still produce com-
parable positive results on the quality of the final out-
come?
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It would also be interesting to extend this model
to the case of multiple proposed solutions, some of
potentially much higher quality than others, and still
show that these dynamics reach good states. In this
case, one would need to make additional assumptions
on the learning algorithms the players are using. In
particular, if players are trying to decide between var-
ious learning dynamics (best response, regret mini-
mization, noisy best response, etc.), and if they use
an experts learning algorithm to decide between these
actions, can we show that if following the the best of
the dynamics is good for all players and if the experts
learning algorithms have appropriate properties, then
the players will do nearly as well as if they had used
the best dynamics?

Finally, in both of the games we consider players
with the same profile (the same source and destina-
tion in the fair cost sharing case) receive the same
global advice, which can also be easily communicated
as a single message. It would be interesting to also an-
alyze games where players with the same profile might
receive different global advice.

One way to view our model is as follows. Start-
ing from the original game, we create a meta-game in
which each player is playing one of the two abstract
actions, best response and the proposed strategy. We
then show that if the players learn in the new meta-
game, with restrictions only on the learning rate, then
this results in good behavior in the original game.
More generally, it would be interesting to further ex-
plore the idea of designing “meta games” on the top
of the actual games and showing that natural behav-
ior in these meta games induce good behavior in the
original game of interest.
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A Further Discussion of Other Dy-
namics

A.1 Players Entering One at a Time
As mentioned in Section 1.2, one form of natural

dynamics that have been studied in potential games
is where the system starts empty and players join one
at a time. Charikar et al. [11] analyze this setting for
fair cost sharing on an undirected graph where all play-
ers have a common sink. They consider a two-phase
process. In Phase 1, the players arrive one by one and
each connects to the root by greedily choosing a path
minimizing its cost, i.e., each selects a greedy (best
response) path relative to the selection of paths by
the previous players. In Phase 2, players are allowed
to change their paths in order to decrease their costs,
namely, in the second step players play best response

dynamics. Charikar et al. [11] show that interestingly
the sum of the players’ costs at the end of the first
step will be within an O(log2 n) factor of the cost of a
socially optimal solution (which in this case is defined
to be a minimum Steiner tree connecting the players
to the root). This then then implies that the cost of
the Nash equilibrium achieved in the second step, as
well as all states reached along the way, are O(log3 n)
close to OPT.

Note that in the directed case the result above does
not hold, in fact such dynamics can lead to very
poor equilibria. Figure 1 shows an example where
if the players arrive one by one and each connects to
the root by greedily choosing a path minimizing its
cost, then the cost of the equilibrium obtained can
be much worse than the cost of OPT. The optimal
solution which is also a Nash equilibrium in this ex-
ample is (P1, . . . , Pn) where Pi = si → v → t for
each i; however the solution obtained if the players
arrive one at a time and each connects to the root
by greedily choosing a path minimizing its cost is
(P ′1, . . . , P ′n) where P ′i = si → t for each player i.
Clearly, cost(P ′1, . . . , P ′n) = n which is much worse
than cost(OPT) = k. Moreover, if one modifies the
example by making many copies of the edge of cost k,
then even if behavior begins in a random initial config-
uration, with high probability each edge of cost k will
have few players on it and so best-response behavior
will lead to the equilibrium of cost n.

A.2 A Lower Bound for Noisy Best-
Response

In noisy best-response dynamics (also called log-
linear learning [23]), when it is player i’s turn to move,
it probabilistically chooses an action with a proba-
bility that decreases exponentially with the gap be-
tween the cost of that action and the cost of the best-
reponse action. The rate of decrease is controlled by
a temperature term τ , much like in simulated anneal-
ing. In fact, the dynamics can be viewed as a form
of simulated annealing with the global potential as
the objective function. At zero temperature, the dy-
namics is equivalent to standard (non-noisy) best re-
sponse, and at infinite temperature the dynamics is
completely random. While it is known that with ap-
propriate temperature control this process in the limit
will stabilize at states of optimum global potential,
we show here there exist cost sharing instances such
that no dynamics of this form can achieve expected
cost o(n ·OPT/ logn) within a polynomial number of
time steps.

We begin with a definition capturing a broad range
of dynamics of this form.
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Definition 1 Let generalized noisy best response dy-
namics be any dynamics where players move one at a
time in a random order, and when it is a given player
i’s turn to move, it probabilistically selects among its
available actions. The sole requirement is that if ac-
tion a is a worse response for player i than action b
to the current state S, and furthermore a has been a
worse response than b to all past states S′, then the
probability of choosing a should be at most the proba-
bility of choosing b.

The above definition captures almost any natural
individual learning-based dynamics. We now show
that no dynamics of this form can achieve expected
cost o(n ·OPT/ logn) within a polynomial number of
time steps for fair cost-sharing.

Theorem 9 For the fair cost sharing game, no gen-
eralized noisy best response dynamics can achieve ex-
pected cost o(n · OPT/ logn) within a polynomial
number of time steps.

Proof: We consider a version of the “cars or public
transit” example of Figure 1, but where each player
has n cars (options of cost 1 that cannot be shared
by others). For this problem, we can describe the
evolution of the system as a random walk on a line,
where the current position t indicates the number of
players currently using the public transit (the shared
edge of cost k). The exact probabilities in this walk
depend on specifics of the dynamics and may even
change over time, but one immediate fact is that so
long as the walk has never reached t ≥ k, the shared
edge of cost k is a worse response to any player than its
edges of cost 1. Therefore, by definition of generalized
noisy best response, each player has at most a 1/n
chance of choosing the shared edge, and at least a 1−
1/n chance of choosing a private edge, when it is that
player’s turn to move. Since position t corresponds
to a t/n fraction of players on the shared edge and a
1− t/n fraction on private edges, this in turn implies
that given that the random walk is in position 1 ≤
t ≤ k − 1,

1. the probability pt,t+1 of moving to position t+ 1
is at most 1

n (1 − tn ), and
2. the probability pt,t−1 of moving to position t− 1

is at least (1− 1
n ) tn ,

(with remaining probability 1−pt,t+1−pt,t−1 the walk
remains in position t). In particular,

pt,t+1/pt,t−1 ≤ n− t
t(n− 1)

≤ 1/t.

We now argue that the expected time for this
walk to reach position k is superpolynomial in n for

k = logn. In particular, consider a simplified version
of the above Markov chain where pt,t+1/pt,t−1 = 1/t
(rather than ≤ 1/t) and we delete all self-loops ex-
cept at the origin (so pt,t+1 = 1/(t+ 1) and pt,t−1 =
t/(t+1) for 1 ≤ t ≤ k−1). Deleting self-loops can only
decrease the expected time to reach position k since
it corresponds to simply ignoring time spent in self-
loops, and the same for setting pt,t+1/pt,t−1 = 1/t.
So, it suffices to show the expected time for this sim-
plified walk to reach position k is superpolynomial in
n.

For convenience, set pk,k−1 = 1. We can now solve
for the stationary distribution π of this chain. In par-
ticular, the simplified Markov chain is now equiva-
lent to a random walk on an undirected multigraph
with vertices v0, v1, . . . , vk having one edge between
vk and vk−1, (k − 1) edges between vk−1 and vk−2,
(k − 1)(k − 2) edges between vk−2 and vk−3, and in
general (k−1)(k−2) · · · t edges between vt and vt−1 for
1 ≤ t ≤ k−1. In addition, node v0 has (n−1)·(k−1)!
edges in self-loops since the probability p0,0 is at least
(n−1)/n. Therefore, since the stationary distribution
of an undirected random walk is proportional to the
degree of each node [25], we have that

πk ≤ 1/(n · (k − 1)!) < 1/k!.

Lastly, since the expected time hkk between consecu-
tive visits to node vk satisfies hkk = 1/πk by the Fun-
damental Theorem of Markov Chains, the expected
time h0k to reach vk from v0 is at least 1/πk as
well. So, the expected time to reach vk is at least
k! which is superpolynomial in n for k = log(n) (or
even k = ω(logn/ log logn)).

Finally, the fact that the expected time to reach
position k is superpolynomial in n implies that the
probability of reaching position k within a polynomial
number of time steps is less than 1/poly(n): specifi-
cally, if the walk has probability p of reaching position
k in T time steps starting from position 0, then by the
Markov property the expected time to reach position
k is at most T/p. Moreover, so long as the walk has
not yet reached position k, the cost of the system is
Θ(n) = Θ(n · OPT/k). Thus, the expected cost of
the system within a polynomial number of time steps
is Ω(n ·OPT/ logn) as desired.

B Hoeffding-Azuma
For completeness we present here the Hoeffding-

Azuma concentration bound for supermartingales.

Theorem 10 Suppose X0, X1, X2, . . . is a super-
martingale, namely that

E[Xk|X1, . . . , Xk−1] ≤ Xk−1,
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for all k. Suppose also that for all k we have

|Xk −Xk−1| ≤ C.

Then, for any λ > 0 and any n ≥ 1,

Pr[Xn ≥ X0 + λ] ≤ e−λ2/(2C2n).
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