Innovations in Computer Science 2010

Reaching Consensus on Social Networks

Elchanan Mossel® Grant Schoenebeck?
'Weizmann Institute of Science and UC Berkeley
2UC Berkeley
mossel@stat.berkeley.edu grant@cs.berkeley.edu

Abstract: Research in sociology studies the effectiveness of social networks in achieving computational tasks.
Typically the agents who are supposed to achieve a task are unaware of the underlying social network except
their immediate friends. They have limited memory, communication, and coordination. These limitations result
in computational obstacles in achieving otherwise trivial computational problems.

One of the simplest problems studied in the social sciences involves reaching a consensus among players between
two alternatives which are otherwise indistinguishable.

In this paper we formalize the computational model of social networks. We then analyze the consensus problem
as well as the problem of reaching a consensus which is identical to the majority of the original signals. In both
models we seek to minimize the time it takes players to reach a consensus.

Keywords: consensus; social networks

1 Introduction To motivate these problems consider a group of
loosely connected friends who would like to go to a
movie tonight. The problem is that there are two
movie theaters, and they will only have fun if every-
one goes to the same theater. We assume no one cares
which theater they go to, nor is there any precedent
for one theater over the other. The friends will hap-
pen into each other throughout the day at school (or
online) and need to all know where to go by the end
of school. What protocol should they run?

Alternatively the friends may have a true preference
between the two theaters and their wish now is to go
to the theater that is preferred by the majority. What
protocol should be used in this case?

Variants of the example above are natural in mod-
ern social networks where the friendship graph is well
defined and interactions are limited by the underlying
medium.

We formalize social networks as restricted compu-
tational models and study their computational power.
Our goal is to analyze their computational complex-
ity and find optimal algorithms for some natural com-
putational tasks. This may provide a comparison to
the actual behavior displayed by people on social net-
works. In particular: do real behaviors match the
performance of the best possible algorithms on social
networks? What properties of a social network dictate
the time it takes for the network to perform certain
simple, computational tasks both theoretically and in
practice?

To this end, we define a model of social network
computation parameterized by the amount of mem-
ory allocated to each agent and the amount of com-
munication with its neighbors. We then study two
computational tasks. The first we call the coordina-
tion problem, where the agents must all agree on one

of two otherwise indistinguishable colors. This prob- 1.1 Motivating and Related Work

lem is sometimes called the consensus problem. The Our work is partially motivated and informed by
second problem, which we call the majority coordi- past and on-going works studying related problems
nation problem is a strengthening of the first, where from different angles. Most relevant is the work from
the consensus reached must be identical to the major- experimental sociology. Latané and L’Herrou [15]
ity of the original signals. These problems are both study clustering, consolidation, and minorities groups
trivial from game theoretic point of view. From a using a similar problem they call the conformity game
(global) computational point of view the coordina- played by human subjects in four stylized networks.
tion problem is trivial and the majority coordination In the conformity game, each player is paid a fixed
problem is not very difficult either. Both game theory amount if his final label agrees with the most popular
and computational complexity view these problems as final label. The 24 players are unaware of structure of
trivial. However they do not predict how the agents the network except for their immediate neighborhood.
will arrive at solutions is the social network setup. In their experiment there are 4 rounds where players

214

REACHING CONSENSUS ON SOCIAL NETWORKS

can update their color. In 42 of 48 games, the players
failed to all converge uniformly. Instead they often
clustered into two groups. Even though the number
of rounds was small (4), players often got stuck in a lo-
cal minimum before the final round-situations where
all people believed they were in the majority. The au-
thors note: “Participants failed to win a bonus more
then 25% of the time, which seems particularly inept,
considering that at least half were guaranteed a win
by the rules of the game." By understanding what are
the optimal algorithms for the problem, we can make
more accurate statements about how well people do.

Kearns, Judd, Tan, and Wortman [9] study the co-
ordination problem with human subjects. In their ex-
periment, some players are paid an additional bonus
when the consensus reached is “blue", and others are
paid the bonus when the consensus is “red" (still no
one is paid anything unless a consensus is reached).
They study how different graph structures, payment
schemes, and placement of like agents on the net-
work influence whether a consensus is reached, and
if so, which one. In their experiment, each player can
switch between two possible labels as many times as
he likes and can see the currently chosen labels of each
of his neighbors (plus a few other pieces of informa-
tion, including the degrees of each neighbor). The
players have 60 seconds to converge, or they will all
receive no payoff for that round.

Both Kearns, Suri, and Montfort [10] and a follow-
up work by Enemark, McCubbins, Paturi, and
Weller [5] studied a coloring game with human sub-
jects. In the coloring game, each agent must play
labels (colors) different from the labels (colors) of
each of his neighbors. The subjects were paid a
fixed amount if all the agents were successful, and
received nothing otherwise. The problem of finding
such a coloring with c colors of a general graph is NP-
complete in the worst case when ¢ > 3. Obviously this
makes the comparison between human behavior and
the “best known algorithm" somewhat problematic.
In the conclusion section we make some comments re-
lating the work on coloring social networks and work
in algorithms and statistical physics on natural dy-
namics for coloring.

The aforementioned results of [15], [9], and [5] were
all in close agreement to the computational simula-
tions using very simplified models.

Other than the experimental work in sociology,
problems such as the one studied here were studied
in a number of different areas.

The woter model has been studied in Statistical
physics since the 1970’s [3, 7]. Reformulated in the
language of the current paper this is an algorithm for

215

the coordination problem which is defined as follows.
Whenever two people interact, if their opinions are
different then at random one of the two adopts the
view of the other. It is immediate to see that this
process must converge to a coordinated view. More-
over, the time of convergence is known and it is in
general quadratic in the size of the graph. For more
details on the model, see [16].

The majority coordination topic was studied be-
fore in several works. Kearns and Tan [11] created
a protocol where each node requires O(log(n)) mem-
ory and converges in time O(n”) (this protocol is in
the “vertex model" to be defined later). This proto-
col basically runs the voter algorithm repeatedly and
takes the majority vote. They show that this is cor-
rect with high probability. Benezit, Thiran and Vet-
terli [2] create an algorithm in the edge model with
2-bits of memory and show that if there is a strict ma-
jority that the algorithm will almost surely converge
(with no time bound). Meanwhile, a results of Land
and Belew [14] shows that no 1-bit memory automata
works and so the result of [2] is tight with respect to
memory.

Our work is also related to work in several different
areas.

1.2 Related Work

There are a number of related but distinct problems
that were studied in other areas. This is explained
next.

1.2.1 Economics

Our work is naturally related to work in economics
on learning on networks. In this work several models
are suggested where multiple agents on a network con-
verge to the same value where agents follow strategies
aimed at maximizing their utility. There are several
differences from the problem studied here. In the eco-
nomics models the signals given to different players
are all biased towards a “true" value while here there
is no bias nor a true value. In much of the economics
literature the agents know the structure of the graph
while here they do not. Finally the economics models
require actions which maximize expected utility where
here the only goal is to arrive at global coordination.

A different body of work in economics involves
graphical games. In these models, adjacency in the
graph reflects the fact that a neighbors play effects
ones utility. Note that in the problems presented here
the utility actually depends on the actions of all play-
ers while the graph signifies the underlying informa-
tion structure.

For references and an overview of the related eco-
nomics literature, see chapters 8 and 9 in [8].

E. MOSSEL AND G. SCHOENEBECK

1.2.2 Distributed Computing

The coordination problem is of natural interest in
distributed computing. The basic goal is for all enti-
ties in a network to arrive at a coordinated value. Sev-
eral techniques that we employ are commonly uses in
distributed computing. We will point of some of the
relationships along the way. However, the standard
assumptions in distributed computing are very mini-
mal in terms of the symmetry between different states.
For example in the standard setting in distributed
computing the only requirement about the value even-
tually arrived at is that at least one of the nodes had
this value to start with. So some of the standard co-
ordination algorithms converge to the minimal value
among the original values assigned to nodes. For fur-
ther references in distributed computing see [19], [12],
[1], and [17].

1.3 Ouwur Framework

Our goal is to understand the computational power
of social networks compared with more standard com-
putational models. To this end we do the following:

e We do not consider the competitive / game-
theoretic aspect of the problem. So all players
have the same payoff.

We consider only the very simple computational
tasks of coordination and coordinated majority.

We assume that except for their immediate neigh-
bors the agents have very rough knowledge about
global network parameters such as its diameter or
size.

We require the models to respect a strong sym-
metry between the signals (see Section 2.1 on
Model for a more rigorous definition). This is
done in order to model that the two items are in-
distinguishable (e.g. there may not be a natural
ordering), and to exclude some trivial algorithms
for the problems suggested here e.g., for the co-
ordination problem, the algorithm that always
declares red.

From a different perspective our model is stronger
than those introduced in [15] and [9]. Both pa-
pers study problems very similar to the coordination
games, where the agents have extremely limited com-
munication with each other. In [15] the agents can
only send a color and a confidence, and in [9] they can
only communicate their current label. Our model al-
lows richer spaces of communication between players.
This is motivated by the experiments in [5] where the
players often try to enrich their set of signals [4]. For
example, they may toggle rapidly between two colors
to signal that they are indifferent between those two
labels.

216

1.4 Ouwur Results

Our main technical results show that for many
models it is the broadcast time of a graph that de-
termines the time to convergence, and in other mod-
els it is simply the diameter. The broadcast time is
the expected the time for a message to reach every-
one starting from a single player (assuming that every
player broadcasts the to all his neighbors upon re-
ceipt). This is novel since previous work in this area
arrived at algorithms whose running time depended
in a polynomial way on the number of vertices in the
graph. As it is widely believed that many social net-
works are “small world" networks, it is expected that
the diameters and broadcast time are (poly) logarith-
mic in the size of the graph.

Our main results show that

e The coordination problem can be solved in ex-
pected time O(w) with expected O(1) memory,
where w is the broadcast time.

The majority coordination problem can be solved
in expected time O(n?), with only 1 bit of addi-
tional memory.

The majority coordination problem can be solved
in expected time O((d + log(n))log(n)) with
O(log(A)) memory, where d is the diameter and
A is the maximum degree.

Some of the faster algorithms make some mild as-
sumptions on the players approximate knowledge of
the network such as knowledge of the diameter of the
network up to a constant factor, or knowledge of the
log of the size of the network up to a constant factor.

Remark: The work in [5, 10] deals with the prob-
lem of graph coloring. Even though graph coloring
is known to be NP-hard, the computational hard-
ness parameterized by the graph structure is in gen-
eral poorly understood. At the conclusion section we
briefly discuss some speculations regarding the graph
coloring problem on social networks.

1) Road Map

In Section 2 we define our model and the problems
studied. In Section 3 we present our results on the
coordination problem. In Section 4 we present our re-
sults on the majority coordination model. In Section
5 we conclude with future directions for research in
this area.

2 Schema and Notation

We model evolution on these networks in three
ways: asynchronous edge dynamics, asynchronous
vertex dynamics, and synchronous vertex dynamics.

We model an edge dynamics network as a three tu-
ple N = (V, E,W) where

REACHING CONSENSUS ON SOCIAL NETWORKS

e 1 is the set of agents,
e F C V xV is the set of relationships between the
agents,
o W = {we}ecr and we € R>¢ is a set of rates for
each edge.
We can similarly define a vertex dynamics network
by assigning rates to the vertices. We say that a net-
work is uniform if all its rates are 1.

2.1 The Model

We model an asynchronous edge dynamics as a five
tuple (N, X, S, A, T) where

e N is an edge dynamics network.

e X =3, x X; is the set of possible states of each
vertex divided into external states and internal
states.

e S C X is set of possible start states.

e A is a piece of advice that each agent has access
to which can be thought of as a noisy value of
some network parameter (e.g. an approximate
size of the network). Note that we do not count
this in the memory of the agent because he can-
not modify it, and all our dynamics are designed
so that the advice need only be approximately
correct. Finally, for ease of notation, we assume
that all agents receive the same advice, this is not
necessary, and all the results apply to the setting
where each agent has his own noisy version of A.
T is a possibly probabilistic update function of
the following form: let A be the maximum degree
in N,thenT : ¥ x X x Ax[0,1] = X x X is of the
formT =T'xT" where T' : Ex X x{1,..., A} x
A x [0,1] — 3. The map T” takes the current
state, the neighbor external state, the neighbor’s
position, some random bits and produces a new
state. When an edge rings we apply the map T”
for each of the endpoints of the edge. We will
sometimes omit the last two arguments of T' for
ease of notation.

A configuration s of a dynamics is an assignment of
states for all the vertices of graph: s : V' — X. We will
usually denote s = {s, }yev. A starting configuration
s of a dynamics is a configuration where s, € S for
allv e V.

Let s* be some starting configuration, and let v =
{7 }vev where a v, : T'(v) — {1,...,|['(v)|} is a per-
mutation which labels the neighbors of v.

Given such s* and v a run of an asynchronous edge
dynamics is a random process (over the randomness
of T and when the edges “ring") whose range is a set
of mappings X = {X,}yey where X, : R>g — X.
X, (t) is the state of vertex v at time ¢. The process
is defined by first letting X(0) = s. The value X(¥)

217

remains constant in time until the Poisson process at
an edge e rings. The process at each edge “rings" at
rate we. When the edge e = (u,v) rings at time ¢, the
state of the vertices incident to the edges are updated
to be

T(Su,Sv,a,r) =
(T" (8w, (Sv)e, Yo(u), a,r),
TI(SM (Su)e»’Yu(U)»PmT)),

where
s = {sv}vev = {Xo(t—) }vev

is the state just prior to the ring, a € A is the advice,
and r € [0, 1] is the randomness.

We note that we can also define an asynchronous
vertex dynamics model where the vertices ring. In this
case N is a vertex dynamics network, and T is a set of
functions T = {T,}5, where A is the max degree of
the graph. Ty : 3 x (Z)? x P x [0,1] — ¥ represents
one player updating her state based on her neighbors’
external states. Given a start state s* and permuta-
tion v = {7y }vev where ay, : {1,...,|T'(v)|} — T'(v),
we similarly define a run as a random variable X such
that X(0) = s*. This process is updated when any
vertex v’s clock rings according to a Poisson clock
with rate w,. Every time a vertex v’s clock rings, s,
is changed to Tyeq(v) (Xo(t—), (X5, 1) (t=))es - - -,

(X5, (deg(v)) (t—))esa,7), where a € A is the advice,
and r € [0, 1] is the randomness.

Finally, we can also define a synchronous vertex
dynamics model. This is like the asynchronous ver-
tex dynamics model however at each time step ¢, the
function T is applied simultaneously to all vertices.

We remark that most of our results carry over to
the vertex models, but leave detailed study of them
to a future time. In this paper we focus on the asyn-
chronous edge dynamics and remark about the other
models when it is convenient.

Definition 1. For dynamics (N,X%,S,A,T), let
Y, 2 € X be two disjoint sets. We say that the dy-
namics is symmetric with respect to ¥y, and 3. if there
exists a permutation 7 : 3 — ¥ such that m(3;)
Y., ™ preserves internal, external, and start states
(m(2;) = X4, m(Ze) = Xe, and w(S) = 5); and such
that T'(w(s1), m(s2),a,r) = (7 x 7)(T(s1, s2,a,r)) for
all 51,80 € X, a € A, and r € [0, 1].

We note that our models are natural for social net-
works, and similar models have been proposed in the
literature for example, see simulations in [18] and [13].
The synchronous model is similar to models in dis-
tributed systems, and many of our results will carry
over to this setting.

E. MOSSEL AND G. SCHOENEBECK

Remark 2. Note that our asynchronous models are
quite different from the asynchronous models in dis-
tributed computing. The distributed computing mod-
els have broadcast time on edges which does not fol-
low a distribution. Instead it is only guaranteed to
be bounded. The performance of algorithms in dis-
tributed computing is measures by the total amount
of time divided by the longest broadcast time of an
edge, while our algorithms the time is measured with-
out any normalization. Indeed for Poisson type mod-
els the longest broadcast time is of order logn and it
is exactly this logn factor that some of our algorithms
try to save.

To understand the difference between the two differ-
ent models, consider broadcast where there are many
paths of equal length between two nodes. In the dis-
tributed computing setup no speed up is gained. This
contrasts with our asynchronous models where if many
paths exists between two nodes, the expected time it
takes for a broadcast message to travel between those
two nodes is greatly reduced. Additionally, our asyn-
chronous models provides no worst case bound for any
event.

2) Equivalence of Models

Any dynamics in the synchronous vertex dynam-
ics model can be simulated by a uniform dynamics in
either asynchronous dynamics model. The two propo-
sitions below are related to the “synchronizer" prob-
lem studied in distributed computing which studies
how to simulate synchronous distributed algorithms
on asynchronous distributed networks (see, for exam-
ple, Chapter 6 in [19]).

Proposition 3. Any synchronous vertexr dynamics
can be simulated by a uniform asynchronous dynam-
ics with log(n) slow down (in expectation) and each
agent’s public memory growing to twice the size plus
two bits.

Proof. To simulate in the asynchronous vertex model
each vertex simply keeps copy of the external state
he was in during the previous step and an additional
state of which step he is in modulo 4. To see how
this works first imagine that each vertex keeps all his
previous state and the step count his is on. An agent
only performs a computation if his state is less than or
equal to all his neighbors (in performing a step he up-
dates his current state according to the synchronous
rules and updates his history and step count in the
natural way). Because each agent only performs an
update when he is less than or equal to all his neigh-
bors, and his neighbors save all their previous state,
he will have all the information required to make this
update, and this provides a faithful simulation. But

218

notice that if each agent only updates when he is at a
step less than or equal to all he neighbor states, then
it will always be the case that his neighbor states are
equal to, one more or one less then his state. Thus
it is sufficient to keep around only the previous state
and only the step count modulo 4.

It is expected that in each log(n) steps each vertex
rings at least once, and so after klog(n) steps, we
expect each vertex to be at step count at least k.

Proposition 4. Any dynamics in the synchronous
vertex dynamics model can be simulated by a uni-
form dynamics in the asynchronous edge model with
log(|E|) < 2log(n) slow down and each agent v’s pub-
lic memory growing to twice its size plus two bits, and
each agent v’s private memory growing by a factor of
|T(v)|, where T'(v) denotes the neighbors of v.

Proof. To simulate in the asynchronous vertex model
each vertex keeps track of which step he is on (modulo
4) and a copy of the external state he was in during
the previous step as well as the external state for each
neighbor agent for the current step he is on and a bit
indicating if that state is current.

To see how this works first imagine that each vertex
keeps all his previous state and the step count his is
on. An agent only performs a computation if he has
up to date information on the external states of all
his neighbors (in performing a step he updates his
current state according to the synchronous rules and
updates his history and step count in the natural way
and clears the history for his neighbors). Otherwise,
he will simply update this information if possible.

Because each agent only performs an update when
he is less than or equal to all his neighbors (this must
be the case for his information to be up to date), and
his neighbors save all their previous state, he will have
all the information required to make this update, and
this provides a faithful simulation. But notice that if
each agent only updates when he is at a step less than
or equal to all he neighbor states, then it will always
be the case that his neighbor states are equal to, one
more or one less then his state. Thus it is sufficient
to keep around only the previous state and only the
step count modulo 4.

Tt is expected that in each log(|E|) < 2log(n) steps
each edge rings at least once, and so after klog(|E|)
steps, we expect each vertex to be at step count at
least k.

It is unclear if the asynchronous models can simu-
late each other. The issue is that when you simulate
in a manner like above, you destroy the independence

REACHING CONSENSUS ON SOCIAL NETWORKS

of the ring times. Also, it is unclear what it even
means claim equivalence of asynchronous models that
are not uniform. However, many dynamics that are
not overly dependent on the order of rings will work
in all models with no real modification.

2.2 Further Notation

We will always use n to denote |V, d for the diame-
ter of the underlying network, and I'(v) the neighbors
of a vertex v. If £ is some property of a configuration
in the network configuration model, we will denote
by 7(€) the first time an event occurs perpetually in
the dynamics (so immediately before 7(€) the prop-
erty does not hold, but after 7(€) the property always
holds). In most of the considerations below £ will be
an event such that if it holds at time ¢ then it holds
at all later times. Note that for such events 7(€) is
the first time the event holds.

For vertex v, let B, (t) be the set of vertices that, at
time ¢, could have possibly received a message from
v given the sequence of vertex/edge rings. Similarly,
for vertex v, let BJ(t) be the set of vertices that, at
time ¢, could have possibly sent a message to v given
the sequence of vertex/edge rings.

We define the broadcast time of a dynamics to be
w = maxyev E[7(By(t)) = V)]. Note that for every
vertex v: w/2 < E[1(B,(t)) = V)] < w. For the
synchronous model, the broadcast time will simply
be the diameter of the graph.

Let U be the event that for every pair of vertices
u,v €V By(t) N By(t) # 0. Let U’ be the event that
for every pair of vertices u,v € V' B (t) N BL(t) # 0.

We define the collision time of a dynamics to be
n = E[rU)] = E[r(U')]

We define C to be the event of coordination (or
majority coordination depending on the context).

2.3 Problems Considered

We consider two basic problems:

In the first, the Coordination Problem, given
network N, we would like to design a dynamics
(N,3,S,A,T) where % is partitioned into two spe-
cial disjoint subsets 3, and X} (which stand for red
and blue), such that eventually, either all the agents’
states are in X,, or all the agents’ states are in .
We will additionally require that 1) the dynamics are
symmetric with respect to X, and 3, (see Section 2.1
for precise definition) and 2) if all the states input to
T are in Y., then all the states output by 7" must be
in ¥, as well, (and similarly for ¥;). Let C be the
event that either all the agents’ states are in X, or all
the agents’ states are in ;. For such a dynamics, we
would like to study the expected time to consensus,

219

which we define as maxg E[7(C)] where s is the ini-
tial state and - are the set of permutations defined
in Section 2.1. We would like to minimize this value,
usually over some class of dynamics. Note that the
agents need not be aware that they are in a consen-
sus. All that is required is that they do not leave
it.

The second, the Majority Coordination Problem is
like the Cooordination Problem but with one additional
property. Given network N, we would like to design a
dynamics (N, X, S, A, T) where ¥ is partitioned into
two special disjoint subsets X, and ¥, (which stand
for red and blue), such that if the majority of the ini-
tial states are in X, then eventually, all the agents’
states are in X,.; similarly for X; if there is a tie, then
we just require a consensus. We will additionally re-
quire that 1) the dynamics are symmetric with respect
to 3, and X (see Section 2.1 for precise definition)
and 2) if all the states input to T are in X,., then all
the states output by 7" must be in X, as well, (and
similarly for ;). Let C be this event. For such a dy-
namics, we would like to study the expected time to
majority consensus, which we define as maxs E[7(C)]
where s is the initial state and 7 are the set of permu-
tations defined in Section 2.1. We would like to min-
imize this value, usually over some class of dynamics.
Note again that the agents need not be aware that
they are in a consensus. All that is required is that
they do not leave it.

We note that all of the dynamics considered in the
paper will have the additional desired property: If the
original network is in consensus then the dynamics
will not change the value of the consensus.

3 The Consensus Problem

The problem of reaching a consensus was studied in
statistical physics for a specific model called the voter
model. In this each vertex is one of two states, when
an edge “rings", using the common randomness one of
the end points incident to the edge is chosen to copy
the state of the other.

Definition 5. The Voter Model asynchronous edge
dynamics (N, %, S, A, T') are defined so that ¥ = 3, =
S ={+1,-1}, A= 0, T(s1,s2) = (s1,51) with prob-
ability 1/2 and (s2, s2) with probability 1/2.

The Voter Model asynchronous vertex dynamics
(N,%,S,A,T) are defined so that ¥ = X, = S
{+1, -1}, A = 0, T(sv,(Sy, (1)1 -+ Sy (deg(d))
S+,(i)) With probability 1/deg(d) for each 1 < i
deg(d).

<

Theorem 6. For any connected network in the uni-
form asynchronous edge dynamics model, there ex-

E. MOSSEL AND G. SCHOENEBECK

ists a memoryless dynamics independent of the graph
2

which reaches consensus in expected time n~.

The theorem is a result of the following propositions
whose statement and proofs are variants of classical
results on the voter model which proven using mar-
tingale arguments.

Proposition 7. Consider the edge model with rates
1 and the voter model on G. Let A be the number
of edges in the smallest cut in G. Then for any ini-
tial configuration the process will converge to the same
color with probability at least 1/2 by time at most

and with probability at least 1 — 27 by time kT .

The proof is very similar to previous voter model
proofs.

Proof. Note that X (t) =, X,(t) is a bounded mar-
tingale. This follows from the fact that whenever an
edge is chosen and the two end points are not identi-
cal, it is equally likely that the value of X will increase
or decrease by 1.

Let P(t) be the minimum over all initial configura-
tions of the probability of convergence by time ¢.

By the orthogonality of martingale increments it
follows that for all ¢,h > 0:

E[X?(t+h)] = E[X?(t)] + E[(X(t + h) — X (1))?].
Therefore writing W(t) = E[X?2(t)] it follows that

() = Jim, RYE[(X(t+h) — X (1)

We lower bound ¥’(t) by conditioning on the config-
uration at time ¢ and noting that for small h, if at
time ¢ the process hasn’t converged then we expect
one edge between a vertex labeled by 1 and an edge
labeled by —1 to ring with probability at least hA
and therefore as h — 0 the conditional expectation of
(X(t+h) — X(t))? is at least 4h\. We thus conclude
that
U'(t) > 4N(1 — P()).

So if P(t) < 1/2 we obtain:
n? > W(t) > 12,

SO

as needed.

In the asynchronous vertex model, when a vertex
rings, it copies the state of a random neighbor.

Proposition 8. For the vertex model the following
holds. For any initial configuration the process will
converge to the same color with probability at least
1/2 by time at most

_ (>, d(v))?
= 2ming—y) d(u) + d(v)

and with probability at least 1 — 27 by time kT.

The proof is very similar to previous voter model
proofs.

Proof. The proof for the vertex model is similar to
that of Proposition 7. We only need to find the “right"
martingale. We will look at), d(v)X,(t) where d(v)
is the degree of v. In order to show that this is a
martingale consider an edge (u,v) where X, # X,,.
This edge can be chosen by choosing one of the two
end points. At rate d(v)~! the value of X, (t) will
be replaced by X,(t) and at rate d(u)~' the value
of X,(t) will be replaced by X,(t). Summing the
expected differences we get:

d(v) " Ld(0) (X, (t) — Xu(t)+
()~ d(u) (X (t) — X,()) = 0.

This established that X (¢) is a martingale. Define
U(t) = E[X?(t)] as before. Consider X (¢t + h) — X (t)
for small h and an edge (u,v) that rings between time
t and t + h contributes

(d(v)~td(v)? + d(u) " d(u)®) (X (t) — Xu(t))? =
(d(v) + d(u)) (X (t) — Xu(t))*.
Therefore we have:

U'(t) >4 min (d(u) + d(v)).

e=(u,v)

So if P(t) < 1/2 we obtain:

(O dw)? = W(t) > 2t min (d(u) + d(v)).

e=(u,v)

SO

(3, dv))?
b= 2ming_(y,) d(u) + d(v)

)

as needed.

In the next result we provide an optimal time
algorithm, but the amount of memory needed is
O(log(n)). We include this theorem for its simplicity.
Algorithms with best performance will be obtained

REACHING CONSENSUS ON SOCIAL NETWORKS

later. For the algorithm, we must assume the play-
ers know the log of the size of the network up to a
constant factor to get optimal parameters. Note that
these are very reasonable assumptions in many social
network settings.

Definition 9. The Greatest-Element asynchronous
edge dynamics (N, X, S, A,T) are defined as follows:
Let A = N, Let a € A be the advice such that a =
clog(n). Let ¥ =X, = Z\ {0}. S ={-1,1}. We
define T'(s1,s2,a,r). The outcome is (s;,s;) where
i = 1if [sy] > |s2|, ¢ = 2 if |sa] > |s1], and ¢ is
randomly chosen to be 1 or 2 if [s1]| = |s2|. If 57 and/or
s9 is +1/ — 1 then they first modify their states to be
a choose a random non-zero number between 2s; and
(2%¢ + 1)s;, and then use T as defined above.

The story of what happens is that each agent gen-
erates reasons (of varying quality) to his sign. Each
vertex relays the best reasoned message he has seen,
or a random one if two are equally well reasoned. If
there is honest confusion about the best reason, then
it will take a while to converge.

Theorem 10. The Greatest-Element asynchronous
edge dynamics (N, %, S, A, T) will reach consensus in
expected time w + n*=5¢ with memory 5clog(2n + 2))
where advice a = clog(n). In particular, if ¢ € [1,5],
then it will converge in expected time w+ 1 with mem-
ory 25log(2n + 2)).

Proof. Assume for the analysis, that each vertex
starts off with a random number between —2°¢ — 1
and +2°¢ 4 1 that has absolute value greater than 1.
We first condition on the fact that there is a unique
such number of highest absolute value. In this case,
it will take time w to spread, because we are broad-
casting from that vertex. Now condition on the fact
that there is no unique highest initial internal state.
In expected time w, every agent will have some such
message, but perhaps not associated with the same
color. Now we are running the voter model, and so
will converge in expected time n?, by Proposition 7.

Let ¢ be the probability there does not exists a
unique number of highest absolute value. If we show
that ¢ < n?7°¢, then the running time is at most
w + qn? = w + n*75. However, the probability that
all the numbers are unique is 1(1 (1-224) >
1 275c'

1
_ 25_(1) Ce
— ;Ti and so g <n

In the next result, we provide dynamics which are
expected to converge only a constant factor slower
than the broadcast time, and in addition only use an
expected finite about of memory, assuming the play-
ers know the diameter of the network and the sum of

221

the rates on the entire network up to a constant fac-
tor. Even if the player know nothing at all about the
network, it uses only O(log(n)) memory and expects
to converge with a O(log(n)) slow down.

Definition 11. The Wait-and-See asynchronous edge
dynamics (N, %, S, A, T) are defined as follows: Let
A =R>p, a = ch(u,v)GEw(u7v)' Let ¥ = X, =
Z\ {0}. S ={1,—1}. We now define the transition
function for vertices v; and v, in states s; and so
respectively. T'(s1, s2) =:

o If |s1| > |s2| then so becomes s;. Similarly, If
[s2| > [s1]| then s; becomes so.

e If |s1] = |s2| and they are odd, then with prob-
ability 1/2, v; flips a coin and with probability
1/(21%1/2la) and increases the magnitude of its
state by 1, thereby moving to an even state and
“electing" himself. With the remaining 1/2 prob-
ability, vo does likewise.

e If s; = s and they are both even, do nothing.

o If |s1| = |s2]|,81 # s2 and they are even, then
each vertex increases the magnitude of his state
by 1.

The story behind these dynamics are that initially
no one wants to venture an opinion (odd state). At
some point, an agent gets tired of waiting and decides
on his outcome (the sign represents the chosen out-
come, the state being even represents the fact that he
has chosen). He then broadcasts the outcome to his
neighbors. As long as no one else decides to do the
same (move to even) before hearing of this decision
a consensus will be reached. Otherwise, if someone
has decided on one outcome (even positive) and he
talks with his neighbor who has decided on a differ-
ent outcome (even negative), he will then broadcast
to everyone to abandon their past decision (odd with
magnitude +1). The amount of time that each agent
waits depends on how fast he thinks his message will
spread to the network, and on how many other peo-
ple are making the same decision as him. If there is
an error initially, each agent will be more patient the
next time.

We note that even if the agents all receive advice
1 (which is essentially no information), then the dy-
namics still perform reasonably well.

Theorem 12. The Wait-and-See asynchronous edge
dynamics (N,%,S, A, T) will reach consensus in ex-
pected time O(w(log(L) + ¢)) with memory O(1 +
log(1)) where ¢ is such that a = cw 2 (uw)e B Wuw)-
In particular, if ¢ is constant, then a consensus is
reached in expected time O(w) with expected memory
O(1), and if a = 1 (i.e. the agents have no informa-
tion about the graph) then a consensus is reached in

E. MOSSEL AND G. SCHOENEBECK

expected time O(w(log() + 1)) with a expected mem-
ory O(1 + log(a)) where oo = w(3_(, 1yep Wuw))

Proof. Recall C is the event of consensus, and 7(&)
is the first time an event £ happens perpetually. Let
&r be the event of having a state of absolute value at
least k. We call the mazimum state of a configuration
the absolute value of the state with the maximum
absolute value. Let 2k* + 2 be the maximum state
when consensus is reached (note that it will be an
even state with probability 1).

We begin with the following claim which bounds
the expected time to reach consensus in terms of 1)
the expected time starting with maximum state 2k+1
to reach either consensus or maximum state 2k + 3,
and the probability that maximum state 2k +2 is ever
reached.

Claim 13.
E(r(C)) <

> E[r(CV Earys)k* > K| Prk* > K]
k=0
Proof.
E(r(C))

- Z E[r(C)|k* = k] Pr[k" = kK]
k=0

:Z (E[T(C) — 7(Eat1) |k = K]

k=0
k-1

+ Z E[r(£2043) — T(E2041) K" = k])'
=0

Pr[k™ = k|

= Z E[7(C) — 7(E2k41)|k™ = k]| Pr(k™ = k]

k=0
+ Z Z (E[T(E2043) — T(E2041)|k™ = k] Pr[k™ = k]
0=0 k=041

= Z E[T(C) — 7(Eak41)|k" = k] Pr[k™ = k]
k=0
+ E[7(E243) — T(Ea1) k" > k+ 1) Pr[k™ > k + 1]

= Z E[r(CV Exrss) — 7(Eans1) |k > K] Pr[k™ > K]

k=0

It remains to bound E[7(C V Exxy43)|k* > k] and
Prk* > k]

Claim 14. E[7(C V Eqpy3)|k* > k] < w(c2F +2)

Proof. We define four types of configurations:
1 Max state is 2k + 1 is odd.

2 Max state is 2k+2 is even and all agents in this state
have the same sign.

3 Max state is 2k + 2 is even and all agents are in this
state have the same sign (e.g. consensus is reached).

3’ Max state is 2k + 2 is even and different agents in
this max state have different signs.

Assume that we are in configuration type 1) with
maximum state 2k + 1. Configuration type 1) must
transition to configuration type 2), the only question
is how long it will take. The conversion will take place
as soon as a vertex incident to an edge between two
state 2k 4+ 1 vertices elects itself. The expected time
for the state 2k + 1 to spread everywhere is w. Once
this has happened, the expected time until an vertex
elects itself to maximum state 2k + 2 is cw2l2F1,
This is because each edge e has a poisson clock with
rate w., however the rate at which either vertex in-
cident on the edge elects itself is —meyr because a
vertex incident to the edge only appoints itself with
probability <;2L2++1J Thus all the clocks together have
a combine effective rate of) p —meaT = ﬁ, S0
the expected time until an vertex appoints itself is
cw2k.

Once in configuration type 2) the expected time
for the edges rings to be such that the state 2k + 2
spreads everywhere is w. Once this happens, either,
we have reached consensus, and are in configuration
3), or another vertex has elected himself, and we are
in configuration 1) again.

Putting this together the expected time to transi-
tion is at most w(c2® + 2).

Define ¢’ and kg as follows: if ¢ > 64 then ¢/ = ¢
and ko = 0; if ¢ < 64 then fix ko so that 2k = ¢ €
[64,128), and thus kg < max{7 — log(c),0}.

Claim 15. For k > ko Pr[k* > k+1|k* > k]
particular, Pr[k* > ko+k'] < (i)k, and E[k*]

< i. In
< ko+2.
Proof. Look at the time of the first maximum state
2k +2. We will show that with probability % no other
vertex elects itself before this state spreads to the en-
tire graph. Fix parameter A = V¢2k. The probability
that the initial 2k+ 2 state spreads to the entire graph
in time Aw is 1 — A~ by Markov.

Some edge between two 2k + 1 states will elect it-
self at rate at most m (see calculation in Proof
of Claim 14). Thus the probability of a second self

clection in time Aw is at most 1 — exp(— =17 Aw) <
Aw AL
we2k T '

222

REACHING CONSENSUS ON SOCIAL NETWORKS

So consensus is reached with probability 1 —2/A =

1-2/Ve2b>1-2/Vd >1-1

Putting things together, we bound E[7(C)]. Using
Claims 13 and 14 we see that it is enough to bound
Yoreo(2 4 2F)w Pr[k* > k]

Z(z T 2M)w Pr[k* > k]

k=0

WE[E*] + w Z Prlk” > ko] (c2*)

k=ko
ko—1 (e}

= 2wE[k*]+w Z 2k + Z Pr[k* > ko] (c2k)
k=0 k=ko

oo
1 k
k ko+k
< w<2k0+4+020+§ (Z) (c20))
k=0
1
< w(2ko + 44 3c2"0) < w(406 + log(=) + 3¢)
(&

O(w(log(1/c) + ¢)

We note that the amount of memory required is
log(2k* 4 1), and E[log(2k* 4 1)] < O(1 + log(1/c)).

The dynamics are symmetric with respect to X,
being the positive states and X the negative. To see
this, define the map 7(s) = —s.

The next result shows that in the synchronous
model, there is a simple processes with 3 bits of mem-
ory that allow the agents to coordinate in time related
to the diameter (broadcast time) of the graph assum-
ing the players know the product of the diameter and
the network and the size of the network up to a con-
stant factor.

Definition 16. We define the Wait-and-See syn-
chronous dynamics (N,X, S, A,T) as follows: Let
A = N, let a € A such that a = c(d + 1)n
(where d is the diameter of the network). Let
Y = 3. = {free,error,reset} x {blue,red}. S =
{(free,red), (free,blue)}. We will write s, € X

as sy = (pu,cy) where p, € {free,error,reset}
is the “phase" and ¢, € {blue,red} is the “color".
T’ (S0, Sy,(1)s - - -5 Sy, (deg(v)), B T) =

e If p, = reset, output p, = free.

e Else, if p, = error, output p, = reset.

e Else, if error € {py, (1), Py,(deg(v)) }> Output
Dy = €rror.

e Else, if {(set,red), (set, blue)}
{80,857, (1) - - + + Sy (deg(v)) } OUtPUL Py, = error.

-

223

e Else, if p, = free and red €
{ey, 1)+ Cyy(deg(v))), output s, = (set,red).
Similarly if p, = free and blue €
{90 (1)) -+ Cyy (deg(v)) }» OUtput s, = (set, blue).

e Else, if p, = free, with probability 1/a output
p, = set. In this case we say that agent v “elects”
himself.

Theorem 17. The Wait-and-See Synchronous dy-
namics will reach consensus in expected time

c(d+1)+d+

—(e(d+1) +2d)

where a = ¢(d + 1)n. This is constant if ¢ is also a
constant greater than 1.

Proof. At any particular time we define & to be the
maximum number of times that any vertex has been
in the error phase. Now at any time ¢ we classify the
configuration into 3 regimes:

1. Some of the vertices have been in the error phase

k times, and no vertex that has, has elected him-

self after being in the error phase k times. Ad-

ditionally, not all vertices are in the free phase.
. All of the vertices have been in phase error k
times and are now in the free phase.
Some vertex has elected himself after being in the
error phase k times.

Fix a run, and consider any two neighbors u and v.
If at time ¢ vertex w is in phase error, then it must
be the case that v was also in phase error at time
t—1,t, ort+1 (and vice versa). However each vertex
can only be in the error phase every 3 steps (because
after an agent is in phase error he transitions to phase
reset and then free). This creates a bijection between
time steps when v and u are in phase error. Thus,
in any run, each vertex is in the error phase for the
same number of steps. Moreover, if vertex v enters
the error phase for the kth time at time ¢, then any
vertex u of distance ¢ from v must enter the error
phase for the kth time by time ¢ 4 /¢

We first claim that it will take time at most time
d+2 to move from the 1st regime to either the second
or the third. If some vertex is in the error phase for
the kth time at time ¢, by the above reasoning all
vertices will have been in the error phase for the kth
time at time ¢ 4+ d. Once each vertex has been in the
error phase exactly k times, by the above reasoning,
every vertex which neighbors an vertex in the error
phase, is in either the error phase or the reset phase.
Thus after 2 more steps (assuming no vertex that has
been in the error phase k times elects itself) every
vertex will be in the free phase.

E. MOSSEL AND G. SCHOENEBECK

To move from regimes 2 to regimes 3 takes expected
time ¢(d 4+ 1) because whilst in phase free, each ver-
tex elects himself with probability % = m each
round. There are n such vertices, so the expected
time before a vertex elects itself is ¢(d 4 1).

Once in regime 3 we claim that with probability
> 1—1/c we arrive at consensus before incrementing
k. In this case, we claim that we arrive at consensus in
at most d more steps. Say we go through and compute
the updates for the vertices one at a time. Let v be
the first vertex to elect himself and have been in the
error phase k times, and say this happens at time
t. Because v must be in the free phase, he was in
the error phase at least two units of time ago. Thus
every vertex at distance £ from v has been in the error
phase k times by time ¢ + ¢ — 2. Thus if no other
vertex elects himself in the next d steps, then each
such vertex at distance ¢ from v will be in phase free
at time t 4+ ¢ and will receive the red/blue message
from v. If however, another vertex u elects herself
after having been in the error phase k times, then the
messages will meet in time less than d, and if they are
different colors, the configuration will return to regime
1. The probability that no other vertex elects herself
between time ¢ and t +d is (1 —1/a)™4+D) > 1 —1/c.
This means the expected value of k& upon reaching
consensus is — Thus the total expected time is:

c—1°
c(d+1)+d+ 25(c(d+1) + 2d)

We will now show a lower bound. While the upper
bounds work for the broadcast time, the lower bounds
only apply to the collision time. In the synchronous
model the collision time is just 1/2 the broadcast time,
which is the diameter. While we do not show that
these are related in the asynchronous setting, we sus-
pect they are, at least, in many natural settings.

Theorem 18. For any dynamics E[r(C)] >
E[r(U)]/2, even when each vertex starts assigned red
or blue randomly.

Theorems of this flavor are often attributed to folk-
lore in distributed computing (see [19]).

Proof. Let R,ing be the space of randomness for the
edge rings. Let R be the space of randomness for
the initial configuration and the transitions. Let
T(U, Tring) = Ep[T(U)|rring], and let 7(U, Tring,) =
E,[7(U)|rring, 7] neither of which contain any ran-
domness. To prove the theorem, it is enough to
show that for every 7ying € Rying @ Er[T(C)|rring] >
T(U, Tring)/2, and this is what we will show. Recall
that for any fixed 7,44, there exists u, v € V such that
for any time t < 7(U, rring) we have By, (t)NB,,(t) = 0,
where B, (t) is the set of vertices that could have sent

224

a message to agent u at time ¢t. Define the bijection
f on R that takes the vertices in B, (t) and reverse
their initial colors.

Let A C R be such that if r € A then
E, [7(U)|rring, 7] < T(U,Tring). Note that if r € A
then f(r) € A because if the colors of 7 and j match
at time 7(U, 7ring) With randomness r, then they are
opposites with randomness f(r) because the color of
u has flipped, and the color of v has remained the
same.

Because f is a bijection, this means that at most
half of r is in A, and thus for every rring € Rying :
Er[7(C)lrring] = 7(U, Tring) /2.

4 Majority Coordination Problem

Unlike the coordination problem, the majority co-
ordination problem is impossible to do without addi-
tional any memory [14]. Intuitively, if there were some
dynamics, then it would have to have some transition
from red to blue with non-zero probability. But this
transition could only operate on local information, so
you could embed many of these states inside a larger
graph with one more red then blue. With some prob-
ability the dynamics would change a red to blue, and
then the graph would have a majority blue, so from
this point it would have to go to all blue.

However, as the next section shows, you can do this
with just one additional bit of memory.

4.1 Achieving Majority via Weak and
Strong Votes

In this subsection we analyze a simple algorithm
that reaches a majority consensus. As was communi-
cated to us by David Xiao, our algorithm is very sim-
ilar to the one previously suggested in [2]. However,
we strengthen and extend the work in [2] by provid-
ing an algorithm which converges even in cases where
the number of red and blues are equal. Further our
analysis provides explicit convergence time bounds.

Definition 19. The Strong Weak Voter asynchronous
edge dynamics (N,%,S,A,T) is defined as follows.
Let ¥ = {-2,—-1,+1,+2}, S = {-2,42}, A = 0,
and T'(sy, $y)

e If s, = s,, the two states remain the same.

o If|s,| > |sy| output (s,/2, s,,); similarly if |s,)| >
|sy| output (s,,s,/2). (weak voters follow the
sign of strong voters and then they switch places.

e If s, = —s, output (1,1) and (—1, —1) with equal
probability. (Two strong voters cancel each other
out and become weak, and weak voters run the
voting model).

We prove the following

REACHING CONSENSUS ON SOCIAL NETWORKS

Theorem 20. The Strong Weak edge dynamics N =
(N,3,S, A, T) will reach majority consensus in ex-
pected time O(n®) with each vertex v having 2-bits of
memory.

Proof. The analysis of the algorithm proceeds in
phases. The goal of the first phase is to eliminate
either all 2 or all —2. Note that since the only way
to eliminate a 2 is by interaction with a —2 which
makes them both disappear, by the end of this phase
we have the following:

e If there were equal number of 2 and —2’s in the
original signal then there are no 2 and —2 re-
maining.

e Otherwise, by the same reasoning we will have 2
remaining if they were the majority in the origi-
nal signal and —2 if they were the majority.

Suppose that vertex v is assigned 2 at time 0 and
vertex u is assigned —2. Note that unless the 2 or —2
become 1 or —1, both of them preform random walks
on the graph G. Furthermore, these walks are inde-
pendent except when wu,v are adjacent and the edge
connecting them is ringing. By the cat and mouse
game analyzed in Aldous-Fill book section 6.4.3 it
follows that the two random walks will meet in time
O(n?) in expectation.

Since the process above can be repeated for any
pair of 2, —2 it follows that by expected time O(n?)
phase 1 has terminated.

We now proceed to phase 2. There are two cases to
consider. In the first case there are no 2, —2 present.
In this case we just perform the voter model which
is expected to converge by time O(n?) (see Proposi-
tion 7).

In the second case, there are some 2’s present and all
other vertices are labeled by 1,—1. We claim that
here the process will converge to all 1’s and 2s in time
O(n3logn). Let X (t) denote the number of positive
vertices at time ¢, where time 0 denotes the first time
where there are no —2’s. The analysis is done via com-
parison of X(¢) (the normal run) to an auxiliary pro-
cess denoted Y (t) = {Y,(t) }oev. Yu(t) takes the val-
ues 1,—1 only. At time 0 we set Y, (0) = signX,(0).
Moreover, Y follows the same choice of edges as X.
When an edge rings X does the following: it performs
a standard voter model update. However, if the up-
date leads to all —1 configuration then it is canceled.
Let Y(t) denote the number of positive vertices at
time ¢, where time 0 denotes the first time where there
are no —2’s is X.

It is easy to see that X (¢) > Y(¢) for all ¢. Y(¢)
performs a random walk reflected at the point where
there is exactly 1 positive elements. Therefore stan-

225

dard random walk estimates imply that Z(t) con-
verges to n in expected time O(n?).

These dynamics are also symmetric because if we
assign the positive states to one partition (think red),
and the negative states to the other (think blue), then
the map 7(s) = —s preserves symmetry.

4.2 Majority Coordination in Time Re-
lated to the Diameter

Unlike in the coordination problem, here we only
obtain algorithms with running time that depends on
the diameter (not the broadcast time). It turns out
our solution is cleaner in the synchronous case, and so
we present that first. The synchronous algorithm can
then be adapted to the asynchronous edge version via
a slight modification to the generic reduction given
in Theorem 4. (A common technique in distributed
computing).

The idea is to run the Wait-And-See consensus dy-
namics but instead of passing a color, point to the
neighbor that you first saw colored (which we now
call the passingup phase), and thus form a tree of
depth at most d with the elected vertex as the root.
The tree then sums up the number of each color, least
significant to most significant bit. The root looks at
which has the greatest most significant bit and passes
the decision down the tree.

One problem is that the Wait-And-See consensus
dynamics may fail to elect a single leader, and two
trees may form. In this case, if the trees produce
different colors, then we can restart.

What makes the problem tricky in the asyn-
chronous case is that a spanning tree formed by broad-
casting may have depth much greater than the diam-
eter of the tree (if there are many long paths between
two vertices, but only a few short paths). Such a tree
is very inefficient to route messages across.

The intuitive idea for the algorithm is simple and
borrows heavily from related literature; the formal
exposition, however, is somewhat cumbersome.

Definition 21. The Synchronous Wait-And-See Ma-
jority dynamics (N, %, S, A, T) are defined as follows:

Let A =N and a € A be such that a = en(d + 1)

E. MOSSEL AND G. SCHOENEBECK

for some c. Let

=3, =

color € {blue,red}

colorsaved € {blue,red}

state € { free,.passingup, outofbits }
passingdown, error, reset

parent € T'(v) UD

digitmod4 € {0, 1,2, 3}

carryred € Z

carryblue € Z

bitred € {0,1}

bitblue € {0,1}

S = {(T6d7 Ted? free7 ®7 07 07 07 07 0)7
(blue, blue, free,,0,0,0,0,0)}

For some agent v, we denote by K, the set of other
agents with v as their parent.

Let s = {syluev be the current state.
T(Su,5y,(1)> - - + 1 Syu(deg(d))) is defined as follows:

If state, = reset then
color,, = colorsaved,;
parent, = (;
state, = free;
bitred,, = bitblue = 0;
if colorsaved, = blue then
carryblue, = 1;
carryred, = 0;
if colorsaved, = red then
carryred, = 1;
carryblue, = 0;
Else if state, = error then
set state, = reset;
Else if (state, = error for any v € T',) then:
set state, = error;
Else if (state, = state,)= """
= state,, (geg(v) = fTee) then
with probability % set state, = passingup;
Else if (state, = free and
state,, = passingup for any u € I'},) then
state, = passingup;
parent, = u; (break ties arbitrarily)
Else if (state, = passingup and
state,, # free for any u € T',,) then
if (state, = outofbits for all u € K, and
bitblue, = bitred, = 0 and
carryblue, = carryred, = 0) then
state, = outofbits;
else if ((digitmodd, = digitmod4,, or
Pv = (Z))
and for all u € K,

digitmod4, =
digitmod4, + 1(mod4)) then
redbit, =
(redcarryy, + 3, c i, redbits,) mod 2;
redcarry, =
|(redearry, + 3, c i, redbits,)/2];
update bluebit, and bluecarry, similarly.
digitmod4, = digitmod4, +1 mod 4
ifredbit, > bluebit, then
color, = red;
itbluebit, > redbit, then
color, = blue
Else if state, = outofbits then
if parent, =0
state, = passingdown;
else if stateparent, = passingdown then
state, = passingdown;
color, = colorparent,;
Else if (state, = passingdown and
for some u € T',:
state, = passingdown and
color, # color,,) then
state, = error.

Theorem 22. The Wait-and-See Majority syn-
chronous dynamics N = (N,%,S, A, T) will reach
consensus in expected time % (c(d+1)+4d+2log(n))
with each vertex v requiring memory O(log(|T'(v)]))
where a = cn(d + 1). Note that if ¢ > 1 is a constant

then this is O(d + log(n)).

Proof. After expected time ¢(d+ 1) a vertex will elect
himself. If no other vertices elect themselves, then af-
ter ¢ additional steps the nodes exactly ¢ away from
the self-elected vertex will be joined to a tree with
the self-elected vertex node at the root. If more ver-
tices elect themselves, there will be more than one
tree formed. Upon entering this tree, each node will
enter the passingup state.

We claim that eventually the reds and the blues are

summed up the tree. We will show the following:

1 Each node is always computing the same digit or
one greater then its parent and the same digit or
one less then its children.

2 Each node correctly computes what it re-
ports. That is when it enters into a particu-
lar digitmod4 = ¢ for the hth time, then the
redbit (or bluebit) is correctly computing the
4(h — 1) + ¢th bit of the number of red bits (or
blue bits) in his subtree.

3 Each node at depth k computes the rth bit no
later than 2d — k + 2r bits after the vertex’s elec-
tion.

1) Is by contradiction. This is the way that things

REACHING CONSENSUS ON SOCIAL NETWORKS

begin because all nodes start computing 0 mod 4.
Assume this ever fails to be the case. Then either
a parent is a 2 digits behind a child, or a child is a
digit behind his parent. But the rules explicitly forbid
a child computing more than 1 ahead of his parent or
parent computing further than his children.

3) Then follows in part from 2). Because parent
and child never compute bits which are further distant
than 1, the digitmod4 will always keep them aligned
with each other.

4) To see this, image that the tree has depth d along
every path. Now this tree computes slower then the
actual tree. However, on this tree it is easy to see by
induction on ¢, where ¢ is the number of time steps
after the election of the original vertex, that: at time
t = d all the vertices will be in the passingup state
(and computing bit 0); and after time ¢ > d, a vertex
at depth k is computing bit [(t — 2d + k)/2] if this
is positive, and bit 0 otherwise. Each node at depth
k computes the rth bit no later than 2d — k + 2r — 1
steps after the vertexes election. Thus all the bits are
computed by the root in time ¢ = 2d + 2log(n) — 1
after the election.

It follows that the root will enter state = outofbits
at time at most 2d 4 2log(n) because after log(n) + 1
digits, the correct answer is 0. The last color that the
root has will be the last bit when either blue or red
was greater, and thus will indicated whether there are
more blues or reds in the tree. Thus eventually the
root will pass down this element.

If there is no unique tree, then the above will hap-
pen, but perhaps on several trees. If the trees all
come to the same answer (red or blue), then they will
remain. Otherwise, they will enter the error state.

Once an error state occurs, then in the next d + 1
steps, each agent will be in error for exactly 1 step
unless an agent that has been in error elects himself in
the future. For the sake of contradiction, let v be the
first node to be in error twice. Let ¢ be the first time
he was in error, and ty the second time. It is clear
that the first time that his neighbors were in error
were t1 — 1, t1, or t1 + 1. However, to > t1; + 3 because
agent will be in state reset at time ¢; + 1 and thus
unable to be in error in state ¢ + 2. But then agent
v must have had a neighbor in error in time ¢ — 1 or
greater, and so that neighbor must have been the first
to be in error twice.

Thus, after an agent enters error he will again be
in state free until another agent elects himself. This
will happen in expected time at most ¢(d + 1) after
there are no error states left. Notice that because
each agent is in error exactly once, the newly elected
passingup cannot propagate to reach the previous er-

227

ror. Thus we are in the situation before, where with
probability that another vertex elects himself before
entering the passingup state is at most %

The probability that two nodes elected themselves
is at most 1/¢, thus the number of times this must be
repeated until there is no error is %

Thus the total expected time is: %
2log(n))

Note that the only things that need to be stored
that incur super constant memory are parent which
require memory log(|I'(v)| + 1), and the carryred
and carryblue states, which also require at most
log(|T'(v)|+1) (because adding i, j-bit numbers results
in a value of at most i2? which has at most log(i) + j
bits, and so log(i) carry bits.

The dynamics are symmetric between Y, where
color = red and X, where color = blue, as can be
seen by the permutation 7 which maps color = r to
color = b and swaps states bitblue and bitred, as well
as swapping carryblue and carryred.

(c(d+1)+4d+

Theorem 23. The Wait-and-See Majority asyn-
chronous edge dynamics (N,X,S,A,T) will reach
consensus in expected time = (c(d + 1) + 4d +
2log(n)) log(n) with each vertex v requiring memory

O(log(|T'(v)|)) where a = ¢(d + 1)n.

Proof. Tt remains to extend this to the case of asyn-
chronous edges. By simulating in the naive way (see
Proposition 4), we see that we can do it with log(n)
slow down and by increasing our memory by a fac-
tor or at most |T'(v)|. However, we can do better,
because the only external information that in edge
needs to compute its next state is: if a neighbor state
is in error, if all neighbor states are free, if a neigh-
bor state is passingup, if no neighbors are free, if all
children are outofbits, if parent is on same digitmod4
and all children are on one greater digitmod4, if a par-
ents state is passingdown, if there is neighbor of state
passingdown with a different color, the sum of the red
and blue bits the children. All this information can
be stored in T'(Jv]) 4+ 10 bits of private information.

5 Conclusion and Future Research

We mention some of the future research directions.
These conceptual problems are interdisciplinary. All
have an important computational component but im-
portant aspects of these problems come from sociol-
ogy, and statistical physics.

The main challenge is to find models that accu-
rately simulate or predict human behavior. Put very
coarsely, in what situations do people behave like par-
ticles and/or small state automata? The empirical re-
sults of [5, 9, 10, 15] agreed well with computer simula-

E. MOSSEL AND G. SCHOENEBECK

tions that simulated models related statistical physics
([15], 5], [9)-

In particle systems and automaton models, the
time to converge is much slower than in our memory-
bounded dynamics models. It would be interesting
to see what happens in more realistic situations. In
particular is the time to converge polynomial in the
diameter of the graph or in the number of nodes?
Would the time to convergence be predicted better
by the diameter, or some sort of “mixing time". Of
course, it may be that none of these models predicts
reality well.

In part, our study begins to provide a theoretical
foundation and understanding of the empirical results
of [5, 9, 10, 15]. To this end, we simplify the model
in several ways. This leads to several dynamics, some
of which seem more robust/realistic than others. It
would be interesting to capture this in a more rig-
orous fashion. Our model has several simplifications
that may gloss over important concerns. Future work
could relax some of these assumptions:

e We assume that everyone uses and agrees on the
same original dynamics. It would be very inter-
esting to model (perhaps through some kind of
notion of evolvability (see [20]) how agents could
come to agree on a particular protocol.

We use bounded memory models to simulate hu-
mans. Of course, humans can compute much
more, and at the same time, perhaps, less than
these models. Perhaps using different computa-
tional bounds, or introducing a notion of error
into the calculations or communications would
better model reality.

We attempt to minimize the expected time. In
all the aforementioned experiments there was in-
stead a deadline. Perhaps the optimal dynamics
change when the deadline is very small or very
large.

We do not have any game theory or selfish incen-
tives in our models. While the problems that we
study do not require it, there are many problems
that do.

5.1 The Coloring Model and Random and
Planted Sat

The coloring model has attracted a lot of attention
in the social network literature. In this section we dis-
cuss some features of these experiments and potential
explanations. Omne of the basic question which was
looked at was how does the problem change as the
structure of the network changes?

As the network for the coloring game changes, two
things happens. First, each agents has access to dif-
ferent information. Secondly, the underlying coloring

228

problem changes, perhaps getting easier or harder. It
is hard to differential one effect from the other. Did
the network become more powerful or did the prob-
lem just become easier? From the sociology point of
view there are very good reasons to study this, be-
cause these models capture the real-world situations
of anti-correlation (see [10]). However, in this study
we simply things to just study the effect of the net-
work graph.

In [5] they note that there are “good" edges, and
“bad" edges. The former “good edges" make the color
game more easily solvable by giving the network more
information while not actually restricting the set of so-
lutions. These edges are already implied by the con-
straints of the graph. The latter “bad edges" restrict
the solutions space of colorings. They then confirm
in experiments that adding containing edges make
the solutions harder (it is solved less often or takes
more time) and that adding redundant edges make
the problem easier. There is a large middle range of
edges that are neither entirely easy nor hard and the
effect of these is not studied

Viewed from complexity stand point the same phe-
nomenon had already been observed for many prob-
lems, including many satisfiability problems. For ex-
ample the work in [6] implies that message passing al-
gorithms for planted SAT problems are more rapidly
converging for higher densities of formulas. In fact
such sat problems go from easy (at low densities) to
hard, and back to easy again. Intuitively we expect
that the same behavior will be displayed in real so-
cial network, esp. since this behavior is expected even
for very simple local algorithms such as MCMC and
message passing algorithms.

Already there are natural dynamics with no mem-
ory for the coloring model from statistical physics
which was used for the empirical coloring results [4].
This coincides with the natural MCMC for coloring,
i.e., the Glauber dynamics for low temperature anti-
ferromagnatic Potts model. It would be interesting to
try to employ related analytical tools on social net-
work graphs with different topologies.

Acknowledgements

EM acknowledge the support by DMS 0548249
(CAREER) award, DOD ONR grant N0014-07-1-
05-06, ISF grant 1300/08 grant PIRG04-GA-2008-
239137. GS was supported by a National Science
Foundation Graduate Fellowship and an internship
at Microsoft Research New England (NERD). The
authors would want to acknowledge the hospitality
and interdisciplinary atmosphere at Microsoft NERD
where this this paper was born.

REACHING CONSENSUS ON SOCIAL NETWORKS

References

(1]

(12]

(13]

(14]

(15]

(16]

(17]

F. Btentezit, P. Denantes, A. G. Dimakis, P. Thiran,
and M. Vetterli. Reaching consensus about gossip:
convergence times and costs. In Information Theory
and Applications, January 2008.

F. Benezit, P. Thiran, and M. Vetterli. Interval con-
sensus: from quantized gossip to voting. In ICASSP
2009, pages 3661 — 3664, 2009.

P. Cliford and A. Sudury. A model for spatial conflict.
Biometrika, 60(3):581-588, 1973.

D. Enemark, July 2009. Personal and email coore-
spondence.

D. Enemark, M. McCubbins, R. Paturi, and
N. Weller. Good edge, bad edge: How network struc-
ture affects a group’s ability to coordinate. In ES-
ORICS, March 2009.

U. Feige, E. Mossel, and D. Vilenchik. Complete con-
vergence of message passing algorithms for some sat-
isfiability problems. In Proceedings of Random 2006,
pages 339-350. Springer, 2006.

A. Holley and T. M. Liggett. FErgodic theorems
for weakly interacting infinite systems and the voter
model. Ann. Probab., 3:643-663, 1975.

M. O. Jackson. Social and Economic Networks.
Princeton University Press, 2008.

M. Kearns, S. Judd, J. Tan, and J. Wortman. Behav-
ioral experiments on biased voting in networks. Pro-
ceedings of the National Academy of Science, January
20009.

M. Kearns, S. Suri, and N. Montfort. An experimen-
tal study of the coloring problem on human subject
networks. Science, 313:824-827, August 2006.

M. Kearns and J. Tan. Biased voting and the demo-
cratic primary problem. In Proceedings of the 4th In-
ternational Workshop on Internet and Network Eco-
nomics (WINE’08), pages 639-652, 2008.

D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. Foundations
of Computer Science, Annual IEEE Symposium on,
0:482, 2003.

G. Kossinets, J. Kleinberg, and D. Watts. The struc-
ture of information pathways in a social communica-
tion network. In KDD ’08: Proceeding of the 14th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 435443, New
York, NY, USA, 2008. ACM.

M. Land and R. K. Belew. No perfect two-state cel-
lular automata for density classification exists. Phys.
Rev. Lett., 74(25):5148-5150, Jun 1995.

B. Latané and T. L’Herrou. Spatial clustering in
the conformity game: Dynamic social impact in elec-
tronic groups. Journal of Personality and Social Psy-
chology, 70(6):1218-1230, 1996.

T. M. Liggett. Interacting particle systems, vol-
ume 276 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathemati-
cal Sciences]. Springer-Verlag, New York, 1985.

R. Olfati-saber, J. A. Fax, and R. M. Murray. Con-

229

(18]

[19]

[20]

sensus and cooperation in networked multi-agent sys-
tems. In Proceedings of the IEEE, page 2007, 2007.
J. P. Onnela, J. Saraméki, J. Hyvonen, G. Szabd,
D. Lazer, K. Kaski, J. Kertész, and A. L. Barabasi.
Structure and tie strengths in mobile communication
networks. Proceedings of the National Academy of
Sciences, 104(18):7332-7336, May 2007.

D. Peleg. Distributed Computing: A Locally-Sensitive
Approach. STAM Monographs, Philadelphia, USA,
2000.

L. G. Valiant.
20009.

Evolvability. J. ACM, 56(1):1-21,

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

