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Abstract: We consider the problem of boosting the accuracy of weak learning algorithms in the agnostic
learning framework of Haussler (1992) and Kearns et al. (1992). Known algorithms for this problem (Ben-
David et al., 2001; Gavinsky, 2002; Kalai et al. , 2008) follow the same strategy as boosting algorithms in the
PAC model: the weak learner is executed on the same target function but over different distributions on the
domain. Application of such boosting algorithms usually requires a distribution-independent weak agnostic
learners. Here we demonstrate boosting algorithms for the agnostic learning framework that only modify the
distribution on the labels of the points (or, equivalently, modify the target function). This allows boosting a
distribution-specific weak agnostic learner to a strong agnostic learner with respect to the same distribution.
Our algorithm achieves the same guarantees on the final error as the boosting algorithms of Kalai et al. (2008)
but is substantially simpler and more efficient.
When applied to the weak agnostic parity learning algorithm of Goldreich and Levin (1989) our algorithm
yields a simple PAC learning algorithm for DNF and an agnostic learning algorithm for decision trees over
the uniform distribution using membership queries. These results substantially simplify Jackson’s famous DNF
learning algorithm (1994) and the recent result of Gopalan et al. (2008).
We also strengthen the connection to hard-core set constructions discovered by Klivans and Servedio (1999)
by demonstrating that hard-core set constructions that achieve the optimal hard-core set size (given by Holen-
stein (2005) and Barak et al. (2009)) imply distribution-specific agnostic boosting algorithms. Conversely, our
boosting algorithm gives a simple hard-core set construction with an (almost) optimal hard-core set size.
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1 Introduction
A boosting algorithm is a technique for combining

the outputs of a learning algorithm(s) of low but non-
trivial accuracy to obtain a hypothesis of high(er) ac-
curacy. Since its introduction by Schapire [30] in the
Valiant’s PAC learning model [32] it has become one
of most studied areas in the theoretical and applied
machine learning and also one of the tools widely used
in practice.

While numerous boosting algorithms are known
that can boost the accuracy of a weak PAC learner
[26] to an arbitrarily high value, very few boosting
algorithms can provably improve the accuracy in the
presence of noisy or inconsistent data1.

A natural model of learning without the PAC model
assumptions on the target function is the agnostic
learning model of Haussler [16] and Kearns, Schapire
and Sellie [25]. The goal of an agnostic learning al-
gorithm for a concept class C is to produce, for any
distribution on examples, a hypothesis h whose er-

1A number of boosting algorithms were designed specifically
to address the suboptimal performance of early boosting algo-
rithms on noisy data. However they were either still analyzed in
the noiseless PAC model (e.g. [10]) or only tested empirically.

ror on the distribution is close to the best possible
by a concept from C. This model reflects a common
empirical approach to learning, where few or no as-
sumptions are made on the process that generates the
examples and a limited space of candidate hypothesis
functions is searched in an attempt to find the best
approximation to the given data.

The problem of boosting the accuracy of a weak
learner in the agnostic learning framework was first
considered by Ben-David, Long and Mansour [2]. The
weak learner that was given to the boosting algorithm
in their definition was a β-optimal agnostic learner,
namely an agnostic learner that for any distribution
A, produces a hypothesis with error ∆ + β, where ∆
is the error of the best hypothesis in C (relative to
A). Ben-David et al. described a boosting algorithm
that for a certain range of values ∆ and β produces
a hypothesis that has a lower error than the provided
weak learner. In a subsequent work Gavinsky showed
that a β-optimal agnostic learner can be boosted to
a learner that achieves the error of ∆

1/2−β + ε in time
polynomial in 1/ε [12]. He has also shown that this
error is within the factor of 2 from the best achievable
for this problem.
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Recently Kalai, Mansour and Verbin have examined
boosting a different type of weak learner [22]. Specifi-
cally, they define an (α, γ)-weak agnostic learner to be
a learning algorithm that produces a hypothesis with
the error of at most 1/2 − γ whenever ∆ ≤ 1/2− α.
Kalai et al. gave a boosting algorithm that boosts
any (α, γ)-weak agnostic learner to an (α+ ε)-optimal
agnostic learner in time polynomial in 1/γ and 1/ε.
They have also demonstrated that such a boosting
algorithm can be used to obtain the first non-trivial
distribution-independent agnostic learning algorithm
for parities. Their boosting algorithm is based on
a boosting-by-branching-programs algorithm of Man-
sour and McAllester [29] and its analysis by Kalai and
Servedio [23].

As these agnostic boosting algorithms are based
on boosting algorithm in the PAC learning frame-
work, they work by applying the weak learner to the
target function on carefully constructed distributions
over the domain. This implies that such boosting
algorithms can only be applied in the distribution-
independent setting. (One notable exception to this
rule is Jackson’s algorithm for learning DNF expres-
sions over the uniform distribution [19] that boosts
the accuracy via an ad hoc extension of the weak
learner of Blum et al. [3] to distributions that are
close to the uniform).

1.1 Our Results
We present a simple distribution-specific agnostic

boosting algorithm for (α, γ)-weak agnostic learners.
That is, our boosting algorithm does not modify the
marginal distribution over the domain of the learning
problem but instead modifies the distribution on the
label of each example.

Theorem 1.1 There exists an algorithm ABoost that
for every concept class C and distribution D over X,
given an (α, γ)-weak agnostic learning algorithm A
for C over D, agnostically and α-optimally learns C
over D. Further, ABoost invokes A O(γ−2) times and
runs in time T ·poly(1/γ, 1/ε), where T is the running
time of A.

Our boosting algorithm implies that weak agnostic
learning with respect to any specific distribution is
equivalent to (strong) agnostic learning with respect
to the same distribution (see Theorem 3.2 for the for-
mal statement). An immediate application of this re-
sult is a simple agnostic learning algorithm for deci-
sion lists over the uniform distribution using mem-
bership queries (see Lemma 3.3). Recently, Gopalan,
Kalai and Klivans gave the first algorithm for this
problem [14]. Their proof is based on a substantially
more involved and delicate argument.

In Section 3.2 we use our boosting algorithm to ex-
tend the observation that agnostic learning of a class
C implies PAC learning of low-weight linear thresh-
olds of functions from C [25] to a distribution specific
setting. For a set of functions C and integerW denote
by TH(W,C) the set of all functions representable as
sign(

∑
i≤W fi(x)) where for all i, fi ∈ C.

Theorem 1.2 If C is efficiently agnostically learn-
able with respect to distribution D then TH(W,C) is
efficiently PAC learnable over D for any W upper-
bounded by a polynomial in the learning parameters.

An immediate application of this result is a simple
proof that DNF expressions are learnable over the
uniform distribution using membership queries [19]
(we include the details in Section 3.2). It also al-
lows to simplify the analysis in many subsequent al-
gorithms for learning DNF expressions that use the
same boosting-based approach (e.g. [4, 5, 9]). In addi-
tion, this result gives a new implication of an agnostic
algorithm for learning DNF expressions that is posed
as an open problem by Gopalan et al. [14].

We show that our boosting algorithm can also
be viewed in a more traditional setting where the
boosting algorithm runs the weak learner on modi-
fied marginal distribution but does not modify the
label distribution. In particular, in the setting of Ben-
David et al. [2] our boosting algorithm achieves the
optimal error of ∆

1−2β + ε (or 1/2 of the error achieved
by Gavinsky’s boosting algorithm [12]). The details
of this version are given in Section 3.1.

Boosting algorithms are also known to be closely re-
lated to hard-core set constructions [27], a technique
in hardness amplification [18]. Given a function f that
cannot be τ -approximated on X by circuits of certain
size s the goal of a hard-core set construction is to
construct a sufficiently large subset of X on which
f cannot be (1/2 − γ)-approximated by circuits of a
slightly smaller than s size. Here we strengthen the
connection discovered by Klivans and Servedio [27]
by observing that hard-core set constructions achiev-
ing the optimal hard-core set size of 2τ give agnostic
boosting algorithms. The first construction with this
property was given by Holenstein who used the con-
struction to obtain a key agreement protocol from a
weak bit agreement primitive [17]. In a recent work
Barak, Hardt and Kale demonstrated a more efficient
hard-core construction with this property [1]. Both of
these constructions can be easily translated into ag-
nostic boosting algorithms. In addition, we show that
our agnostic boosting algorithm gives a new hard-
core set construction algorithm with an almost op-
timal hard-core set size parameter. Our technique
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of achieving the optimal hard-core set size is differ-
ent from the method of Holenstein [17] (which is also
used by Barak et al. [1]) and the resulting algorithm
is simpler to analyze. The relation to hard-core set
constructions is presented in Section 4.

1.2 Techniques
Our boosting algorithms build a hypothesis h :
X → [−1, 1] in steps starting from the h0 ≡ 0
hypothesis. At step i the weak learner is run on
points drawn randomly from the base distribution
D and the labels given by (f(x) − hi(x))/2, that
is the expectation of the random {−1, 1} label as-
signed to point x is (f(x) − hi(x))/2. By defini-
tion, a weak hypothesis g for this distribution sat-
isfies ED[(f(x) − hi(x)/2)g(x)] ≥ 2γ. We define
h′i+1 = hi+4γ ·g. It is easy to see, that after this step
h′i+1 is “closer" to f than hi when the functions are
viewed as vectors in the appropriate Euclidean space.
This argument requires the hypothesis at each step
to have range in [−1, 1] and therefore we apply a pro-
jection step. Namely hi+1 is obtained from h′i+1 by
cutting off all values outside the range [−1, 1]. This
step only reduces the distance. This algorithm and
the distribution-specific view of boosting are implicit
in [8] where the algorithm is used to characterize the
query complexity of statistical query (SQ) [24] learn-
ing (in the PAC and the agnostic models) using a
characterization of weak SQ learning. However the
algorithm we described so far can only guarantee a
hypothesis with the error equal to twice the optimum.
To achieve the optimum we add new “balancing" steps
to process. Namely, we test the hypothesis −sign(hi)
on the data distribution produced at step i. If this
hypothesis has non-trivial performance it is used to
update hi in the same way as the weak learner. Oth-
erwise, it is easy to show that sign(hi) has close to
the optimum error at the end of the boosting process.

For our application to distribution-independent
boosting and hard-core set construction we also give
a stronger boosting algorithm that uses the same ar-
gument but on the basis of a slightly different way to
produce distribution together with a corresponding
distance function (see Theorem 1.1).

1.3 Related Work
Kalai and Kanade have very recently and indepen-

dently demonstrated a different distribution-specific
agnostic boosting algorithm [20]. Their boosting al-
gorithm is based on a smooth version of Adaboost [11]
by Domingo and Watanabe [7] and Servedio [31] and
uses an equivalent of our “balancing" step. It requires
a similar number of boosting stages and running time

as our ABoost algorithm. They also show an analo-
gous application to agnostic learning of decision trees
(see Lemma 3.3). In addition Kalai and Kanade give
a simpler version of the agnostic halfspace learning
algorithm of Kalai et al. [21] and include results from
an empirical evaluation of their algorithm.

2 Preliminaries
Let X denote some fixed domain and let F∞1 de-

note the set of all functions from X to [−1, 1] (that
is all the functions with L∞ norm bounded by 1). It
will be convenient to view a distribution D over X as
defining the product 〈φ, ψ〉D = Ex∼D[φ(x)·ψ(x)] over
the space of real-valued functions on X . It is easy to
see that this is simply a non-negatively weighted ver-
sion of the standard dot product over ℝ

X and hence
is a positive semi-inner product over ℝ

X . The corre-
sponding norm is defined as ‖φ‖D =

√
ED[φ2(x)] =√〈φ, φ〉D.

2.1 Agnostic Learning
The agnostic learning model was introduced by

Haussler [16] and Kearns et al. [25] in order to model
situations in which the assumption that examples are
labeled by some f ∈ C does not hold. In its least re-
stricted version the examples are generated from some
unknown distribution A overX×{−1, 1}. The goal of
an agnostic learning algorithm for a concept class C is
to produce a hypothesis whose error on examples gen-
erated fromA is close to the best possible by a concept
from C. Any distribution A over X × {−1, 1} can be
described uniquely by its marginal distributionD over
X and the expectation of the label given the point.
That is, we refer to a distribution A over X×{−1, 1}
by a pair (DA, φA) where DA(z) = Pr〈x,b〉∼A[x = z]
and

φA(z) = E〈x,b〉∼A[b | z = x].

Formally, for a Boolean function h and a distribu-
tion A = (D,φ) over X × {−1, 1}, we define

∆(A, h) = Pr〈x,b〉∼A[h(x) 	= b].

We will frequently use the following simple equality
∆(A, h) = (1 − 〈φ, h〉D)/2. For a concept class C,
define ∆(A,C) = infh∈C{∆(A, h)} .

Kearns et al. [25] define agnostic learning as follows.

Definition 2.1 An algorithm A agnostically learns
a concept class C by a representation class H if for
every ε > 0, δ > 0, distribution A over X × {−1, 1},
A given access to examples drawn randomly from A,
outputs, with probability at least 1 − δ, a hypothesis
h ∈ H such that ∆(A, h) ≤ ∆(A,C) + ε.
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As in the PAC learning, the learning algorithm is ef-
ficient if it runs in time polynomial 1/ε, log (1/δ) and
n. Here and elsewhere when not noted otherwise, we
use n as a bound on the description length of every
concept in C and also the dimension of the domain.

In the distribution-specific version of this model,
learning is only required for every A = (D,φ), where
D equals to some fixed distribution known in advance.

In order to define boosting in the agnostic setting
we use the following definitions from [22]. For 0 <
β ≤ 1/2 we say that a learning algorithm is β-optimal
agnostic if for every ε > 0 the algorithm produces a
hypothesis h such that ∆(A, h) ≤ ∆(A,C)+β+ε. We
note that Ben-David et al. [2] use a slightly stronger
notion of β-optimality that does not have the extra ε
but this will not be significant for our discussion.

For 0 < γ ≤ α ≤ 1/2 we say that a learning al-
gorithm is (α, γ)-weak agnostic if the algorithm pro-
duces a hypothesis h such that ∆(A, h) ≤ 1/2 − γ
whenever ∆(A,C) ≤ 1/2− α.

For convenience when discussing weak agnostic
learning we also define Γ(A, h) = 1/2 −∆(A, h) and
Γ(A, h) = 1/2−∆(A,C) accordingly. A weak agnostic
learning algorithm is an algorithm that can recover at
least a polynomial fraction of the advantage over the
random guessing of the best approximating function
in C. Specifically, it produces a hypothesis h such
that Γ(A,C) ≥ p(1/n,Γ(A,C)) for some polynomial
p(·, ·).

3 Agnostic Boosting
The main component of the agnostic boosting al-

gorithm in the work of Kalai et al. [22] is a more
general algorithm that boosts every (α, γ)-weak ag-
nostic learner to an α-optimal agnostic learner. We
first show a weaker algorithm that boosts any (α, γ)-
weak agnostic learner to a 2α-optimal agnostic learner
(but is sufficient for boosting a weak agnostic learning
algorithm to a strong one).

Theorem 3.1 There exists an algorithm A2boost
that for every concept class C and distribution D over
X, given an (α, γ)-weak agnostic learning algorithm A
for C over D agnostically and 2α-optimally learns C
over D. Further, A2boost invokes A O(γ−2) times
and runs in time T · poly(1/γ, 1/ε), where T is the
running time of A.

Proof: Let A = (D,φ) be the target distribution over
examples. Our algorithm performs a form of projected
gradient descent to the function φ, where the weak ag-
nostic learning provides the equivalent of the gradient
computation.

We start with a hypothesis h0 ≡ 0. Let hi ∈ F∞1
be the current hypothesis. We run the algorithm A
on examples from Ai = (D, (φ − hi)/2). Note that
(φ−hi)/2 ∈ F∞1 and therefore this is possible. Specif-
ically, to produce a random example from Ai we draw
a random example (x, b) from A and output (x, b)
with probability 1/2 and (x, b′) with probability 1/2,
where b′ is a {−1, 1} Bernoulli random variable with
expectation −hi(x).

If a hypothesis g with error of at most 1/2−γ is out-
put by A we update hi using g in the way we describe
later. Otherwise, we test the error of −sign(hi) on
distribution Ai. If the error is at most 1/2− ε/2 then
we update hi using −sign(hi). We refer to this up-
date as balancing. If neither of these conditions holds
the algorithm stops and outputs sign(hi) as its final
hypothesis. To reduce the number of potentially more
expensive invocations of the weak learner we perform
balancing steps until ∆(Ai,−sign(hi)) ≥ 1/2− ε/2.

To update hi using a function gi (which is either g
or −sign(hi)) that has error 1/2−γi we add 4γi ·gi to
hi and then truncate all the values outside of [−1, 1].
Namely we set h′i+1 = hi + 4γi · gi and let hi+1 ≡
P1(h′i+1), where

P1(a) ≜
{
a |a| ≤ 1
sign(a) otherwise.

We note that when gi = −sign(hi) the projection
step P1 will not be necessary since h′i+1 ∈ F∞1 .

We first prove that this process will terminate after
at most O(γ−2) invocations of the weak learner and
O(ε−2) balancing steps. To show this we prove that in
each step hi is closer to φ by at least 16γ2

i . Specifically,
we claim that

‖φ− hi+1‖2D ≤ ‖φ− hi‖2D − 16γ2
i .

By the definition, gi has error 1/2− γi on Ai. This is
equivalent to 〈φ − hi, gi〉D ≥ 4γi. Therefore

‖φ− h′i+1‖2D = ‖φ− (hi + 4γigi)‖2D
= ‖φ− hi‖2D − 8γi〈φ− hi, gi〉D + 16γ2

i ‖gi‖2D
≤ ‖φ− hi‖2D − 32γ2

i + 16γ2
i

= ‖φ− hi‖2D − 16γ2
i .

We now observe that the projection step can only
decrease the distance to φ, in other words ‖φ −
P1(h′i+1)‖2D ≤ ‖φ − h′i+1‖2D. This follows easily from
the fact that for any value b ∈ [−1, 1] and any real
value a, (b−P1(a))2 ≤ (b−a)2. Hence, ‖φ−hi+1‖2D ≤
‖φ− h′i+1‖2D.
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By the definition, after each successful invocation
of the weak learner γi = γ and at most one not suc-
cessful invocation of the weak learner is performed for
every successful one. Similarly, in each balancing up-
date γi = ε/2 and at most two tests of the error of
−sign(hi) are performed for each balancing update.
In addition, ‖φ − h0‖2D = ‖φ‖2D ≤ 1 and therefore
the process has to terminate after at most γ−2/8 in-
vocations of the weak learner and ε−2/4 balancing
updates.

We now need to prove that the final hypothesis h =
sign(ht) satisfies ∆(A, h) ≤ ∆(A,C) + 2α + ε. Let
c ∈ C be the function such that ∆(A,C) = ∆(A, c) or
〈φ, c〉D = 1− 2∆(A,C). By the definition of the final
hypothesis h, we know that our boosting algorithm
has not received a weak hypothesis with error ≤ 1/2−
γ. By the property of (α, γ)-weak agnostic learning
this implies that ∆(At, c) ≥ ∆(At, C) ≥ 1/2 − α, or
〈(φ − ht)/2, c〉D ≤ 2α. This gives us that 〈ht, c〉D ≥
〈φ, c〉D − 4α = 1− 2∆(A,C)− 4α (∗).

In addition, we know that the error of
−sign(ht) on At is at least 1/2 − ε/2. That
is, 〈(φ − ht)/2,−sign(ht)〉D ≤ ε. This gives
〈φ, sign(ht)〉D ≥ 〈ht, sign(ht)〉D − 2ε. We observe
that 〈ht, sign(ht)〉D ≥ 〈ht, c〉D and combine this
with (∗) to obtain

〈φ, h〉D = 〈φ, sign(ht)〉D ≥ 〈ht, sign(ht)〉D − 2ε
≥ 〈ht, c〉D − 2ε ≥ 1− 2∆(A,C)− 4α− 2ε.

Therefore ∆(A, h) = (1−〈φ, h〉D)/2 ≤ ∆(A,C)+2α+
ε.

Finally, we note that we assumed that γi is known
to the boosting algorithm exactly. It is easy to see
that we can use an appropriate estimate in the analy-
sis above instead. Specifically, we use random samples
to estimate the error of the weak hypothesis g within
γ/4. If the estimate is smaller than 1/2−3γ/4 we up-
date hi using g with the empirical estimate in place
of the true value γi. It is easy to see that in this case
the distance will be reduced by at least 3γ2. The error
estimate of −sign(hi) is treated analogously.

We can now show that efficient weak agnostic learn-
ing with respect to distribution D implies efficient ag-
nostic learning with respect to distribution D.

Theorem 3.2 Let C be a concept class and D be a
distribution over X such that C is efficiently weakly
agnostically learnable over D. Then C is efficiently
agnostically learnable over D.

Proof: By the definition, a weak agnostic learning
algorithm is a (τ, p(1/n, τ))-weak agnostic learning
algorithm for some fixed polynomial p(·, ·) and ev-
ery τ . By boosting an (ε/3, p(1/n, ε/3))-weak agnos-

tic learning algorithm using A2boost with the accu-
racy parameter set to ε/3 we obtain an algorithm that
outputs a hypothesis with performance ∆(A,C) + ε,
in other words a strong agnostic learning algorithm.
Note that the marginal distributions used in every
stage of boosting are the same as in the original prob-
lem and the running time is polynomial in n and 1/ε.

An immediate application of Theorem 3.2 is a sim-
ple proof of agnostic learnability of decision trees
over the uniform distribution and using membership
queries that was recently obtained by Gopalan et al.
[14].

Lemma 3.3 Let Cs be the concept class of decision
lists of size s over {0, 1}n. Cs is agnostically learnable
over the uniform distribution and using membership
queries in time polynomial in n, s and 1/ε.

Proof: As it has been shown by Kushilevitz and Man-
sour, the L1 norm of the Fourier representation of a
decision tree of size s is at most s [28]. Namely, if c is a
decision tree of size s then L1(c) =

∑
a∈{0,1}n |ĉ(a)| ≤

s, where ĉ(a) is the Fourier coefficient of c with index
a. Now let U be the uniform distribution over {0, 1}n,
φ ∈ F∞1 and let A = (U, φ). If ∆(A,Cs) ≤ 1/2 − τ
then there exists c ∈ Cs such that 〈c, φ〉U ≥ 2τ . But
c =
∑
a∈{0,1}n ĉ(a)χa(x) and, in particular,

〈c, φ〉U =
∑

a∈{0,1}n
ĉ(a)〈χa(x), φ〉U ≥ 2τ .

This implies that there exists a′ such that
|〈χa′(x), φ〉U | ≥ 2τ/L1(c) ≥ 2τ/s. Therefore
∆(A,χa′) ≤ 1/2 − τ/s or ∆(A,−χa′) ≤ 1/2 − τ/s.
This implies that an agnostic learning algorithm for
parity with ε = τ/(2s) is also a weak agnostic learner
for decision trees of size s. An agnostic learning al-
gorithm for a parity function over the uniform dis-
tribution and using membership queries was given by
Goldreich and Levin [13] (see also [28]). To finish the
proof we simply need to apply Theorem 3.2.

We now show that a simple modification to the dis-
tributions and the potential function used in A2boost
gives an agnostic boosting algorithm from (α, γ)-weak
agnostic learning to α-optimal agnostic learning.

Theorem 3.4 (Restated from 1.1) There exists
an algorithm ABoost that for every concept class
C and distribution D over X, given an (α, γ)-weak
agnostic learning algorithm A for C over D agnos-
tically and α-optimally learns C over D. Further,
ABoost invokes A O(γ−2) times and runs in time
T · poly(1/γ, 1/ε), where T is the running time of A.

Proof: First we assume for simplicity that φ = f for
some Boolean f , that is, the examples are labeled by
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a function. The proof is based on the same idea as the
proof of Th. 3.1. However in order to avoid the double
loss of α we use a different distribution Ai at every
stage. Specifically, we let Ai = (D,P1(f − hi)) and
update the hypothesis using hi+1 = P1(hi + 2γigi)
while the rest of the algorithm is exactly the same.
As before, in order to prove the claim we first prove
that the boosting process will terminate after at most
O(γ−2 + ε−2) steps. The potential function whose
gradient is P1(f − hi) is defined as follows. For a real
a let

R(a) ≜
{
a2 |a| ≤ 1
2|a| − 1 otherwise

(It is easy to see that for every b ∈ {−1, 1}, dR(b −
a)/da = −2P1(b − a).) The potential of function h ∈
F∞1 relative to f and D is defined to be ED[R(f−h)].
We next claim that for every Boolean f and distribu-
tion D,

1. ED[R(f − h0)] = ED[R(f)] = 1 and for any real-
valued function ψ, ED[R(f − ψ)] ≥ 0;

2. If 〈P1(f − hi), gi〉D ≥ 2γi then ED[R(f − (hi +
2γigi))] ≤ ED[R(f − hi)] − 4γ2

i ; to see this we
simply observe that for every point x,

R(f(x)− (hi(x) + 2γigi(x)))
−R(f(x)− hi(x))
≤ −4γiP1(f(x)− hi(x))gi(x) + (2γigi(x))2.

3. ED[R(f − P1(h))] ≤ ED[R(f − h)].
For the second part of the proof we prove that

∆(A, h) ≤ ∆(A,C) + α + ε/2. As in the previous
proof, 〈f, c〉D ≥ 1− 2∆(A,C). In addition, the stop-
ping condition implies that 〈P1(f −ht), c〉D ≤ 2α and
〈P1(f − ht),−sign(ht)〉D ≤ ε. We now observe that
L1 norm of our distribution function P1(f − ht) is
small. Namely

ED[|P1(f − ht)|] = ED[f · P1(f − ht)]
= ED[c · P1(f − ht)] + ED[(f − c) · P1(f − ht)]
≤ 2α+ ED[|f − c|] ≤ 2α+ 2∆(A,C) (1)

For the second step we show that

Pr
D

[f 	= sign(ht)] = 1
2

ED[|f − sign(ht)|]

≤ 1
2

ED[P1(f − ht)(f − sign(ht))]

≤ 1
2

(ED[|P1(f − ht)|] + ε). (2)

By combining equations (1) and (2) we get that
PrD[f 	= sign(ht)] ≤ ∆(A,C) + α+ ε/2.

Finally, we note that if the function φ(x) is not
Boolean we can reduce the analysis to the Boolean
case by treating each point x as two points: one with
probability D(x)(1+φ(x)/2) with the target function

equal to 1 and the other one with probabilityD(x)(1−
φ(x)/2) and the target equal to −1. All functions that
we consider are treated as identical on both of these
points. The hypotheses we generate are combinations
of the weak learning hypotheses and therefore will also
be identical on both of these points.

3.1 Relation to Distribution Independent
Boosting

The boosting algorithms of this section can also be
viewed in the regular setting where the boosting algo-
rithm uses the weak learner on artificially constructed
distributions over the domain. To see this one can
observe that by outputting a random coin with ex-
pectation (f(x) − h(x))/2 (or P1(f(x) − h(x)) in the
case of ABoost) instead of f(x) we reduce the contri-
bution of the correlation on point x to the total value
of correlation in the same way as the regular boosting
algorithms modify the weights of the point x to re-
duce or increase the contribution. At the same time,
as demonstrated by Ben-David et al. [2] and Gavinsky
[12] modifying the distribution does give the boosting
algorithm an ability to boost beyond an α-optimal
solution (at the expense of a stronger assumption).
We demonstrate this by giving the following version
of our boosting algorithm.

Theorem 3.5 There exists an algorithm ABoostDI
that for every concept class C over X, given a distri-
bution independent (α, γ)-weak agnostic learning al-
gorithm A′ for C, for every distribution A = (D, f)
over X and ε > 0, produces a hypothesis h such
that PrD[f 	= h] ≤ ∆(A,C)

1−2α + ε. Further, ABoostDI
invokes A′ O(γ−2∆′−1 log (1/∆′)) times for ∆′ =
∆(A,C)/(1− 2α) and runs in time T · poly(1/γ, 1/ε),
where T is the running time of A′.
Proof: We first observe that for every Boolean func-
tion f , h ∈ F∞1 , and x ∈ X , P1(f(x) − h(x)) =
f(x)|P1(f(x) − h(x))|. This implies that for every
function g ∈ F∞1 ,

ED[P1(f(x)− h(x))g(x)]
= ED[|P1(f(x)− h(x))|f(x)g(x)]
= EDh [f(x)g(x)] ·Nh ,

where Dh is the distribution defined by the den-
sity function Dh(x) = D(x)|P1(f(x) − h(x))|/Nh
and Nh = ED[|P1(f(x) − h(x))|] is the normaliza-
tion factor. Therefore if A′ provides a hypothesis
that satisfies EDh [f(x)g(x)] ≥ 2γ then ED[P1(f(x)−
h(x))g(x)] ≥ 2γ ·Nh. In order to bound the number of
boosting stages we need to lower bound γ ·Nh. To do
this we note that ED[|P1(f − h)|] ≥ Pr[f 	= sign(h)]
and therefore we can assume that Nh ≥ ∆′ which
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is the desired final error of the boosting algorithm
that we will determine later. Otherwise, the error
of sign(h) is already sufficiently small and we can
stop the boosting (using an additional testing step).
This implies that the total number of calls to the
weak learner is O(γ−2∆′−2). We can also sharpen
this bound by noticing that Nh = ED[|P1(f − h)|] ≥
ED[R(f−h)]/3. This implies that at every stage when
the weak learner’s hypothesis is used

ED[R(f − hi+1)] ≤ ED[R(f − hi)]− 4(γ ·Nh)2

≤ ED[R(f − hi)](1− γ2 ·Nh)

≤ ED[R(f − hi)](1− γ2 ·∆′).
This implies that after at most t = γ−2∆′−1 ln (∆′−1)
steps Pr[f 	= sign(ht)] ≤ ED[R(f − ht)] ≤ ∆′, which
implies that the boosting process will terminate.

Finally, we need to define ∆′. By the defi-
nition, A′ returns a good weak learner whenever
EDh [f(x)g(x)] ≥ 2α and hence if the boosting
stopped then ED[c·P1(f−ht)] < 2α·Nht . By plugging
this into equation (1), we obtain that

Nht = ED[|P1(f − ht)|] ≤ 2∆(A,C) + 2α ·Nht ,

which gives us the bound Nht ≤ 2∆(A,C)
1−2α . By plugging

this into equation (2) we obtain that

Pr
D

[f 	= sign(ht)] ≤ Nht/2 + ε/2

≤ ∆(A,C)
1− 2α

+ ε/2 .

We therefore set ∆′ = ∆(A,C)
1−2α + ε/2.

To compare this result with the boosting algorithms
in the setting of Ben-David et al. [2] we note that, by
the definition, any β-optimal agnostic learner is in
particular, a (β + γ′, γ′/2)-weak agnostic learner for
any inverse-polynomial γ′ ≥ 0. Therefore ABoostDI
applied to a β-optimal agnostic learner returns a hy-
pothesis with the error of at most ∆(A,C)

1−2β+γ′ + ε/2 ≤
∆(A,C)

1−2β + ε for γ′ = ε/(4(1 − 2β)). As demonstrated
by Gavinsky, this is optimal [12].

Remark 3.6 We remark that ABoostDI does not
modify the target function and therefore is also appli-
cable in the PAC framework. In addition, ABoostDI
has the optimal smoothness. That is, when learning
to accuracy ε′ the weight of any point under any of the
distribution generated by the boosting algorithm is at
most 1/(2ε′−ε) times higher than the weight under D.
This is true since Dh(x) = D(x)|P1(f(x)−h(x))|/Nh
and Nh ≥ 2 Pr[f 	= sign(h)]−ε. Smoothness property
is crucial in a number of applications of boosting algo-
rithms such as learning DNF expressions over the uni-
form distribution [19], learning with malicious noise

[31] and the connection to hard-core set constructions
[27].

3.2 Applications to PAC Learning
It has long been noted that efficient agnostic learn-

ing of a concept class C over a distribution D im-
plies efficient weak learning of the class of functions
expressible as low-weight linear thresholds of func-
tions from C over D [25]. It therefore follows that
distribution-independent agnostic learning of C im-
plies PAC learning of TH(W,C) (see Section 1.1 for
the definition) for any polynomially boundedW . Our
goal is to strengthen this implication to distribution-
specific learning.

Theorem 3.7 (Restated from 1.2) If C is agnos-
tically learnable with respect to distribution D in time
T (n, ε) then TH(W,C) is PAC learnable over D in time
O((W/ε)2 · T (n, ε/(4W )) + poly(n,W, 1/ε)).

Proof: The reduction from PAC to agnostic learn-
ing relies on the discriminator lemma of Hajnal et
al. [15] stating that for every f ∈ TH(W,C) and ev-
ery distribution D, there exists a function in c′ ∈ C
such that |〈f, c′〉D| ≥ 1/W . Now for h ∈ F∞1 , let
Dh be the distribution defined in the proof of Th.
3.5 (that is Dh(x) = D(x)|P1(f(x) − h(x))|/Nh).
The discriminator lemma implies that there exists
c′ such that |〈f, c′〉Dh | ≥ 1/W . This implies that
|〈f − h, c′〉D| ≥ Nh/W . As we have showed in
Th. 3.5, Nh ≥ PrD[f 	= h] ≥ ε since the desired
accuracy of PAC learning is ε. This implies that
|〈f − h, c′〉D| ≥ ε/W . Therefore when the agnostic
learner for C is run on the distribution (D, f − h)
with ε′ = ε/(4W ) it will return a function g such
that 〈f − h, g〉D ≥ ε/(2W ) (for simplicity we can as-
sume that C is closed under negation; alternatively
we can also run the agnostic learner on the negation
of (D, f−h) and negate the result). We can therefore
use g in the same way as in the Theorem 1.1 with
γ = ε/(4W ) and the accuracy of the boosting process
set to ε′′ = ε/2 until the accuracy of sign(hi) reaches
ε. The total number of boosting stages is O((W/ε)2)
and the running time is polynomial in 1/ε andW and
the running time of the agnostic learner for C (with
ε′ = ε/(4W )). Finally we note that in this result one
can also use the slightly simpler A2boost in place of
ABoost and there is not need to balance hi by test-
ing −sign(hi) hypothesis (since those only affect the
constant multiplier of the accuracy).

An immediate application this result gives a DNF
learning algorithm directly from a uniform distribu-
tion agnostic parity learning algorithm (such as the
Kushilevitz-Mansour algorithm [28]) without the need
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for a specialized analysis of the Fourier Transform of
distribution functions given by Jackson [19] and used
in many subsequent works. This follows from the
fact that polynomial size DNF formulas can be repre-
sented as low-weight thresholds of parities (or TOP)
[19]. We further note that the resulting algorithm is
the same as that obtained in Lemma 3.3 (up to the
setting of the parameters).

A related corollary of this result is that agnostic
learning of DNF formulas from membership queries
over the uniform distribution (see [14] for the problem
definition) would imply (strong) learning of depth-3
circuits (even with a majority gate at the top) with
membership queries.

4 Relation to Hard-core Set Construc-
tion

We start with a couple of definitions relevant to
hard-core set construction. We say that a function f
is λ-hard for size s if for every circuit z of size at most
s, PrU [f(x) 	= z(x)] ≥ λ, where U denotes the unform
distribution over X . A measure M over X is a func-
tion from X to [0, 1]. The density of a measure M
is defined to be µ(M) = (

∑
x∈XM(x))/|X |. We say

that f is γ-hard-core on M for size s if for every cir-
cuit z of size at most s, PrUM [f(x) 	= z(x)] ≥ 1/2−γ,
where UM is the distribution on X with density func-
tion UM (x) = M(x)/µ(M). Similarly, we say that
f is γ-hard-core on a set S ⊆ X for size s if f is
γ-hard-core on MS for size s, where MS(x) is the
characteristic function of S. It is well-known that in
order to construct a hard-core set of size δ · |X | it is
sufficient to construct a hard-core measure of density
at least δ [18]. All known uniform constructions of
a measure for which f is γ-hard-core are essentially
boosting algorithms that construct a sequence of mea-
sures M0,M1, . . . each of density at least δ such that
if f is not γ-hard-core on Mi for size s then a circuit
zi that (1/2−γ)-approximates f onMi is used to cre-
ateMi+1. If this process does not stop after a certain
number of steps then zi’s can be combined to obtain
a circuit that λ-approximates f . This contradicts λ-
hardness of f for some size s′ and therefore implies
that f is γ-hard-core on one of the constructed mea-
sures. An important parameter of such a construction
is the density δ as a function of λ (and sometimes
γ). Impagliazzo showed a construction of a hard-core
set of size λ and asked whether the optimal size of
2λ is achievable [18]. Holenstein [17] gave the first
construction with the optimal hard-core set size pa-
rameter on the basis of Impagliazzo’s hard-core set
construction [18]. In a recent work Barak et al. gave
a more efficient construction based on multiplicative

updates and Bregman projections [1].
It is easy to see that the distribution UM is 1/δ-

smooth if and only if the measure M has density δ
[27]. Gavinsky has demonstrated that the smoothness
of distributions produced by a boosting algorithm de-
termines the error that the boosting algorithm will
achieve when boosting a (distribution-independent)
β-optimal agnostic learner [12]. Our goal is to com-
bine these observations in the context of distribution-
specific agnostic boosting. Namely we are going to
show that hard-core set constructions that achieve
the optimal set size of 2λ are (distribution-specific)
agnostic boosting algorithms. We start with a for-
mal statement of the hard-core set lemma with the
optimal set size parameter.

Lemma 4.1 ([1, 17]) Let f be a Boolean function
over a domain X, s be an integer, δ > 0 and γ > 0.
Suppose, there exists an algorithm A which for any
measure M over X of density δ, given access to ran-
dom examples from distribution (UM , f), returns a
circuit z of size at most s such that PrUM [z(x) 	=
f(x)] ≤ 1/2 − γ. Then there is an algorithm B
which for every f , given access to random examples
from distribution (U, f), with probability at least 1/2
(over the internal randomness of B) returns a cir-
cuit z′ of size s′ such that PrU [z′(x) 	= f(x)] ≤ δ/2.
Furthermore, the algorithm B invokes A t(1/δ, 1/γ)
times; requires time T ·m(1/δ, 1/γ, s) and s′ = O(s ·
t(1/δ, 1/γ)), where T is the time required to simulate
A, and t(·, ·) and m(·, ·) are fixed polynomials.

First, while this lemma is stated for the uniform dis-
tribution on X it is known and easy to verify directly
that it also holds for any distribution D over X (im-
plicit in [1] and in general can be obtained by tak-
ing a sufficiently large sample from D and viewing
a uniform distribution over the sample). Namely,
the lemma holds even if one replaces the uniform
distribution by D, density by density relative to D,
that is µD(M) = ED[M(x)], and UM with the dis-
tribution DM defined by density function DM (x) =
D(x)M(x)/µD(M).

Now let C be a concept class, A = (D, f) be a dis-
tribution over examples and A′ be an (α, γ)-weak ag-
nostic learner A′ for C over D. To obtain an agnostic
boosting algorithm we replace the algorithm A in the
lemma with A′. To do this we generate examples from
distribution AM = (D, f ·M) and runA′ on them. We
then return the hypothesis g given by A′ to the algo-
rithm B. We claim that if µD(M) ≥ 2(∆(A,C) + α)
then PrDM [g(x) 	= f(x)] ≤ 1/2 − γ. Observe that
if the claim holds then the execution of B will pro-
duce a hypothesis z′ such that PrD[z′(x) 	= f(x)] ≤

248



DISTRIBUTION-SPECIFIC AGNOSTIC BOOSTING

∆(A,C) + α as desired. At the same time the run-
ning time is polynomial in the relevant parameters of
agnostic learning.

To establish the claim we let c be the concept such
that ∆(A,C) = ∆(A, c) = PrD[f 	= c]. Now

ED[c · (f ·M)]
= ED[f · (f ·M)] + ED[(c− f) · (f ·M)]
≤ ED[M ]− 2 Pr

D
[|c− f |]

= µD(M)− 2 ·∆(A,C) .

Therefore if µD(M) ≥ 2(∆(A,C) + α) then ED[c ·
(f ·M)] ≥ 2α or ∆(AM , c) ≤ 1/2− α. Hence, by the
definition of A′, it will return a hypothesis g such that
ED[g · (f ·M)] ≥ 2γ. This gives us that

EDM [g · f ] = ED[g · (f ·M)]/µD(M)
≥ 2γ/µD(M) ≥ 2γ ,

or PrDM [g(x) 	= f(x)] ≤ 1/2− γ.
Finally, we also observe that ABoostDI gives a hard-

core set construction that achieves essentially optimal
hard-core set size. As we have showed in Remark 3.6,
when learning to accuracy ε′ the algorithm ABoostDI
produces 1/(2ε′−ε)-smooth distributions for any ε (in
time polynomial in 1/ε). By the observation of Kli-
vans and Servedio [27], this implies that when used
for hard-core set constructions the algorithm will pro-
duce a set of size 2ε′−ε distributions for any ε in time
polynomial in 1/ε.

5 Conclusions
We demonstrated that in the agnostic learning

framework strong learning with respect to a specific
distribution can be efficiently reduced to weak learn-
ing with respect to the same distribution. Further, we
showed that this can be done using a variety of meth-
ods, some new and simple ones given here but also via
a simple adaptation of two known algorithms [1, 17]
(and yet another method was just discovered [20]). In
our opinion these findings testify that boosting in the
agnostic learning framework is at least as natural and
powerful phenomenon as it is the PAC model. The
agnostic learning model reflects many of the prac-
tical scenarios more faithfully than the PAC model
[16] and hence we suggest that the agnostic learning
framework is better suited for theoretical analysis of
boosting algorithms. One evidence for this is that
the main reason why the Adaboost algorithm [11] is
known not to cope well with noise is that it places
too much weight on the noisy examples [6], in other
words it is not smooth. As can be seen from our work

(and from [12]), achieving the strong agnostic guar-
antees forces the boosting algorithm to be optimally
smooth.

In this version of the results we have omitted the
discussion of the circuits that combine the weak hy-
potheses and also detailed bounds on the running time
of our boosting algorithms. In part, this is because
our algorithms do not improve on the agnostic boost-
ing algorithm derived from the algorithm of Barak
et al. [1] that achieves the optimal number of boost-
ing stages and uses a simple majority to combine the
weak hypotheses. While the performance of ABoost
in the distribution-specific setting is essentially the
same, our algorithm uses a more complex circuit to
combine the weak hypotheses (primarily because of
the “balancing" step). In addition, this allows us to
simplify the presentation of the core ideas of the al-
gorithm.
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