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Abstract: We give an efficient algorithm that takes as input any (probabilistic) polynomial time algorithm
A which purports to solve SAT and finds, for infinitely many input lengths, SAT formulas φ and witnesses w
such that A claims φ is unsatisfiable, but w is a satisfying assignment for φ (assuming NP �⊆ BPP). This solves
an open problem posed in the work of Gutfreund, Shaltiel, and Ta-Shma (CCC 2005). Following Gutfreund et
al., we also extend this to give an efficient sampling algorithm (a “quasi-hard” sampler) which generates hard
instance/witness pairs for all algorithms running in some fixed polynomial time.
We ask how our sampling algorithm relates to various cryptographic notions. We show that our sampling
algorithm gives a simple construction of quasi-one-way functions, a weakened notion of standard one-way
functions. We also investigate the possibility of obtaining pseudorandom generators from our quasi-one-way
functions and show that a large class of reductions that work in the standard setting must fail.
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1 Introduction

A fundamental unresolved issue in the complex-
ity theoretic foundations of modern cryptography is
whether it is possible to base the security of cryp-
tographic primitives, such as one-way functions, col-
lision resistant hash functions, or zero knowledge,
on strong worst-case hardness assumptions such as
NP �⊆ BPP. Despite some remarkable progress in
lattice-based cryptography in the last decade, this ob-
jective remains elusive. A well-studied obstacle, artic-
ulated in a series of works [1–3], is basing the average-
case hardness of NP-problems on the assumption that
NP �⊆ BPP. But this is not the only difficulty; Im-
pagliazzo’s influential position paper on average-case
complexity [4] indicates that the question of equiva-
lence of worst-case and average-case hardness for NP
is separate from the question of basing one-way func-
tions (and symmetric key encryption) on average-case
hard problems. In particular, one-way functions re-
quire the ability to sample not only instances of hard
problems but also their solutions.

In this work we aim to illuminate that aspect of
the relationship between cryptography and worst-case
hardness that is mostly unexplored in [1–3]. In par-
ticular, we focus on the following question: if we can
sample hard instances of problems, how can we sam-
ple their solutions as well?

1.1 Sampling hard instances and their so-
lutions

The basic goal of average-case complexity is to ex-
plain the hardness of computational problems where
instances of the input are sampled efficiently from
some distribution. Currently, we have no methods
for arguing the hardness of such problems from worst-
case complexity assumptions. Gutfreund, Shaltiel and
Ta-Shma [5] proposed studying a substantially re-
laxed problem: instead of designing a single distri-
bution that is hard for all potential algorithms of an
NP-problem — in particular SAT — they ask whether
it is possible to obtain a uniform family of hard distri-
butions DA, one for every potential algorithm A for
SAT.

Gutfreund et al. showed how to obtain the distri-
butions DA: Assuming P �= NP, they give a sam-
pling procedure that, given a candidate A for SAT,
runs in time polynomial in the running time of A and
outputs formulas φ on which A fails to solve SAT for
infinitely many input lengths. Atserias [6] gave a vari-
ant of the result for nonuniform algorithms (assuming
NP �⊆ P/poly).

While the algorithm of Gutfreund et al. pro-
duces hard instances for the algorithm A, it does not
produce certificates proving that those instances are
hard. Indeed, they state it as an open problem (sug-
gested by Adam Smith) to design a “dreambreaker”:
a procedure that outputs not just a satisfiable for-
mula on which the algorithm fails, but also a satisfy-
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ing assignment for that formula (i.e., a witness that
the algorithm failed).

A dreambreaker procedure can be used to mechan-
ically produce counterexamples to purported efficient
SAT-solving algorithms (assuming P �= NP). Given a
candidate efficient SAT algorithm A and a hardness
parameter n, the dreambreaker will output a formula
φ (of size polynomial in n) and an assignment a such
that a satisfies φ, but the purported SAT algorithm
A claims that φ is not satisfiable. Given the wide use
of SAT solvers in the practice of software verification,
AI, and operations research, a mechanical procedure
for obtaining certified hard instances for them may be
of interest.

Our first contribution is to construct dreambreak-
ers against candidate search algorithms for SAT, both
deterministic and randomized.

Following [5], we then use our dreambreakers
to build quasi-hard instance/solution distribu-
tions: These are distributions produced by samplers
that given any time bound t(n) and a parameter n,
run in time polynomial in t(n) and output (with no-
ticeable probability) formula/witness pairs that are
hard for all candidate randomized search SAT algo-
rithms that run in time t(n), for infinitely many values
of n.

1.2 Quasi-one-way functions and pseudo-
random generators

The notion of a quasi-hard distribution is substan-
tially weaker than the notion of a “hard distribution”
in average-case complexity: samplers for quasi-hard
distributions may take more time to run than the ad-
versaries sampled against, while samplers for average-
case hard problems have a fixed running time that
can be exceeded by their adversaries. Yet, Gutfeund
and Ta-Shma [7] showed that the techniques of [5],
while falling short of giving average-case hard prob-
lems, bypass the worst-case to average-case barriers
of [1] and [2].

Given that these methods manage to avoid some
of the obstacles between worst-case and average-case
complexity, we find it natural to ask whether they can
also yield weakened forms of various cryptographic
primitives. Roughly speaking, we consider primitives
where the honest party may be given more resources
than the adversary. (However, we argue that the in-
teresting definitions are not obtained by merely in-
verting the order of quantifiers in the standard cryp-
tographic definition.) We show that using quasi-hard
distributions it is possible to construct quasi-one-
way functions. These are functions which may take
more time to compute than the adversaries they fool
(as with standard one-way functions, an adversary is

“fooled” if it can’t invert), but those adversaries still
have enough resources to verify candidate preimages
to the function. See Section 2 for a formal definition
and discussion.

Next, we consider pseudorandom generators [8, 9].
Relaxing the notion of a cryptographic pseudorandom
generator into one where the generator has more time
than the adversary does have a well motivated ap-
plication – algorithmic derandomization. Indeed, a
“relaxed” pseudorandom generator that takes more
time to run than the adversary is nothing more than
a pseudorandom generator of the Nisan-Wigderson
type [10]. To be consistent with our terminology,
for the purpose of this paper we will refer to pseu-
dorandom generators of the Nisan-Wigderson type as
quasi-pseudorandom generators (quasi-PRGs).

The construction of a polynomial stretch quasi-
pseudorandom generator from the assumption P �=
NP would yield a new, non-trivial derandomization of
HeurBPP. Such a derandomization would be a ‘low-
level’ analog of the Impagliazzo and Wigderson [11]
construction, giving simulations of poly(n) bits with
n bits of randomness from a stronger hardness as-
sumption ([11] obtain a sub-exponential simulation,
but only assume BPP �= EXP).

We do not know if a quasi-pseudorandom gener-
ator can be obtained from quasi-hard samplers, but
we investigate the obstacles to applying the standard
cryptographic technology for constructing pseudoran-
dom generators from one-way functions [12, 13] to our
setting. In particular, we show that no black-box re-
ductions (we define these formally in Section 2) from
distinguishing length-doubling pseudorandom gener-
ators to inverting quasi-one-way functions can exist.

2 Our Results
In this section we present formal definitions and

state the theorems we prove. We first describe the
sampling result.

2.1 Hard Instance/Solution Samplers
We consider search algorithms – it is well-known

that an efficient SAT decision algorithm implies an
efficient SAT search algorithm. In our proofs, we as-
sume the search algorithm is a canonical search algo-
rithm, i.e. that it checks that its output actually sat-
isfies the input formula (so the algorithm only errs by
outputting 0). This is without loss of generality, since
any formula φ ∈ SAT that causes the modified algo-
rithm to reject (incorrectly) also fools the original al-
gorithm. We show how to construct “dream-breakers”
for deterministic and randomized algorithms:
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Theorem 1. Assume P �= NP and let A be a
polynomial-time search algorithm. There is a polyno-
mial time procedure D, taking as input A, 1n and A′s
running time t(n), that for infinitely many n, outputs
a formula wn of length n and witness an such that
A(wn) = 0 and an is a witness for wn.
Theorem 2. Assume NP �⊆ BPP and let A be a ran-
domized polynomial-time search algorithm. There is
a probabilistic polynomial time procedure D, taking as
input A, 1n and A′s running time t(n), that for in-
finitely many n, outputs a formula wn of length n and
witness an such that with probability 1− o(1), an is a
witness for wn and Pr[A(wn) = 0] > 2/3.

We use these samplers use to obtain a “hard in-
stance” generator that produces instances hard for all
algorithms running in some fixed time t(n), both in
the deterministic and randomized settings.
Theorem 3. Assume NP �⊆ BPP. Then for every
polynomial t(n) there is a (randomized) polynomial-
time function S, S(1n) ↝ (φ,w) such that (with prob-
ability 1 − 1/t(n)) φ is satisfied by w, but Pr[A(φ) =
0] > 2/3 for any canonical (randomized) search algo-
rithm A running in time t(n).

2.2 Quasi-one-way Functions
Next, we define quasi-one-way functions. A func-

tion is one-way in the standard sense if it is easy
to compute f(x) given inputs x but difficult to find
preimages f−1(y) given outputs y. Thus, there is a
contrast between the easiness of computing f and the
hardness of inverting it. The adversary trying to find
an inverse for y may have access to more computa-
tional resources (here we focus on time) than the hon-
est party that computed f(x) = y. In contrast, quasi-
one-way functions only require that finding a preim-
age is hard for adversaries running in some fixed poly-
nomial time, and, furthermore, computing the func-
tion may take more time than those adversaries are
allowed. In the cryptographic context, this weakening
is fundamental, and one may fairly ask if it trivializes
the definition, stripping one-way functions of any in-
teresting property. Our next requirement addresses
this concern: the weakened adversary still has the
ability to verify input/output pairs to the function.
The reason for this is explained after the definition.
Definition 1 (Quasi-one-way function). Fix a poly-
nomial tV (n) and let t(n) > tV (n) be any polynomial.
A (randomized) polynomial-time computable function
f : {0, 1}n → {0, 1}n is an infinitely often quasi-one-
way function against (probabilistic) time t(n) with
verifier V running in time tV if for every x,

V (x, f(x)) = 1,

but for every algorithm A that runs in time t(n) on
inputs of length n,

Pr
x

[V (A(x, f(x)), f(x)) = 1] ≤ 1/t(n)

(for infinitely many n).

Here, both the function f or the adversary A can
be either deterministic or randomized. In this work,
we mainly consider randomized constructions against
randomized adversaries.

Deterministic versus randomized quasi-OWFs
In the standard cryptographic setting, the existence

of one-way functions is equivalent to the existence
of randomized one-way functions (both against de-
terministic and against randomized adversaries): if a
randomized one-way function exists, it can be made
deterministic by making its randomness part of its in-
put, which makes the job of the adversary only more
difficult. However, for quasi-one-way functions this
may not be possible, since the amount of randomness
used by f may exceed the running time of the adver-
sary, in which case it is unfair to ask the adversary
to recover this randomness (in particular, making the
input of f too long for the verifier V ).

We remark, however, that under the derandomiza-
tion notion introduced by Dubrov and Ishai [14] ran-
domized and deterministic quasi-one-way functions
are equivalent. Dubrov and Ishai prove that their no-
tion can be realized assuming the existence of a hard
average-case incompressible function in exponential
time.1

The role of the verifier
To relate the role of the verifier in our definition to

cryptographic aims, we refer to an analogy outlined
in [4], in which the bitter Professor Grouse hopes to
humiliate Gauss by inventing problems Gauss cannot
solve. In Minicrypt, where classical one-way func-
tions exist, such a task is possible. If both Gauss and
Grouse have access to the one-way function f , Pro-
fessor Grouse can choose a random input x and send
y = f(x) to Gauss. The hardness of inverting f en-
sures that Gauss will be unable to solve the “problem”
f−1(y). Furthermore, the fact that f is easy to com-
pute allows Grouse to humiliate Gauss by presenting
him with x, since Gauss may check for himself that x
was indeed a pre-image of y.

1In fact, a weaker notion of derandomization suffices for our
purposes: the definition of Dubrov and Ishai requires statisti-
cal indistinguishability between the random and pseudorandom
outputs (of the candidate f), while we only need computational
indistinguishability.
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Now, it is not unreasonable to suppose that Profes-
sor Grouse would be willing to spend more time find-
ing the difficult problem than Gauss would be will-
ing to spend solving it. Then a function f satisfying
our definition also accomplishes Gauss’s humiliation.
Professor Grouse would choose a random input x and
send y = f(x) (possibly taking a long time to com-
pute y) to Gauss. The hardness of inverting f pre-
vents Gauss from finding x ∈ f−1(y) in the amount
of time he is willing to spend. Triumphant, Professor
Grouse could send x to Gauss, who is willing to take
the the necessary time to check that f(x) = y. Thus,
humiliation is tied to verification, not to the ease of
computing f or the relative computational powers of
Gauss and Grouse (note that in the classical case, Pro-
fessor Grouse wouldn’t be able to find f−1(y) without
prior knowledge of x).
Relation to cryptography

One may object that humiliation isn’t a goal of
cryptography. Indeed, we do not yet know if quasi-
one-way functions can be applied to any crypto-
graphic problem. But we believe their definition cap-
tures a non-trivial aspect of the easiness-hardness con-
trast, where easiness here refers to the verification
of input/output pairs (as opposed to finding outputs
from inputs). The verification requirement implies
that quasi-one-way functions (for appropriate choices
of tV and t) can’t exist unless P �= NP (and, it is
not too hard to construct functions unconditionally
without the verification requirement).
Quasi-one-way functions from NP �⊆ BPP

We show how to construct, based on worst-case
assumptions, a randomized quasi-one-way function
against time t(n) for any polynomial t. In fact, we
construct one verifier V running in time tV while only
the function f varies with t.

Theorem 4. If NP �⊆ BPP, then there is a polyno-
mial tV and a verifier V running in time tV such that
for any polynomial t, there exists an i.o. random-
ized quasi-one-way function ft with verifier V against
probabilistic time t(n).

We remark that the verifier in our result essentially
accepts if and only if its first input is a preimage of its
second input (which is stronger than the requirement
in Definition 1). The only exceptions are inputs of the
form (x,0), which occur when the sampling algorithm
of Theorem 3 fails.

2.3 Quasi-one-way Functions and Quasi-
pseudorandom Generators

We now argue that “black-box” type construc-
tions of pseudorandom generators from one-way func-

tions do not carry over to the setting of quasi-
pseudorandom generators and quasi-one way func-
tions. To motivate our impossibility result, we re-
visit the constructions of length-doubling pseudoran-
dom generators from [15, 16] and [13], and notice that
they both conform to the model we describe below.
Since our focus is on proving lower bounds, we work
with non-uniform definitions and do not impose any
unnecessary computational restrictions, which only
makes our lower bounds stronger.

The pseudorandomness of cryptographic generators
is proven via a reduction from distinguishing to in-
verting. In the results mentioned above, the inverting
algorithm has oracle access to the function it is in-
verting. For a reduction to inverting quasi-one-way
functions, such an inverter will not suffice: in evalu-
ating the function, the reduction will necessarily take
more time than the hardness of inverting guarantee.

However it could still be conceivable that access to
the quasi-OWF verifier V may be sufficient to extend
the argument. After all, the reductions of [12] and
[13] work by first coming up with a list of candidate
inverses for the function f and then evaluating f to
check that the correct one was found. Can the use of
f be replaced by V for this purpose? We formalize
the reductions of the previous works, replacing oracle
access to f with access to V :

Definition 2. A pair of oracle circuit families (G, I)
(where I is polynomial-size) is a fully black-box quasi-
pseudorandom generator construction2 with stretch
k(n) if the following conditions hold:
• There exists a polynomial m(n) such that Gf (1n)

is a function from n bits to n + k(n) bits, where
f is a function from m(n) bits to m(n) bits.
• Whenever f is a quasi-one-way function with ver-

ifier V , for every circuit D such that
∣∣Prx∼{0,1}n [D(Gf (x)) = 1]−

Pry∼{0,1}n+k [D(y) = 1]
∣∣ > ε,

the circuit ID,V (1n) inverts f with probability
poly(ε/n) on at least a poly(ε/n) fraction of in-
puts.

We prove that fully black-box quasi-pseudorandom
generator constructions do not exist. Notice that our
definition only imposes computational restrictions on
I and not on G. (In fact, our proof allows I un-
bounded access to the distinguishing oracle. We only

2We call these reductions “fully black-box” as they treat
both the primitive in the construction and the adversary in the
proof of security as black boxes. For a detailed explanation of
the role of fully black-box reductions in cryptography we refer
the reader to [17].

293



A. BOGDANOV, K. TALWAR AND A. WAN

use the fact that I makes a bounded number of queries
to the verification oracle.)

Theorem 5. For ε = 1/2 and m(n) = ω(logn),
there is no fully black-box quasi-pseudorandom gen-
erator construction of stretch k(n) = ω(logn).

We argue that these bounds on the parameters
m(n) and k(n) are the best possible. For m(n) =
O(log n), f can be inverted with inverse-polynomial
probability simply by guessing a random inverse. For
k(n) = O(log n), Blum-Micali and Yao [8, 9] give a
fully black-box construction that matches our defini-
tion from any one-way permutation f . While we do
not know if the same stretch can be obtained when
f is an arbitrary one-way function, our impossibility
result also applies to the setting where f is only as-
sumed to be a one-way permutation.

We remark that Theorem 5 is incomparable to
a result of Gennaro and Trevisan [18], which lower
bounds the number of queries a pseudorandom gener-
ator must make to the one-way function, but imposes
no restriction on the inverting algorithm.

2.4 Our Techniques
Sampling algorithms

As mentioned in the introduction, we start with the
sampling procedure from [5], which is given a canon-
ical search3 algorithm A and obtains a distribution
that is hard for A.

Roughly speaking, this is achieved through diago-
nalization: the algorithm A is run on a formula which
describes the success of A on smaller input lengths. In
short, A is used to find the instances on which it fails.
We show that in fact A may be used to find not only
the instances on which it fails, but also the satisfying
assignments to these instances. This seems counter-
intuitive; how can A find the solutions to problems
on which it will fails? As in [5], the key lies in a di-
agonalization and running A on formulas which are
larger than the instances on which it fails.

More specifically, the sampler in [5] runs A on a
formula Φn equivalent to the NP statement:

“There exists a formula wn of size n such
that A(wn) = 0 but SAT(wn)=1.”

Whenever A returns a witness for Φn, we can extract
a formula wn and assignment an such that A(wn) = 0
but an satisfies wn. But A may not return a witness

3Gutfreund et al. also handle decision algorithms, which
presents some additional challenges. However, in our setting it
makes more sense to discuss search algrotihms, since we don’t
expect to be able to verify that formulas are unsatisfiable. In-
deed, the problem of building dreambreakers is posed for search
algorithms.

for Φn, either because A makes a mistake or because
Φn is unsatisfiable. In the first case, we can hope
to use Φn as a hard instance for A (note that Φn is
a formula of size |Φn| on which A fails) and obtain
a witness for it recursively among the formulas Φn′
for n′ < n. But what if Φn is unsatisfiable? Since
P �= NP, we know that there are infinitely many sat-
isfiable Φn; yet there is no reason to expect that A
will succeed on them. Our solution is to modify Φn
so that when A fails on an instance of size n, the for-
mulae Φn′ for all n′ > n will be satisfiable until either
A succeeds in finding a witness, or n′ is large enough
to construct the witness recursively among the smaller
formulae. The details of our sampler and the analysis
are given in Section 3.2.

The same principle underlies our sampler for ran-
domized algorithms. Now, the randomized search al-
gorithm A is run on a formula Φn,r parameterized by
both the input length and the randomness used by
A. (The precise definition of Φn,r is given in Section
3.2.) We have that when A fails on an instance of
size n, the formula Φn,r is satisfiable for most choices
of r. As in the deterministic case, the we design the
formula Φn′,r to be satisfiable (for most choices of r)
for all n′ > n until A succeeds in finding a witness
or n′ is large enough. New challenges arise because
there is nothing to prevent the density of satisfiable
Φn′,r′ from degrading as n′ increases. We show how
to overcome this obstacle and present the sampler for
randomized algorithms in Section 3.2.

Finally, we use this sampler to build a “quasi-hard”
sampler through a simple simulation argument similar
in spirit to the one in Section 5 of [5].
Constructing a quasi-one-way function

The quasi-one-way function uses formula/witness
pairs that can be obtained from the quasi-hard sam-
pler in the natural way: it outputs the formula, to-
gether with some extra information. The information
gives an easy way to find the witness given an inverse
to the output.
Ruling out quasi-PRGs from quasi-OWFs

The intuition behind the lower bound of Theorem 5
is that in the quasi-cryptographic setting, where the
inverter has no access to f , she can only gain very
limited information about f by interacting with the
distinguishing oracle. In fact, we design the distin-
guishing oracle in such a way that the inverter will
not “know” which is the correct quasi-one-way func-
tion f to invert (even if she has unbounded access
to the oracle). To do this, we base the distinguisher
D not only on the range of Gf , but also the ranges
of some other functions Gf1 , . . . , Gft . The purpose
is to confuse the inverter, which then has no way of
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knowing if she is supposed to invert f or one of the
functions f1, . . . , ft. Therefore the inversion is bound
to fail with high probability.

One obstacle that must be surmounted is that in
addition to f , the inverter is also given access to the
verifier V . Concievably, the verifier can be then used
to gain some information about the actual f that was
used in the construction. We rule out this possibility
by showing that in a bounded interaction, the inverter
is unlikely to gain much information about f from V .
We defer the explanation for this and the full proof
to Appendix 5.

3 Sampling Hard Instance Witness
Pairs

We first show how to construct the sampler for de-
terministic algorithms in Section 3.2, which proves
Theorem 1. Next, in Section 3.2, we extend our
approach to handle randomized algorithms. Finally,
we show how to construct quasi-hard distributions in
Theorem 3.

3.1 Preliminaries
As in [5], we think of boolean formulae as binary

strings which can be padded easily. In other words, if
x is an encoding of a formula φ then x · 0i is also an
encoding of φ. We consider search algorithms instead
of decision algorithms – it is well-known that an effi-
cient SAT decision algorithm implies an efficient SAT
search algorithm. In our proofs, we assume the search
algorithm is a canonical search algorithm, i.e. that it
checks that its output actually satisfies the input for-
mula (so the algorithm only errs by outputting 0).
This is without loss of generality, since any formula
φ ∈ SAT that causes the modified algorithm to reject
(incorrectly) also fools the original algorithm.

As described previously, for a given search algo-
rithm A we define a formula Φn which is equivalent
to the NP statement:

∃wN ∈ {0, 1}N : SAT (wN ) = 1

and A(wN ) = 0 and n1/k < N ≤ n.

By the Cook-Levin theorem, we may assume for every
n that Φn is a formula of size q(n) for some polynomial
q(·) which depends on A, and that Φn can be con-
structed in polynomial time from A. We choose k so
that for large enough x, it holds that q(x) < (x− 1)k.

For randomized algorithms, we work with a new
formula Φn,r which is parameterized by not just the
input length, but also the randomness used by the

algorithm:

∃wN ∈ {0, 1}N : SAT (wN) = 1

and A′(wN , r) = 0 and n1/k < N ≤ n.
Here A is a randomized search algorithm (as before,
we assume in the proof that A only errs by answer-
ing unsatisfiable), and A′(wN , r) denotes the result
of running 2N many trials of A and outputting the
first satisfying assignment to wN found by A (and
zero otherwise) using randomness r (which may be
truncated as N varies). Note that if A uses random-
ness of length nb then A′ uses randomness of length
2nb+1, and that almost all choices of randomness for
A′ reflect the failure probability of A. More precisely,
with probability at least 1 − (2/3)n over the choice
of r, for every x it holds that A′(x, r) = 0 implies
Pr[A(x) = 0] > 2/3.

3.2 The Sampling Procedure for Determin-
istic Algorithms

Let A be a candidate polynomial-time search al-
gorithm for SAT (see the previous section for the as-
sumptions we make about A and the definition of Φn).
Assuming P �= NP, A must fail to find a satisfying as-
signment for infinitely many satisfiable formulas. Our
sampler is designed to handle two cases:

1. Either A finds assignments to Φn infinitely often,
or

2. for every large enough n, A(Φn) = 0 (either be-
cause Φn /∈ SAT or A makes a mistake).

It is clear how to handle the first case: a witness for
Φn gives a formula and a satisfying assignment that A
errs on. We give a sampler (to be used as a subroutine
by the overall sampler) to handle the second case in
the following lemma:

Lemma 1. Assume P �= NP, and let A be a
polynomial-time search algorithm running in time
t(n). Suppose there exists n0 such that for every
n > n0, either Φn is unsatisfiable or A(Φn) = 0.
Then there is an algorithm D1 (taking inputs 1n, t(n),
and A) and some n1, such that for every n > n1,
D1(1n, A, t(n)) (outlined below) returns a formula w
of length N for n1/k < N ≤ n and a witness α that
satisfies w, but A(w) = 0.

Proof. Let n′ be the smallest input size larger than n0
such that Φn′ ∈ SAT (such n′ exists if P �= NP). We
wll give an algorithmD1 which successfully constructs
a witness for Φn for any n > 2n′k . First, we claim that
for any n′′ in {n′, . . . , n}, the formula Φn′′ is satisfi-
able. By assumption Φn′ , . . . ,Φ(n′−1)k are satisfiable,
so the claim holds for n′ ≤ n′′ ≤ (n′ − 1)k. Oth-
erwise, consider i successive applications of q until
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qi(n′) ≤ n′′ < qi+1(n′). We can reason inductively
that Φqi−1(n′) is satisfiable, so by assumption A out-
puts “0” on Φqi−1(n′) which is of length qi(n′). But
then Φqi(n0) . . .Φ(qi(n0)−1)k are all satisfiable, and the
choice of k gives qi(n′) ≤ n′′ ≤ (qi(n′′) − 1)k so Φn′′
must be satisfiable as well.

Now a witness for Φn should be a formula of size
n1/k < N ≤ n together with a satisfying assignment.
Our choice of k gives the existence of some N so that
q−1(N) is an integer. Since q−1(N) > n′, we know
that Φq−1(N) is satisfiable and that A(Φq−1(N)) = 0.
Thus we may use Φq−1(N) as a witness for Φn if we find
a satisfying assignment for Φq−1(N). Using the same
reasoning, we continue to construct a witness using
formulae of decreasing size, until we are left with a
formula Φn′′ for n′′ ≤ n′k that we may satisfy by
exhaustive search.

We describe the algorithm D1 precisely below. Set
i := n and w := 0:

1. If i ≤ n′k, find a witness for Φi by exhaustive
search, append to w and stop. Otherwise,

2. run A(Φi). If A returns a witness, output fail.
3. Find an integer j such that i1/k < q(j) ≤ i.
4. Append Φj to w, set i := j, and repeat.

Note that the algorithm will not output fail if it is
called with any i > n′. We also have that in Step 3
a suitable j is always available since ik > q(i + 1).
Finally, it is easy to verify that the algorithm runs in
time polynomial in n when n > 2n′k .

We may now describe the sampling algorithm D on
input 1n:

1. For i = n . . . nk, run A on Φi and output (w, a)
returned by A if |w| = n.

2. If no such pair is returned, run D1(1i, t(i), A) for
i = n, . . . , nk and output the first (w,α) where w
is of length n.

Using Lemma 1, it is easy to prove that the sampling
procedure D must output hard instance/witness pairs
for A infinitely often, which proves Theorem 1.

Proof of Theorem 1. Suppose A finds assignments for
Φn infinitely often. For each such n, the length of the
assignmentN may be between n1/k and n. Then Step
1 ensures that the sampler D will succeed on input
length N .

On the other hand, assume that the condition of
Lemma 1 holds. Then for large enough n, we have
that D1 returns a pair (w,α) where |w| = N . The
same argument as the previous case gives that D will
succeed on input length N .

We now show how to sample hard instance/witness
pairs for any randomized search algorithm A by con-
sidering two cases. Let A′ be the corresponding algo-
rithm described in Section 3.1.
• For inifnitely many n, the a random formula Φn,r

is likely to be satisfiable and A′ will likely find a
witness for it.
• There is some n0 so that for all n > n0, either

Φn,r is unlikely to be satisfiable or A′ will likely
make a mistake.

If the first case holds, we can simply find for-
mula/witness pairs by running A′. Our main task
is to show how to find witnesses when the second case
holds. Because the failure of A′ may be because Φn,r
is mostly unsatisfiable, the task of constructing wit-
nesses for this case is more difficult than for the de-
terministic case. We give the sampler for this case in
Lemma 2 below.

Lemma 2. Assume NP �⊆ BPP, and suppose that
there exists an n0 such that for every n > n0,

Pr
r,r′

[A′(Φn,r, r′) = 0 ∨Φn,r /∈ SAT ] > 1− 1
q(q(n))2 .

Then for infinitely many n > n0, the algorithm D1

described below, on inputs A′, 1n, and t(n) returns a
randomly chosen Φn,r and satisfying assignment with
probability at least 1 − o(1) over the choice of r and
randomness of D1.

Proof. Let n′ > n0 be such that there is a satisfi-
able x ∈ {0, 1}n′ but Pr[A′(x, r) = 0] > 1 − 1/n′2.
Since NP �⊆ BPP, this occurs infinitely often. We
describe the algorithm D1 below, and show that it
returns a satisfying assingment to a random Φn,r for
n = poly(2n′k) with high probability. Our algorithm
works as in the deterministic case by stringing to-
gether smaller and smaller Φi,ri until it may find a
witness by exhaustive search. Of course, each succes-
sive Φi,ri must be satisfiable or the entire process fails.
The main difficulty comes in the analysis, where we
need to to show that all the Φi,ri are satisfiable with
high (actually increasing) probability over the choices
of r and ri (Claim 1).

We now describe the algorithm D1 more precisely
below. Suppose A′ uses nb bits of randomness. Set
i := n and w := 0 and choose a random ri ∈ {0, 1}n

b

.
1. If i ≤ n′k , find a witness for Φi,ri by exhaustive

search, append to w and stop. Otherwise
2. run A′(Φi,ri) and output fail if A′ returns a wit-

ness.
3. Find an integer j such that i1/k < q(j) ≤ i and

pick a random rj ∈ {0, 1}j
b

.
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4. Append Φj,rj to w, set i := j, ri := rj and repeat.
The idea of the third step is that Φj,rj is a formula
of size q(j) which satisfies Φi,ri with high probability
because we assume A′ “fails” on most Φj,rj . Of course
A′ may fail because a significant fraction of the Φj,rj
were unsatisfiable, in which case Φj,rj is not a useful
witness and D1 will fail. So we must ensure that the
density of satisfiable Φj,rj is maintained as j increases.
It is plausible that this density decreases; as we’ve ob-
served, when a fraction of the Φi,ri are unsatisfiable,
this affects the number of witnesses for Φj,rj , which
may decrease our bound for the satisfiable instances
of Φj,rj (which in turn affects the number of witnesses
for Φq(j),rq(j) . . . ). We assert that the density is in fact
increasing:

Claim 1. Let n′ ≤ i. Then Pr[Φi,ri /∈ SAT ] < 2
i2 .

First, observe that we may easily prove Lemma 2
from Claim 1. Note that any consecutive j < i in the
sequence of integers chosen by D1 satisfy q(j) ≤ i.
Thus there are at most O(log n) random formulas
chosen. On the other hand, by Claim 1 any formula
chosen fails to be satisfiable with probability at most
2/(logn)2; Thus each chosen Φj,rj will satisfy Φi,ri
except with probability 2/(logn)2 + 1/q(q(logn))2 =
O(1/(logn)2). A union bound gives that the probabil-
ity of choosing some unsatisfiable formula is at most
O(1/ logn). We proceed to prove Claim 1 which com-
pletes the proof of the lemma.

Proof of Claim 1. By assumption, we have that
Pr[Φn′,r′ /∈ SAT ] < 1/n′2. We need to use our as-
sumption that A′ fails to find a witness for Φi,ri (ei-
ther because Φi,ri /∈ SAT or because A′ outputs 0)
to show that Φq(i),rq(i) will be mostly satisfiable. The
key observation is that if there are not many Φi,ri
that can be witnesses, they must be witnesses to many
Φq(i),rq(i) . Suppose that for any i we have
• Prr,r′ [A′(Φi,r, r′) = 0 ∨ Φi,r /∈ SAT ] > 1 − 1

h(i) ,
and that
• Pr[Φi,r ∈ SAT ] > 1− 1/�(i).

Then we know that

Pr
r,r′

[Φi,r ∈ SAT ∧A′(Φi,r, r′) = 0] > 1− 1
h(i)
− 1
�(i)
.

Let S be the set of r such that Φi,r ∈ SAT . Then we
also have that

Pr
r,r′

[Φi,r ∈ SAT ∧A′(Φi,r , r′) = 0] ≤
Pr
r

[Φi,r ∈ SAT ] max
r∈S
{Pr[A′(Φi,r, r′) = 0]}.

Combining the two inequalities, we have that

max
r∈S

Pr[A′(Φi,r, r′) = 0] ≥
1− 1

h(i) − 1/�(i)
1− 1/�(i)

= 1− 1
h(i)(1 − 1/�(i))

.

Now, observe that Φi,r has length q(i) and that there
is some r ∈ S so that

Pr[A′(Φi,r , r′) = 0] ≥ 1− 1
h(i)(1− 1/�(i))

.

This implies that for any j ∈ {q(i), . . . , q2(i)}

Pr[Φj,r′ ∈ SAT ] > 1− 1
h(i)(1 − 1/�(i))

.

Claim 1 follows by letting h(i) = q(q(i))2 and not-
ing that 1− �(i) is always greater than 1/2.

Having proven Lemma 2, we may now give a proof
of Theorem 2

Proof of Theorem 2. We describe the behavior of the
sampler D on inputs 1n, A and t(n):
• For i = n, . . . , nk, run A′ on 2nq(q(i))2 randomly

chosen Φi,r. If there is some (w, a) returned of
size n output it.
• If no such pair is returned, run D1(1i, A′, t(i))

for i = n, . . . , nk. If D1 outputs some Φi,r and
satisfying assingment (w,α) with |w| = n, output
(w, a).

The proof follows the one for deterministic samplers.
If A′ finds a witness to Φn,r with probability greater
than 1/q(q(n))2 for infinitely many n (i.e. the condi-
tion of Lemma 2 doesn’t hold), the first step amplifies
the success of A′ so that D will output a formula and
witness pair with probability at least 1− o(1) for in-
finitely many n.

Otherwise, Lemma 2 tells us that for infinitely
many n, with probability at least 1 − o(1), D1 will
output some pair (w,α) such that |w| = n and
(w,α) satisifes a randomly chosen Φi,r for some i ∈
{n, . . . , nk}, i.e. A′(w, r) = 0 but α satisfies w. By
the construction of A′ (see Section 3.1), this implies
that Pr[A(w) = 0] > 2/3 (except with negligible prob-
ability over the choice of r).

3.3 Quasi-hard Samplers
Using a diagonalization argument, we can use the

hard instance generators describe above to obtain a
single generator that produces instances hard for all
algorithms running in some fixed time t(n).
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Proof of Theorem 3. We prove the deterministic ver-
sion of the theorem. The randomized version fol-
lows by an analogous argument, using standard ran-
domness amplification (specifically n log(t(n)) inde-
pendent repetitions) to boost the probabilities.

Consider any standard enumeration of Turing ma-
chinesM1, · · · . Let Ni be the machine which on input
φ simulates all the machinesM1, . . . ,Mi on φ for t(n)
steps, outputting the first non-zero assignment satis-
fying φ if one exists and ‘0’ otherwise. The sampler S
on input 1n runs D(1n, Ni, t(n)) for i = 1, . . . , n and
outputs the last response (φi, w) so that Ni(φi) = 0.

Now consider any machine running in time t(n)
with description Mj . By Lemma 1, the output of
D(1n, Nj , t(n)) will succeed infinitely often, and the
output of D(1n, Ni, t(n)) for any i ≥ j will be a hard
instance for Mj .

4 Constructing a quasi-one-way func-
tion

The existence of a quasi-sampler suggests a natu-
ral construction of a quasi-one-way function: Run the
sampler. If one obtains a pair (φ,w) output (φ, x⊕w),
otherwise output “0”. The verifier V (x, (φ, r)) outputs
1 whenever x ⊕ r satisfies φ or the second argument
is “0”.

Proof of Theorem 4. Fix any polynomial t(n). Let
t′(n) = 2t(n)(t(n) + tV (n)) and let S be the sam-
pler for time 4(t(n))2. Let f : {0, 1}n → {0, 1}2n be
the randomized function:

f(rw) = (φ, rw ⊕ w).

where (φ,w) is the output of S(1n). The verifier
V (rw, (φ, r)) accepts if its second argument is zero
or if φ is satisfied by rw ⊕ r.

We describe how, given an algorithm A which runs
in time t(n) and causes V to accept with probability
1/t(n) for almost all n, one may construct an algo-
rithm A′ which runs in time t′(n) and solves SAT
with high probability under the output distribution
of S(1n):

Algorithm A′. On input φ, repeat the fol-
lowing 4t(n) times. Choose a random r and
run A(φ, r) to obtain a candidate inverse rw.
If V (rw, (φ, r⊕rw)) accepts for any r, output
r ⊕ rw, otherwise reject.

If φ is distributed according to S(1n), then (φ, r)
follows the output distribution of the one-way func-
tion, so by assumption the inversion algorithm will
succeed with probability 1/t(n). Therefore for at least

1/2t(n) fraction of the inputs φ, the inversion algo-
rithm succeeds for a 1/2t(n) fraction of rs. By repe-
tition, for such a φ, the corresponding r will be found
with probability 1/2, in which case r ⊕ rw is a wit-
ness for φ. Therefore A′ produces a witness for φ with
probability 1/4t(n), contradicting Theorem 3.

5 Quasi-one-way Functions versus
Quasi-pseudorandom Generators

In this section we give a proof of Theorem 5.
We prove the theorem by contradiction. In par-
ticular, we analyze what happens when we instan-
tiate the construction with a random permutation
f : {0, 1}m(n) → {0, 1}m(n). Such a random permu-
tation is one-way with high probability. (While it is
not crucial that we use a permutation, it simplifies
the analysis somewhat.)

The idea of the proof is that the distinguisher can
be chosen in such a way so that the inverter will not
“know” which f was used, so she will be unlikely to
produce the correct inverse for information-theoretic
reasons. One complication is that the inverter also
has access to a verifier, from which some information
about f may be gained. We will argue that this ver-
ification oracle is unlikely to reveal any useful infor-
mation, so that with little effect on the analysis it can
be replaced by an oracle that always answers zero.

Specifically, for any permutation f , we define the
following distinguisher Df and verifier Vf . In our def-
inition, the distinguisher is randomized, but in the
end the randomness can be fixed to minimize the dis-
tinguishing probability of the inverter.

In what follows t = t(n) is a parameter that is
chosen to be super-polynomial in n, but such that
t < 2m/2 and t < 2k/2. By our assumptions on m
and k such a choice is always possible.

Distinguisher Df (y): Choose r ∈ {1, . . . , t} uni-
formly at random. Define fi : {0, 1}m → {0, 1}m to
be f if i = r, and a uniformly random permutation
otherwise. Output 1 if y is in the range of some Gfi ,
1 ≤ i ≤ t, and 0 otherwise.

Verifier Vf (x, y): Output 1 if f(x) = y, and 0
otherwise.

Notice thatD(Gf (x)) = 1 for every x, but the num-
ber of ys for which D(y) = 1 is at most t · 2n. As long
as t < 2k/2, D distinguishes the output of Gf from
the uniform distribution with probability at least 1/2.

We begin by proving that when t is sufficiently
large, the queries made by the inverter to the veri-
fier are always answered by 0.

Claim 2. Assume 12q ≤ t ≤ 2m/2. Fix any z ∈
{0, 1}m. The probability that IDf ,Vf (z) ever makes a
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query of the form (x, f(x)) to Vf is at most 2−m +
12q/t, where q is the number of queries that I makes
to the Vf oracle.

The intuition behind the claim is this. Suppose we
give the inverter a complete description of the truth-
tables of the functions f1, . . . , ft. In particular this
contains all the information provided by the oracle
Df . Now think of the verifier as playing a game where
her goal is to make the query (x, fr(x)) for some x.
The problem is that she does not know what r is,
and she can only gain information about r by mak-
ing other queries of the same type. What is her best
strategy? Intuitively, she should be looking to make
queries (x, y) where y = fi(x) for many is simulta-
neously. If one of these i’s equals r she wins, and
otherwise she can rule out several possible values of
r. However, since the permutations are random, it
is unlikely that there exists a point (x, y) where the
graphs of many of them intersect.

Proof. Let us begin by giving an upper bound on the
quantity

M = max
(x,y)
|{i : y = fi(x)}|

when f1, . . . , ft are random permutations. For any
point (x, y) and any subcollection of 6 of the permu-
tations, the probability that all of them hit (x, y) is
at most 2−6m, so by a union bound we have that

Pr[M ≥ 6] ≤ 22m ·
(
t

6

)
· 2−6m > 2−m

using the assumption t ≤ 2m/2.
Now let (x1, y1), . . . , (xq , yq) denote the queries

made by the inverter on input z. The probability
that the inverter manages to make a query of the type
(x, fr(x)) can be upper bounded by

Pr[M ≥ 6] + Pr[y1 = fr(x1) |M < 6]+
Pr[y2 = fr(x2) | y1 �= fr(x1) ∧ (M < 6)]

+ · · ·+
Pr[yq = fr(xq) | y1 �= fr(x1) ∧ . . .

∧ yq−1 �= fr(xq−1) ∧ (M < 6)]

so it remains to upper bound the quantity

Pr[yi = fr(xi) | y1 �= fr(x1) ∧ . . .
∧ yi−1 �= fr(xi−1) ∧ (M < 6)]

for 1 ≤ i < q. To do this, fix any collection of fis that
satisfy the conditionM < 6, so now the probability is
only taken over a random choice of r. By the bound
onM , the number of fj such that yi = fj(xi) for some

i is at most 6i ≤ 6q, so r is uniformly distributed over
a set of size at least t− 6q. It follows that the above
probability is upper bounded by 6/(t − 6q), so the
probability that IDf ,Vf (z) ever makes a positive query
to Vf is at most 2−m + 6q/(t− 6q) ≤ 2−m + 12q/t.

We now prove the main theorem of this section.

Proof of Theorem 5. Let p denote the probability
that the inverter succeeds on a random y, namely

p = Pr[IDf ,Vf (y) = f−1(y)]

where the probability is taken over y, f , and the ran-
domness of the distinguisher. Let 0 be the oracle that
always outputs zero. By the inclusion-exclusion prin-
ciple, we have

1 ≥ Pr[IDf ,0(y) = f−1
i (y) for some i] ≥∑

1≤i≤t
Pr[IDf ,0(y) = f−1

i (y)]−
∑

1≤i<j≤t
Pr[IDf ,0(y) = f−1

i (y)

and IDf ,0(y) = f−1
j (y)].

We now lower bound every term of the first type,
and upper bound every term of the second type. For
terms of the first type, by symmetry of the fis, we
have that

Pr[IDf ,0(y) = f−1
i (y)] =

Pr[IDfi ,0(y) = f−1
i (y)] =

Pr[IDf ,0(y) = f−1(y)].

By Claim 2,

Pr[IDf ,0(y) = f−1(y)] ≥ Pr[IDf ,Vf (y) = f−1(y)]
− Pr[Vf is queried (x, f(x))]
≥ p− (2−m + 12q/t).

For terms of the second type,

Pr[IDf ,0(y) = f−1
i (y) and IDf ,0(y) = f−1

j (y)] ≤
Pr[f−1

i (y) = f−1
j (y)] = 2−m

so it follows that

1 ≥ t · (p− (2−m + 12q/t))−
(
t

2

)
· 2−m

From t = 2m/2, it follows that p ≤ (12q+3)/t+2−m =
n−ω(1). Since a random permutation f is one-way
with overwhelming probability, it follows that there
exists a one-way f such that

Pr
y∼{0,1}m

[IDf ,Vf (y) = f−1(y)] = n−ω(1)

contradicting the correctness requirement of I.
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6 Conclusions
Building on [5], we were able to construct “dream-

breakers.” Of course, constructing one-way functions
that rely on worst-case hardness assumptions such as
P �= NP remains a distant goal. We suggest that
the study of quasi-one-way functions and (correspond-
ing notions of other primitives) may enhance our un-
derstanding of the relationship between worst-case
complexity, average-case complexity and the crypto-
graphic task.

For example, we find it instructive that some meth-
ods we take for granted in the standard setting — e.g.
that the hardness of one-way functions can be am-
plified, or that one-way functions and pseudorandom
generators are “computationally equivalent" — do not
carry over to this new setting. Yet quasi-cryptography
offers other tools — like simulations and “non-black-
box" methods such as the ones in [5] — that might
compensate for this difficulty. It would be interesting
to see how much of this can be achieved.

Part of our motivation was to investigate alterna-
tives to [11] in constructing pseudorandom genera-
tors under uniform hardness assumptions. Here, we
fall short in two aspects: First, our construction of
“quasi-one-way functions” is randomized; and second,
we find obstacles to turning quasi-one-way functions
into pseudorandom generators. Towards bypassing
the first obstacle, we observed that randomized quasi-
one-way functions can be derandomized by using as-
sumptions considered before (see [14]). Therefore,
while complete derandomization (assuming the exis-
tence of hard problems in NP) may be out of reach
for current techniques, an intermediate goal may be
to show that the existence of pseudorandom genera-
tors for HeurBPP follows from a hardness assumption
plus some generic derandomization assumption.
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