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Abstract:
Molecular phylogenetic techniques do not generally account for such common evolutionary events as site inser-
tions and deletions (known as indels). Instead tree building algorithms and ancestral state inference procedures
typically rely on substitution-only models of sequence evolution. In practice these methods are extended be-
yond this simplified setting with the use of heuristics that produce global alignments of the input sequences—an
important problem which has no rigorous model-based solution. In this paper we open a new direction on this
topic by considering a version of the multiple sequence alignment in the context of stochastic indel models.
More precisely, we introduce the following trace reconstruction problem on a tree (TRPT): a binary sequence is
broadcast through a tree channel where we allow substitutions, deletions, and insertions; we seek to reconstruct
the original sequence from the sequences received at the leaves of the tree. We give a recursive procedure for
this problem with strong reconstruction guarantees at low mutation rates, providing also an alignment of the
sequences at the leaves of the tree. The TRPT problem without indels has been studied in previous work
(Mossel 2004, Daskalakis et al. 2006) as a bootstrapping step towards obtaining information-theoretically opti-
mal phylogenetic reconstruction methods. The present work sets up a framework for extending these works to
evolutionary models with indels.
In the TRPT problem we begin with a random sequence x1, . . . , xk at the root of a d-ary tree. If vertex v has
the sequence y1, . . . ykv , then each one of its d children will have a sequence which is generated from y1, . . . ykv
by flipping three biased coins for each bit. The first coin has probability ps for Heads, and determines whether
this bit will be substituted or not. The second coin has probability pd, and determines whether this bit will be
deleted, and the third coin has probability pi and determines whether a new random bit will be inserted. The
input to the procedure is the sequences of the n leaves of the tree, as well as the tree structure (but not the
sequences of the inner vertices) and the goal is to reconstruct an approximation to the sequence of the root (the
DNA of the ancestral father). For every χ > 0 we present an algorithm which outputs with probability 1−χ an
approximation of x1, . . . , xk if pi + pd < O(1/k2/3 logn) and (1 − 2ps)2 > Cd−1 log d for some constant C > 0,
and every large enough d.
To our knowledge, this is the first rigorous trace reconstruction result on a tree in the presence of indels.
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1 Introduction
Trace reconstruction on a star. In the “trace re-
construction problem” (TRP) [1–6], a random binary
string X of length k generates an i.i.d. collection of
traces Y1, . . . , Yn that are identical to X except for
random mutations which consist in indels, i.e., the
deletion of an old site or the insertion of a new site
between existing sites, and substitutions, i.e., the flip-
ping of the state at an existing site. (In keeping with
biological terminology, we refer to the components or
positions of a string as sites.) The goal is to recon-

struct efficiently the original string with high proba-
bility from as few random traces as possible.

An important motivation for this problem is the re-
construction of ancestral DNA sequences in computa-
tion biology [3, 4]. One can think of X as a gene in an
(extinct) ancestor species 0. Through speciation, the
ancestor 0 gives rise to a large number of descendants
1, . . . , n and gene X evolves independently through
the action of mutations into sequences Y1, . . . , Yn re-
spectively. Inferring the sequence X of an ancient
gene from extant descendant copies Y1, . . . , Yn is a
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standard problem in evolutionary biology [7]. The in-
ference of X typically requires the solution of an aux-
iliary problem, the multiple sequence alignment prob-
lem (which is an important problem in its own right
in computational biology): site ti of sequence Yi and
site tj of sequence Yj are said to be homologous (in
this simplified TRP setting) if they descend from a
common site t of X only through substitutions; in the
multiple sequence alignment problem, we seek roughly
to uncover the homology relation between Y1, . . . , Yn.
Once homologous sites have been identified, the orig-
inal sequence X can be estimated, for instance, by
site-wise majority.

The TRP as defined above is an idealized version of
the ancestral sequence reconstruction problem in one
important aspect. It ignores the actual phylogenetic
relationship between species 1, . . . , n. A phylogeny is
a (typically, binary) tree relating a group of species.
The leaves of the tree correspond to extant species.
Internal nodes can be thought of as extinct ancestors.
In particular the root of the tree represents the most
recent common ancestor of all species in the tree. Fol-
lowing paths from the root to the leaves, each bifur-
cation indicates a speciation event whereby two new
species are created from a parent. An excellent intro-
duction to phylogenetics is [8].

A standard assumption in computational phyloge-
netics is that genetic information evolves from the
root to the leaves according to a Markov model on
the tree. Hence, the stochastic model used in trace
reconstruction can be seen as a special case where the
phylogeny is star-shaped. (The substitution model
used in trace reconstruction is known in biology as
the Cavender-Farris-Neyman (CFN) [9–11] model.) It
may seem that a star is a good first approximation for
the evolution of DNA sequences. However extensive
work on the so-called “reconstruction problem” in the-
oretical computer science and statistical physics has
highlighted the importance of taking into account the
full tree model in analyzing the reconstruction of an-
cestral sequences.
The “reconstruction problem.” In the “recon-
struction problem” (RP), we have a single site which
evolves through substitutions only from the root to
the leaves of a tree. In the most basic setup which we
will consider here, the tree is d-ary and each edge is an
independent symmetric indel-free channel where the
probability of a substitution is a constant ps > 0. The
goal is to reconstruct the state at the root given the
vector of states at the leaves. More generally, one can
consider a sequence of length k at the root where each
site evolves independently according to the Markov
process above. Denote by n the number of leaves in

the tree. The RP has attracted much attention in
the theoretical computer science literature due to its
deep connections to computational phylogenetics [12–
15] and statistical physics [16–27]. See e.g. [28, 29] for
background.

Unlike the star case, the RP on a tree exhibits an
interesting thresholding effect: on the one hand, infor-
mation is lost at an exponential rate along each path
from the root; on the other hand, the number of paths
grows exponentially with the number of levels. When
the substitution probability is low, the latter “wins”
and vice versa. This “phase transition” has been thor-
oughly analyzed in the theoretical computer science
and mathematical physics literature—although much
remains to be understood. More formally, we say that
the RP is solvable when the correlation between the
root and the leaves persists no matter how large the
tree is. Note that unlike the TRP we do not require
high-probability reconstruction in this case as it is not
information-theoretically achievable for d constant—
simply consider the information lost on the first level
below the root. Moreover the “number of traces” is
irrelevant here as it is governed by the depth of the
tree and the solvability notion implies nontrivial cor-
relation for any depth. When the RP is unsolvable,
the correlation decays to 0 for large trees. The re-
sults of [17, 20, 22, 23, 30, 31] show that for the CFN
model, if ps < p∗, then the RP is solvable, where
d(1 − 2p∗)2 = 1. This is the so-called Kesten-Stigum
bound [32]. If, on the other hand, ps > p∗, then the
RP is unsolvable. Moreover in this case, the correla-
tion between the root state and any function of the
character states at the leaves decays as n−Ω(1). The
positive result above is obtained by taking a majority
vote over the leaf states.

Like the TRP, the RP is only an idealized version
of the ancestral sequence reconstruction problem: it
ignores the presence of indels. In other words, the RP
assumes that the multiple sequence alignment prob-
lem has been solved perfectly. This is in fact a long-
standing assumption in evolutionary biology where
one typically preprocesses sequence data by running it
through a multiple sequence alignment heuristic and
then one only has to model the substitution process.
This simplification has come under attack in the bi-
ology literature, where it has been argued that align-
ment procedures often create systematic biases that
affect analysis [33, 34]. Much empirical work has been
devoted to the proper joint estimation of alignments
and phylogenies [33, 35–41].
Our results. We make progress in this recent new
direction by analyzing the RP in the presence of
indels—which we also refer to as the TRP on a tree
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(TRPT). We consider a d-ary tree where each edge
is an independent channel with substitution proba-
bility ps, deletion probability pd, and insertion prob-
ability pi (see Section 1.1 for a precise statement of
the model). The root sequence has length k and is
assumed to be uniform in {0, 1}k. As in the stan-
dard RP, we drop the requirement of high-probability
reconstruction and seek instead a reconstructed se-
quence that has correlation with the true root se-
quence uniformly bounded in the depth.

We give an efficient recursive procedure which
solves the TRPT for ps > 0 a small enough constant
(strictly below, albeit close, to the Kesten-Stigum
bound) and pd, pi = O(k−2/3 log−1 n). As a by-
product of our analysis we also obtain a partial global
alignment of the sequences at the leaves. Our method
provides a framework for separating the indel pro-
cess from the substitution process by identifying well-
preserved subsequences which then serve as markers
for alignment and reconstruction (see Section 1.2 for
a high-level description of our techniques). As far as
we are aware, our results are the first rigorous results
for this problem.

Results on the RP have been used in previous work
to advance the state of the art in rigorous phylogenetic
tree reconstruction methods [13–15, 42]. A central
component in these methods is to solve the RP on a
partially reconstructed phylogeny to obtain sequence
information that is “close” to the evolutionary past;
then this sequence information is used to obtain fur-
ther structural information about the phylogeny. The
whole phylogeny is built by alternating these steps.
Our method sets up a framework for extending these
techniques beyond substitution-only models.
Related work. Much work has been devoted to
the trace reconstruction problem on a star [1–6]. In
particular, in [5], it was shown that, when there are
only deletions, it is possible to tolerate a small con-
stant deletion rate using poly(k) traces. For a dif-
ferent range of parameters, Viswanathan and Swami-
nathan [6] showed that, under constant substitution
probability and O(1/ log k) indel probability, O(log k)
traces suffice. Both results assume that the root se-
quence X is uniformly random.

The multiple sequence alignment problem as a
combinatorial optimization problem (finding the best
alignment under a pairwise scoring function) is known
to be NP-hard [43, 44]. Most heuristics used in
practice, such as CLUSTAL [45], T-Coffee [46],
MAFFT [47], and MUSCLE [48], use the idea of a
guide tree, that is, they first construct a very rough
phylogenetic tree from the data (using edit distance
as a measure of evolutionary distance), and then

recursively construct local alignments produced by
“aligning alignments.” Our work can be thought as
an attempt to analyze rigorously this type of proce-
dure. Note that the Steiner version of the multiple
sequence alignment problem on a fixed phylogeny, the
so-called tree alignment problem, is known to admit
a polynomial-time approximation scheme [49, 50].

Finally, our work is tangentially related to the study
of edit distance. Edit distance and pattern matching
in random environments has been studied, e.g., by
[51–53].

1.1 Definitions
We now define our basic model of sequence evolu-

tion.

Definition 1.1 (Model of sequence evolution)
Let T (d)

H be the d-ary tree with H levels and n = dH
leaves. For simplicity, we assume throughout that d
is odd. We consider the following model of evolution
on T (d)

H . The sequence at the root of T (d)
H has length

k and is drawn uniformly at random over {0, 1}k.
Along each edge of the tree, each site (or position)
undergoes the following mutations independently of
the other sites:
• Substitution. The site state is flipped with prob-

ability ps > 0.
• Deletion. The site is deleted with probability
pd > 0.
• Insertion. A new site is created to the right of

the current site with probability pi > 0. The state
of this new site is uniform {0, 1}.

These operations occur independently of each other.
The last two are called indels. We let pid = pi + pd
and θs = 1−2ps. The parameters ps, pd, pi may depend
on k and n, where n is the number of leaves.

1.2 Results
Statement of results. Our main result is the fol-
lowing. Denote by X = x1, . . . , xk a binary uniform
sequence of length k. Run the evolutionary process
on T (d)

H with root sequence X and let Y1, . . . , Yn be
the sequences obtained at the leaves, where Yi =
yi1, . . . , y

i
ki

.

Theorem 1.2 (Main result) For all χ > 0, there
is Φ,Φ′,Φ′′ > 0 and d′′ > 0 such that the following
holds for d ≥ d′′ and β = d−1. There is a polynomial-
time algorithm 𝔸 with access to Y1, . . . , Yn such that
for all

(1− 2ps)2 >
Φ log d
d
,

pi + pd <
Φ′

k2/3 logn
,
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Φ′′ log3 n < k < poly(n),

the algorithm 𝔸 outputs a binary sequence X̂ which
satisfies the following with probability at least 1− χ:

1. X̂ = x̂1, . . . , x̂k has length k.
2. For all j = 1, . . . , k, ℙ[x̂j = xj ] > 1− β.

Proof sketch. We give a brief proof sketch. As dis-
cussed previously, in the presence of indels the recon-
struction of ancestral sequences requires the solution
of the multiple sequence alignment problem. How-
ever, in addition to being computationally intractable,
global alignment through the optimization of a pair-
wise scoring function may create biases and correla-
tions that are hard to quantify. Therefore, we re-
quire a more probabilistic approach. From a purely
information-theoretic point of view the pairwise align-
ment of sequences that are far apart in the tree is dif-
ficult. A natural solution to this problem is instead
to perform local alignments and ancestral reconstruc-
tions, and recurse our way up the tree.

This recursive approach raises its own set of issues.
Consider a parent node and its d children. It may be
easy to perform a local alignment of the children’s se-
quences and derive a good approximation to the par-
ent sequence (for example, through site-wise major-
ity). Note however that, to allow a recursion of this
procedure all the way to the root, we have to provide
strong guarantees about the probabilistic behavior of
our local ancestral reconstruction. As is the case for
global alignment, a careless alignment procedure cre-
ates biases and correlations that are hard to control.
For instance, it is tempting to treat misaligned sites
as independent unbiased noise but this idea presents
difficulties:

Consider a site j of the parent sequence and
suppose that for this site we have succeeded
in aligning all but two of the children, say
1 and 2. Let xiji denote the site in the i’th
child which was used to estimate the j’th
site. By the independence assumption on the
root sequence and the inserted sites, x1

j1
and

x2
j2 are uniform and independent of (xiji )

d
i=3.

However, x1
j1 and x2

j2 may originate from the
same neighboring site of the parent sequence
and therefore are themselves correlated.

Quantifying the effect of this type of correlation ap-
pears to be nontrivial.

Instead, we use an adversarial approach to local
ancestral reconstruction. That is, we treat the mis-
aligned sites as being controlled by an adversary who
seeks to flip the reconstructed value. This comes at
a cost: it produces an asymmetry in our ancestral

reconstruction. Although the RP is well-studied in
the symmetric noise case, much remains to be under-
stood in the asymmetric case. In particular, obtaining
tight results in terms of substitution probability here
may not be possible as the critical threshold of the RP
may be hard to identify. We do however provide a tai-
lored analysis of the particular instance of the RP by
recursive majority obtained through this adversarial
approach and we obtain results that are close to the
known threshold for the symmetric case. Unlike the
standard RP, the reconstruction error is not i.i.d. but
we show instead that it “dominates” an i.i.d. noise.
(See Section 4.2 for a definition.) This turns out to
be enough for a well-controlled recursion. We first
define a local alignment procedure which has a fair
success probability (independent of n). However, ap-
plying this alignment procedure multiple times in the
tree is bound to fail sometimes. We therefore prove
that the local reconstruction procedure is somewhat
robust in the sense that even if one of the d inputs
to the reconstruction procedure is faulty, it still has a
good probability of success.

As for our local alignment procedure, we adopt an
anchor approach. Anchors were also used by [4, 5]—
although in a quite different way. We imagine a par-
tition of every node’s sequence into islands of length
O(k1/3). (The precise choice of the island length
comes from a trade-off between the length and the
number of islands in bounding the “bad” events be-
low.) At the beginning of each island we have an an-
chor of length O(log n). Through this partition of the
sequences in islands and anchors we aim to guarantee
the following. Given a specific father node v, with fair
probability 1) all the anchors in the children nodes are
indel-free; and 2) for all parent islands, almost all of
the corresponding children islands have no indel at all
and, moreover, at most one child island may have a
single indel. The “bad” children islands—those that
do not satisfy these properties—are treated as con-
trolled by an adversary. We show that Conditions 1)
and 2) are sufficient to guarantee that: the anchors of
all islands can be aligned with high probability and
single indel events between anchors can be identified.
This allows a local alignment of all islands with at
most one “bad” child per island and is enough to per-
form a successful adversarial recursive majority vote
as described above. The bound on the maximum indel
probability sustained by our reconstruction algorithm
comes from satisfying Conditions 1) and 2) above.
Notation. For a sequence X = x1, . . . , xk, we let
X [i : j] = xi, . . . , xj . We use the expression “with
high probability (w.h.p.)” to mean “with probabil-
ity at least 1− 1/poly(n)” where the polynomial in n
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can be made of arbitrarily high degree (by choosing
the appropriate constants large enough). We denote
by Bin(n, p) a random variable with binomial distri-
bution of parameters n, p. For two random variables
X,Y we denote byX ∼ Y the equality in distribution.
Organization. The rest of the paper is organized as
follows. We describe the algorithm in Section 2. The
proof of our main result is divided into two sections.
In Section 3, we state a series of high-probability
claims about the evolutionary process. Then, con-
ditioning on these claims, we provide a deterministic
analysis of the correctness of the algorithm in Sec-
tion 5.2. All proofs are omitted from this extended
abstract.

2 Description of the Algorithm
In this section we describe our algorithm for TRPT.

Our algorithm is recursive, proceeding from the leaves
of the tree to the root. We describe the recursive step
applied to a non-leaf node of the tree.
Recursive Setup—Our Goal. For our discussion
in this section, let us consider a non-leaf node v with
d children, denoted ui for i ∈ [d]. For notational con-
venience, we drop the index u and denote its children
by 1, . . . , d. Our goal for the recursive step of the al-
gorithm is to reconstruct the sequence at the node v
given the sequences of the children. Denote the sites
of the father by X0 = x0

1, . . . , x
0
k0

, and the sites of the
i’th child by Xi = xi1, . . . , xiki . During the reconstruc-
tion process, we do not have access to the children’s
sequences, but rather to reconstructed sequences de-
noted by X̂i = x̂i1, . . . x̂ik̂i .

Let us consider the following partition of the se-
quence of v into subsequences, called islands. Of
course our algorithm doesn’t have access to the se-
quence at v during the recursive step of the algorithm.
We define the partition as a means to describe our al-
gorithm: The sites of v are partitioned into islands
of length � = k1/3 (except for the last one which is
possibly shorter). Denote by N0 = �k0/�� the num-
ber of islands in v. Each island starts with an an-
chor of a bits. That is, the islands are the bitstrings
X0[1 : �], X0[� + 1 : 2�], . . . and the anchors are the
bitstrings X0[1 : a], X0[�+ 1 : �+ a], . . ..

Our algorithm tries to identify for each island
X0[(i − 1)� + 1 : i�] the substrings of each of the d
children that correspond to this island (i.e., contain
the sites of the island), called “child islands.” We do
so iteratively for i = 1 . . .N0. We use the islands that
did not have indels for sequence reconstruction, using
the substitution-only model. Some islands will have
indels however. This leads to two “modes of failure”:

one invalidates the entire (parent) node, and the other
invalidates only an island of a child. More specifically,
a node becomes invalidated (i.e., useless) when indels
are not evenly distributed, that is: when an indel oc-
cured in an anchor, or two (or more) indels occured
in a specific island over all d children. This is a rare
event. Barring this event, we expect that each island
suffers only at most one indel over all children. The
island (of a child) that has exactly one indel is inval-
idated (second mode of failure), and is thus deemed
useless for reconstruction purposes. As long as the
parent node is not invalidated, each island will have
at least d−2 non-invalidated children islands (one ad-
ditional island is potentially lost to a child node that
may have been invalidated at an earlier stage).

Even when the algorithm identifies that a child is-
land has an indel somewhere, the island is not ignored.
The algorithm still needs to compute the length of the
island in order to know the start of the next island in
this child. For this purpose, we use the anchor of
the next island and match it to the corresponding an-
chors of the other (non-invalidated) child islands. In
fact the same procedure lets us detect which of the
child islands are invalidated.

More formally, we define d functions fi :
{1, . . . , k0} → {1, . . . , ki} ∪ {†}, where fi takes the
sites of v to the corresponding sites of the i’th child
or to the special symbol † if the site was deleted.
Note that for each i, fi is monotone, when ignor-
ing sites which are mapped to †. For t = �r, let
si(r) = fi(t+1)−(t+1) denote the displacement of the
site corresponding to the (t + 1)st site of the parent,
in the ith child. By convention, we take si(0) = 0.
If there is no indel between t = �r and t′ = �r′
then si(r) = si(r′). Note that, in the specific case
of one indel operation in the island, we have that
|si(r) − si(r′)| = 1.
Algorithm. Our algorithm estimates the values of
si(r) and uses these estimates to match the starting
positions of the islands in the children. The full algo-
rithm is given in Figure 1. We use the following ad-
ditional notation. For x ∈ {0, 1} we let 〈x〉 = 2x− 1.
Then, for two {0, 1}m-sequences Y = y1, . . . , ym and
Z = z1, . . . , zm, we define their (empirical) correlation
as

Corr(Y, Z) = 1
m

m∑
j=1
〈yj〉〈zj〉.

Note that y 
→ 〈y〉 maps 1 to 1 and 0 to −1. One can
think of Corr(Y, Z) as a form of normalized centered
Hamming distance between Y and Z. In particular,
a large value of Corr(Y, Z) implies that Y and Z tend
to agree. We will use the following threshold (which
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1. Input. Children sequences x̂1, . . . , x̂d.
2. Initialization. Set ŝi(0) := 0, ∀i, � = k1/3, r = 1, and t = �.
3. Main loop. While x̂i[t+ ŝi(r− 1) + 1 : t+ ŝi(r− 1) + a] is non-empty for all i,

(a) Current position. Set t = �r.
(b) Anchor definition. For each i, set Âir = x̂i[t+ŝi(r−1)+1 : t+ŝi(r−1)+
a]. We say that Âir is the r’th anchor of the i’th child. (If the remaining
sequences are not long enough to produce an anchor of length a, we repeat
the previous step with the full remaining sequences.)

(c) Alignment. For each anchor, we define the set of anchors which agree
with it. Formally,

Gir = {j ∈ [d],Corr(Âir, Âjr) ≥ γ}.

(d) Update. We define the set of aligned children Gr = {i : |Gir| ≥ d− 2}.
i. Aligned anchors. For each i ∈ Gr, set ŝi(r) = ŝi(r − 1).
ii. Misaligned anchors. For each i �∈ Gr define two strings D̂ir =
x̂i[t+ ŝi(r − 1) : t+ ŝi(r − 1) + a− 1] and Îir = x̂i[t+ ŝi(r − 1) + 2 :
t+ ŝi(r − 1) + a+ 1]. If

|{j ∈ [d]− {i} : Corr(D̂ir, Âjr) ≥ γ}| ≥ d− 2,

set ŝi(r) = ŝi(r − 1)− 1. If

|{j ∈ [d]− {i} : Corr(Îir , Âjr) ≥ γ}| ≥ d− 2,

set ŝi(r) = ŝi(r − 1) + 1.
(e) Ancestral sequence. Compute x̂0

t−�+1, . . . x̂
0
t by performing a sitewise

majority on the children in Gr. (If the remaining children sequences are
too short to produce a full island, we use whatever is left which should all
have equal length by our proof.)

(f) Increment. Set r := r + 1.
4. Output. Output x̂0 and set k̂0 to its length.

Figure 1: This is the basic recursive step of our reconstruction algorithm. It takes as input the d inferred sequences of
the children x̂1, . . . , x̂d and computes a sequence for the parent x̂0. If any of the steps above cannot be accomplished,
we abort the reconstruction of the parent and declare it radioactive.

will be justified in Section 5.1)

γ = ((1− δ)(1 − 2ps)2 − 4β),

where δ is chosen so that

(1 − δ)(1− 2ps)2 − 8β > δ + 8β,

where again β = d−1 and d is large enough.

3 Analyzing the Indel Process
We define a ≥ C logn and α ≤ ε/d < 1, for

constants C, ε to be determined later. We require
a < k1/3 < poly(n). We assume that the indel prob-
ability per site satisfies

pid = α

4dk2/3a
= O
(

1
k2/3 logn

)
.

Throughout, we denote the tree by T = (V,E).

3.1 Bound on the Sequence Length
As the indel probability is defined per site, longer

sequences suffer more indel operations than shorter
ones. We begin by bounding the effect of this process.
We claim that with high probability the lengths of all
sequences are roughly equal.

Claim 3.1 (Bound on sequence length) For all
ζ > 0 (small), there exists C′ > 0 (large) so that
for all u in V , we have

kv ∈ [k, k̄] ≡ [(1 − ζ)k, (1 + ζ)k],

with high probability given k ≥ C′ log3 n. We denote
this event by L.
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3.2 Existence of a Dense Stable Subtree
We claim that with probability close to 1 there ex-

ists a dense subtree of T with a “good indel structure,”
as defined below. Our algorithm will try to identify
this subtree and perform reconstruction on it, as de-
scribed in Section 4.
Indel structure of a node. Recall that � = k1/3.

Definition 3.2 (Indel structure) For a node (par-
ent) v, we say that v is radioactive if one of the fol-
lowing events happen:

1. Event B1: Node v has a child u such that when
evolving from v to u an indel operation occurred
in at least one of the sites which are located in an
anchor.

2. Event B2: There is an island I and two children
u, u′, such that an indel occurred in I in the tran-
sition from v to u and in the transition from v to
u′.

3. Event B3: There is an island I and a child u,
such that two indel operations (or more) hap-
pened in I in the transition from v to u.

Otherwise the node v is stable. By definition, the
leaves of T are stable. A subtree of T is stable if all
of its nodes are stable.

Claim 3.3 (Bound on radioactivity) For all α >
0, there exists a choice of ζ > 0 small enough in
Claim 3.1 such that conditioning on the event L oc-
curing: any vertex v is radioactive with probability at
most α.

Claim 3.4 (Existence of a dense stable subtree)
For all χ > 0, there is a choice of ζ > 0 small enough
in Claim 3.1 such that, conditioning on the event L
occuring, with probability at least 1− χ, the root of T
is the father of a (d − 1)-ary stable subtree of T . We
denote this event by S.

4 A Stylized Reconstruction Process
We describe a hypothetical sequence reconstruction

process performed on the stable tree defined by the
indels. We argue that the process gives strong recon-
struction guarantees (assuming that the radioactive
nodes and the islands with indels are controlled by an
adversary). Then we argue that our algorithm per-
forms at least as well as the reconstruction process
against the adversary. Throughout we suppose that
a stable tree exists and is given to us, together with
the “orbit” of every site of the sequence at the root
of the tree (see function F below). However, we are
given no information about the substitution process.

Let v ∈ V and assume v is the root of a (d − 1)-
ary stable subtree T ∗ = (V ∗, E∗) of T . (We make

the stable subtree below v into a (d − 1)-ary tree by
potentially removing arbitrary nodes from it, at ran-
dom.) Let u ∈ V ∗. For each island I in u, at most
one child u′ of u in T ∗ contains an indel in which case
it contains exactly one indel. We say that such an I
is a corrupted island of u′. The basic intuition behind
our analysis is that, provided the alignment on T ∗ is
performed correctly (which we defer to Section 5.2),
the ancestral reconstruction step of our algorithm is
a recursive majority procedure against an adversary
which controls the corrupted islands and the radioac-
tive nodes (as well as all their descendants). Below
we analyze this adversarial process.
Recursive majority. We begin with a formal def-
inition of recursive majority. Let Maj : {0, 1, 
}d →
{0, 1} be the function that returns the majority value
over non-
 values, and flips an unbiased coin in case of
a tie (including the all-
 vector). Let n0 = dH0 be the
number of leaves in T below v. Consider the following
recursive function of z = (z1, z2, . . . , zn0) ∈ {0, 1, 
}:
Maj0(z1) = z1, and

Majj(z1, . . . , zdj )
= Maj(Majj−1(z1, . . . , zd(j−1)), . . . ,

Majj−1(zdj−d(j−1)+1, . . . , zdj)),

for all j = 1, . . . , H0. Then, MajH0 (z) is the d-wise
recursive majority of z.

Let X0 = x0
1, . . . , x

0
k0

be the sequence at v. For
u ∈ V ∗ and t = 1, . . . , k0, we denote by Fu(t) the
position of site x0

t in u or † if the site has been deleted
on the path to u. We say that Cu,t holds if Fu(t) is in
a corrupted island of u. Let Path(u, v) be the set of
nodes on the path between u and v.

Definition 4.1 (Gateway node) A node u is a
gateway for site t if:

1. Fu(t) �= †; and
2. For all u′ ∈ Path(u, v)−{v}, Cu′,t does not hold.

We let T ∗∗t = (V ∗∗t , E∗∗t ) be the subtree of T ∗ con-
taining all gateway nodes for t. By construction, T ∗∗t
is at least (d− 2)-ary and for convenience we remove
arbitrary nodes, at random, to make it exactly (d−2)-
ary. Notice that, for t, t′ ∈ [1 : k0], the subtrees T ∗∗t
and T ∗∗t′ are random and correlated. However, they
are independent of the substitution process.

We will argue in Section 5.2 that the reconstructed
sequence produced by our method at v “dominates”
(see below) the following reconstruction process. Let
Lv = u1, . . . , un0 be the leaves below v ordered ac-
cording to a planar realization of the subtree below v.
Denote by Xi = xi1, . . . , xiki the sequence at ui. For
t = 1, . . . , k0, let L∗∗t be the leaves of T ∗∗t . We define
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the following auxiliary sequences: for ui ∈ Lv, we let
Ξi = ξi1, . . . , ξiki where for t = 1, . . . , k0

ξit =
{
xiFui (t)

if ui ∈ L∗∗t
1− x0

t o.w.

In words, ξit is the descendant of x0
t if ui is a gate-

way to t and is the opposite of the value x0
t other-

wise. Because of the monotonicity of recursive ma-
jority, the latter choice is in some sense the “worst
adversary” (ignoring correlations between sites—we
will come back to this point later). We then define a
reconstructed sequence at v as Ξ̂0 = ξ̂01 , . . . , ξ̂0k0

where
for t = 1, . . . , k0

ξ̂0t = MajH0 (ξ1t , . . . , ξ
n0
t ).

We now analyze the accuracy of this (hypothetical)
estimator—which we refer to as the adversarial re-
construction of X0. We argue in Section 5.2 that our
actual estimator is at least as good as Ξ̂0 w.h.p.

4.1 Recursive Majority Against an Adver-
sary

To analyze the performance of the adversarial re-
constuction Ξ̂0, we consider the following stylized pro-
cess.

Definition 4.2 (Adversarial Process) We con-
sider the following process:

1. Run the evolutionary process on T (d−2)
H0

at one
position only starting with root state 0 without
indels, that is, taking pid = 0.

2. Then complete T (d−2)
H0

into T (d)
H0

and associate to
each additional node the state 1.

3. Let R(d)
H0

be the random variable in {0, 1} obtained
by running recursive majority on the leaf states
obtained above.

We call this process the recursive majority against an
adversary on T (d)

H0
.

Claim 4.3 (Accuracy of recursive majority)
There exists a constant C′′ > 0 and d′′ > 0 such that
taking

θ2s >
C′′ log d
d
,

and d ≥ d′′, then the probability that the recursive
majority against an adversary on T (d)

H0
correctly recon-

structs root state 0 is at least 1 − β uniformly in H0
where β = d−1. In comparison, note that the Kesten-
Stigum bound for binary symmetric channels on d-ary
trees is θ2 > d−1 [32, 54].

Definition 4.4 (Bernoulli sequence) For q > 0
and m ∈ ℕ, the (q,m)-Bernoulli sequence is the prod-
uct distribution on {0, 1}m such that each position is
1 independently with probability 1 − q. We denote by
Bq,m the corresponding random variable.

Claim 4.5 (Subsequence reconstruction)
Assume v is the root of a (d − 1)-ary stable subtree.
Choosing C′′ > 0 and d′′ > 0 as in Claim 4.3 is such
that the following holds for d ≥ d′′ and β = d−1.
For t,m ∈ {1, . . . , k0}, let Λ = (λ1, . . . , λm) be
the agreement vector between the Ξ̂0[t + 1 : t + m]
and X0[t + 1 : t + m], that is, λi = 1 if recursive
majority correctly reconstructs position i. Then there
is 0 ≤ β′ ≤ β such that Λ ∼ Bβ′,m. (Here, β′ may
depend on H0 but β does not.)

4.2 Stochastic Domination and Correlation
In our discussion so far we have assumed that a sta-

ble tree exists and is given to us, together with the
the function F . This allowed us to define the stylized
recursive majority process against an adversary for
which we claimed strong reconstruction guarantees.
In reality, we have no access to the stable tree. We
construct it recursively from the leaves towards the
root. At the same time we align sequences, discover
corrupted islands, and reconstruct sequences of in-
ternal nodes. The stylized recursive majority process
may be used to provide a “lower bound” on the actual
reconstruction process. The notion of “lower bound”
that is of interest to us is captured by stochastic dom-
ination, which we proceed to define formally.

Definition 4.6 (Stochastic domination) Let
X,Y be two random variables in {0, 1}m. We say
that Y stochastically dominates X, denoted X � Y , if
there is a joint random variable (X̃, Ỹ ) such that the
marginals satisfy X ∼ X̃ and Y ∼ Ỹ and moreover
ℙ[X̃ ≤ Ỹ ] = 1.

Note that in the definition above X and Y may (typ-
ically) live in different probability spaces. Then, the
joint variable (X̃, Ỹ ) is a coupled version of X and
Y . In our case, X is the adversarial recursive process
whereas Y is the actual reconstruction performed by
the algorithm. We now explain how to use this prop-
erty for correlation estimation.
Correlation. The analysis of the previous section
guarantees that the sequences output by the adver-
sarial reconstruction process are well correlated with
the true sequences. But if we are only going to
use the adversarial process as a lower bound for the
true reconstruction process, it is important to es-
tablish that stochastic domination preserves corre-
lation. In preparing the ground for such a claim
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let us establish an important property of the adver-
sarial process. Let Tu and Tv be the two disjoint
copies of T (d)

h rooted at the nodes u and v respec-
tively, and let X = x1, x2, . . . , xm ∈ {0, 1}m and
Y = y1, y2, . . . , ym ∈ {0, 1}m be sequences at the
nodes u and v. Assume that u and v are the roots of
(d−1)-ary stable subtrees. Let X̂ ′ = x̂′1, x̂′2, . . . , x̂′m ∈
{0, 1}m and Ŷ ′ = ŷ′1, ŷ′2, . . . , ŷ′m ∈ {0, 1}m be the re-
constructions of X and Y obtained by the adversar-
ial reconstruction process. Let Λ = λ1, . . . , λm and
Θ = θ1, . . . , θm be the resulting agreement vectors.

Claim 4.7 (Concentration of bias) Let β′, β be
as in Claim 4.5. Then, with probability at least
1− e−Ω(mβ2) the following are satisfied∣∣∣∣∣ 1

m

m∑
i=1
〈λi〉〈θi〉 − (1− 2β′)2

∣∣∣∣∣ ≤ 1
2
β;

∣∣∣∣∣ 1
m

m∑
i=1

�〈λi〉=−1 − β′
∣∣∣∣∣ ≤ 1

2
β;

∣∣∣∣∣ 1
m

m∑
i=1

�〈θi〉=−1 − β′
∣∣∣∣∣ ≤ 1

2
β.

Claim 4.8 (Correlation bound) Let X̂, Ŷ ∈
{0, 1}m be random strings defined on the same proba-
bility space as X̂ ′ and Ŷ ′. Denote by Z (resp. W ) the
agreement vectors of X̂ (resp. Ŷ ) with X (resp. Y ).
Assume that Λ ≤ Z and Θ ≤ W with probability
1, where Λ and Θ are the agreement vectors of X̂ ′
and Ŷ ′ with X and Y as explained above. Then,
conditioned on the conclusions of Claim 4.7, we have,
with probability 1

|Corr(X,Y )− Corr(X̂, Ŷ )| ≤ 8β.

5 Analyzing the True Reconstruction
Process

In Section 5.1, we argue that, if a stable subtree ex-
ists, the adversarial reconstructions of aligned anchors
exhibit strong correlation signal, while misaligned an-
chors exhibit weak signal. This holds true for se-
quences that stochastically dominate the adversarial
reconstructions.

5.1 Anchor Alignment
Consider a parent v that is stable. Let i, j be two

children with sequences Xi = xi1, . . . , xiki and Xj =
xj1, . . . , x

j
kj

. Let t = �r and consider the following
subsequences (of length a) at i and j

A ir = xi[t+ si(r) + 1 : t+ si(r) + a],

and

A jr = xj [t+ sj(r) + 1 : t+ sj(r) + a].

These are related (but not identical) to the definition
of anchors in the algorithm of Section 2. In partic-
ular, note that by definition A ir and A jr are always
aligned, in the sense that they correspond to the same
subsequence of v. Consider also the following subse-
quences

Djr = xj [t+ sj(r) : t+ sj(r) + a− 1],

and

I jr = xj [t+ sj(r) + 2 : t+ sj(r) + a+ 1].

These are the one-site shifted subsequences for j. We
claim that A ir is always significantly more correlated
to its aligned brother A jr than to the misaligned ones
Djr and I jr . This follows from the fact that the mis-
aligned subsequences are sitewise independent.
Claim 5.1 (Anchor correlations) For all δ > 0
(and d large enough) such that (1−δ)(1−2ps)2−8β >
δ + 8β, there is C > 0 large enough so that with
a = C logn, the following hold:

1. Aligned anchors.
ℙ
[
Corr(A ir ,A jr ) > (1− δ)(1 − 2ps)2]
> 1− exp (−Ω(a)) = 1− 1/poly(n).

2. Misaligned anchors.
ℙ
[
Corr(A ir ,Djr ) < δ

]
> 1− exp (−Ω(a)) = 1− 1/poly(n),

and similarly for I jr .
We denote by Ai,j,r the above events and their sym-
metric counterparts under i↔ j.
Claim 5.2 (Reconstructed version) Let X̂i =
(x̂iι)

ki
ι=1 and X̂j = (x̂jι )

kj
ι=1 dominate the adversarial

reconstructions X̂ ′i and X̂ ′j of Xi and Xj, as defined
in Claim 4.8. Let Â ir = x̂i[t+ si(r) + 1 : t+ si(r) + a]
and similarly for all other possibilities Â ↔ D̂ , Î
and/or i ↔ j. Denote by Bi,j,r the event that the
conclusions of Claim 4.7 hold for X̂ ′i and X̂ ′j over all
pairs of intervals involving [t+si(r) : t+si(r)+a−1],
[t + si(r) + 1 : t + si(r) + a], and [t + si(r) + 2 :
t + si(r) + a + 1], with i ↔ j as necessary. Then,
conditioned on Bi,j,r and Ai,j,r we have

Corr(Â ir , Â jr ) > (1− δ)(1 − 2ps)2 − 8β,

Corr(Â ir , D̂jr ) < δ + 8β,
and

Corr(Â ir , Î jr ) < δ + 8β,
as well as their symmetric counterparts under i↔ j.
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5.2 Proof of Correctness
We claim that our recursive procedure reconstructs

the desired sequence at the root of the tree when-
ever a collection of good events occurs. Recall the
definitions of the events L, S, Bi,j,r, Ai,j,r from
Claims 3.1, 3.4, 5.1 and 5.2. Conditioning on L and
S, denote by T ∗ = (V ∗, E∗) the stable (d−1)-ary sub-
tree of T . Then, for all v ∈ V ∗, all pairs of children
i, j of v in T ∗, and all r = 1, . . . , k̄/�, we condition
on the events Bi,j,r and Ai,j,r . Note that having con-
ditioned on L there is only a polynomial number of
such events, since all sequence lengths are bounded by
k̄. (If r · � is larger than a node’s sequence length we
assume that the corresponding events are vacuously
satisfied.) Finally recall that, conditioning on L, the
event S occurs with probability 1 − χ and all other
events occur with high probability. We denote the
collection of events by E .

Conditioning on E , the proof of correctness of the
algorithm follows from a bottom-up induction. The
gist of the argument is the following. Suppose that
at a recursive step of the algorithm we have recon-
structed sequences for all children of a node v, which
are strongly correlated with the true sequences (in
the sense of dominating the corresponding adversar-
ial reconstructions). Having conditioned on the events
Ai,j,r and Bi,j,r, it follows then that the correct align-
ments of anchors exhibit strong correlation signal
while the incorrect alignments weak correlation signal.
Hence, our correlation tests between anchors discover
the corrupted islands and do the anchor alignments
correctly (at least for all nodes lying inside the sta-
ble tree). Hence the shift functions ŝi’s are correctly
inferred, and the reconstruction of v’s sequence can
be shown to dominate the corresponding adversarial
reconstruction.
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