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Abstract: We introduce a more general notion of efficient simulation between proof systems, which we call
effectively-p simulation. We argue that this notion is more natural from a complexity-theoretic point of view,
and by revisiting standard concepts in this light we obtain some surprising new results. First, we give several
examples where effectively-p simulations are possible between different propositional proof systems, but where
p-simulations are impossible (sometimes under complexity assumptions). Secondly, we prove that the rather
weak proof system G0 for quantified propositional logic (QBF) can effectively-p simulate any proof system
for QBF. Thus our definition sheds new light on the comparative power of proof systems. We also give some
evidence that with respect to Frege and Extended Frege systems, an effectively-p simulation may not be possible.
Lastly, we prove new relationships between effectively-p simulations, automatizability, and the P versus NP
question.
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1 Introduction
It is well known that NP=coNP if and only if

there exists a polynomially bounded propositional
proof system. A large research program over the last
thirty years has been to classify proof systems accord-
ing to their relative strength, and to develop lower
bound methods for proving that these increasingly
powerful proof systems are not polynomially bounded.
Conventionally, “relative strength” has been mea-
sured using the notion of polynomial simulation (p-
simulation). A proof system A p-simulates a proof
system B if every tautology has proofs in A of size
at most polynomially larger than in B. Intuitively, if
A p-simulates B, then it is at least a strong a proof
system as B, because it can prove tautologies at least
as efficiently as B.

The notion of p-simulation is very natural from
the proof theory perspective, where a primary goal
is reverse mathematics. In reverse mathematics, the
goal is to understand the minimal set of axioms
required to prove specific mathematical statements.
For example, Extended Frege systems correspond to
a system of bounded arithmetic allowing induction
on polynomial-time computable predicates, and it is
known that a significant amount of number theory
can be carried out within this axiomatic system. A
fundamental open question in reverse mathematics is
to determine the weakest propositional proof system
that can resolve the P versus NP question. The no-
tion of p-simulation is a very useful tool in this overall
endeavor, as it allows us to show that any mathemat-

ical statement that can be proven efficiently in one
system B can also be proven in another system A.

However, the notion of p-simulation has some limi-
tations as a measure of relative proof system strength
from the algorithmic perspective. From an algorith-
mic point of view, proof systems can be viewed as
non-deterministic algorithms for unsatisfiability. In
fact, all SAT solvers to date can be viewed as de-
terministic implementations of a particular proposi-
tional proof system. For example, the Davis-Putnam
algorithm (DPLL) algorithm for SAT, as well as the
highly successful clause learning methods are highly
optimized deterministic implementations of Resolu-
tion. Similarly, the "lift and project” methods used
in combinatorial optimization can be viewed as deter-
ministic implementations of the proof system LS+.
Thus proof complexity is not just an approach to the
NP versus coNP question, but to the P versus NP
question as well. This is because proving superpoly-
nomial proof size lower bounds for a particular proof
system unconditionally rule out a large class of meth-
ods for solving SAT in polynomial time. When com-
paring such methods to one another, it seems a need-
less restriction to insist on comparing them on the
same input as would be required by the p-simulation
notion. If the notion of feasibility is polynomial time,
then arguably some polynomial-time preprocessing of
the input should be allowed for free when comparing
two different methods.

Also, when proving lower bounds against proof sys-
tems, the lower bounds are typically shown for some
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specific class of tautologies. In the analogous situa-
tion in computational complexity, when a lower bound
is shown, eg., Parity not in AC0, the lower bound
also holds for all languages that Parity is reducible to
under DLOGTIME reductions, since AC0 is closed
under DLOGTIME reductions. In a similar way,
in proof complexity, one would like to rule out not
just lower bounds for a certain sequence of tautolo-
gies, but also for any sequence of tautologies that is
at least as “hard” as the sequence for which the lower
bound is proved. There seems no straightforward way
to do this using p-simulation without insisting that
the lower bound should go through for all sequences
of tautologies that don’t have small proofs.

In this paper, we explore a more general notion
of p-simulation called “effectively polynomial simula-
tion” which we feel is very natural from a complexity-
theoretic point of view. Though closely related con-
cepts have been studied (see Related Work subsec-
tion), we are the first to explicitly define this new no-
tion and demonstrate its wide-ranging applicability.
Essentially, given proof systems A and B for tautolo-
gies, B is said to effectively p-simulate A if there is an
efficient truth-preserving reduction mapping tautolo-
gies with small proofs in A to tautologies with small
proofs in B. A p-simulation is simply the special case
of an effectively-p simulation where the reduction is
the identity.

While the original notion of p-simulation is funda-
mental, there are several reasons to study this more
general notion of simulation as well. First, we feel that
the effective simulation notion addresses the weak-
nesses of the notion of p-simulation mentioned earlier.
Where we’re chiefly interested in feasibility, it is natu-
ral to think of polynomial time as “given for free”, and
for the notion of simulation we use to be closed under
polynomial-time reductions. From the point of view
of practice, this captures the possibility that when a
proof system is used as a SAT solver, polynomial-time
preprocessing applied to the input formula could make
the algorithm more effective. In fact, encoding prob-
lems (such as planning and inference) into SAT has
become a huge subarea within artificial intelligence.

It could be the case that effectively-p simulation is
an interesting notion, but that there are no interesting
examples of it which are not p-simulations. We show
that this is far from the truth. We give a number of
examples (some new, some implicit in earlier work) of
effectively-p simulations between proof systems where
either no p-simulation is known or a p-simulation has
been proven not to exist. This gives a much cleaner
picture of proof complexity. For example, there
are many variants of Resolution - Linear Resolution,

Clause learning, k-Res - which are either not equiv-
alent to Resolution with respect to p-simulations or
there the equivalence is not known, however they are
all equivalent to Resolution with respect to effectively-
p simulations. Moreover, effectively-p simulation can
be used to compare proof systems of different kinds.
For instance, proof systems with different vocabular-
ies can be compared by this notion, or a quantified
proof system can be compared in power with a propo-
sitional one. Indeed, one of our main results in this
paper shows that a certain quantified proof system
is universal in that it effectively-p simulates every
propositional or quantified system.

The study of effective simulations is helpful in un-
derstanding the concept of automatizability of proof
systems, which has seen a lot of interest in recent
years. An effectively-p simulation of proof system A
by proof system B implies a reduction from automati-
zability ofA to automatizability of B. In the case that
proof system A is already known not to be automa-
tizable under a certain assumption, this gives non-
automatizability of B under the same assumption.

Effectively-p simulations raise the possibility of
“lifting” a lower bound from a weaker proof system
to a stronger one, in a similar way to a recent paper
of Beame, Huynh-Ngoc and Pitassi [6]. If we have
an effectively p-simulation of a stronger proof sys-
tem (in the sense of p-simulation) by a weaker one (a
phenomenon of which we give many examples in this
paper), and supposing that we have a lower bound
method against the weaker proof system which works
for tautologies in the range of the reduction, we auto-
matically get lower bounds against the stronger proof
system as well.

Finally, the study of effectively-p simulations gives
rise to interesting new questions, eg. does Resolu-
tion effectively-p simulate Extended Frege, answering
which seems to require strengthening and extending
known proof techniques and developing new connec-
tions between computational complexity and proof
complexity.

1.1 Related Work
We observe that the concept of effectively-p simula-

tion has been around implicitly for a long time. In fact
in the original paper by Cook and Reckhow [14] defin-
ing propositional proof systems, and p-simulations,
they compare several different nondeterministic algo-
rithms (proof systems), not all of which are for the
same coNP complete language. For instance, Resolu-
tion works exclusively with unsatisfiable CNF formu-
las, whereas different Frege systems work with tau-
tological formulas over varying bases. In order to
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compare these proof systems directly, they consider
natural reductions between the different languages.
A more extreme example exists when comparing the
strength of the Hajos calculus to the strength of var-
ious propositional proof systems. Here we are trying
to compare nondeterministic algorithms for very dif-
ferent co-NP complete languages, and once again the
comparison can only be accomplished by introduc-
ing a mapping (reduction) that allows one to convert
strings in one language to strings in the other.

Razborov [23] and Pudlak [22] defined a notion of
reduction between disjoint NP -pairs, with applica-
tion to proof complexity in mind. Their notion corre-
sponds to our notion of simulation when applied to the
canonical pair of a propositional proof system. How-
ever, our notion is more general in that it applies, for
example, to quantified propositional proof systems as
well.

It was already observed in Pudlak’s work, as well
in subsequent work of Atserias and Bonet [1], that
reductions between disjoint NP-pairs help to under-
stand automatizability. Though Atserias and Bonet
never define effective simulations explicitly, one of
their main results can be interpreted as an effective
simulation of k-Res by Resolution.

The fact that reductions are implicitly used even
in practice was pointed out very elegantly in a paper
by Hertel, Hertel and Urquhart [17]. In their paper,
they argue that sometimes reductions, even very nat-
ural and seemingly harmless ones, can be quite dan-
gerous (meaning that they can drastically alter the
difficulty of the problem if one is not extremely care-
ful). To support this claim, they present several ex-
amples of reductions between proof systems where the
blowup under one natural setting is polynomial, but
the blowup under another natural setting is exponen-
tial.

A summary of our contributions and outline of the
rest of the paper is as follows. In Section 2 we de-
fine effectively-p simulations and present some basic
facts concerning the definitions. As mentioned ear-
lier, although this concept was around before, we are
the first to present a general definition and to study
the concept in its own right. In Section 3, we present
some positive results, giving several examples where
effectively-p simulations are possible, even in cases
where p-simulations are provably impossible, or are
unlikely. In Section 4, we present some negative re-
sults, giving some examples where effectively-p simu-
lations are unlikely. A big question is whether or not a
sufficiently strong system can effectively-p simulate a
seemingly stronger one. When we began this work, we
conjectured (or hoped) that Frege would effectively-p

simulate Extended Frege systems. However, in Sec-
tion 4, we present some conditional results indicating
that this is probably unlikely. In Section 5 we present
some new results concerning the connection between
effectively-p simulation, automatizability, and the P
versus NP question. We conclude with open prob-
lems in Section 6.

2 Definitions
We first recall the usual notion of polynomial simu-

lations given in the literature. In what follows, we will
be working with boolean formulas over the standard
basis: AND, OR and NOT. We assume some standard
encoding of propositional formulas. For a formula f ,
let [f ] denote the encoding of f . Let TAUT denote
the set of valid propositional formulas. For the sake of
convenience, we do not distinguish between formulas
and their encodings here.

Definition 2.1 A propositional proof system is a
polynomial-time onto function A from {0, 1}∗ to
TAUT .

In the above definition, we think of a domain el-
ement as an encoding of a proof, and A maps the
encoding of a proof to the (encoding of) the formula
that is being proved. The onto condition ensures that
the proof system is complete.

Note that the above definition does not require the
proof system to be propositional in the usual intu-
itive sense (where the objects being manipulated are
restricted to being propositional formulas.) For ex-
ample, first order systems of arithmetic, such as PA
(Peano arithmetic) fit the definition of a propositional
proof system. Even systems which do not explicitly
talk about boolean formulas (such as standard sys-
tems of set theory, ZFC) can also be viewed as fitting
the definition, where the function interprets certain
formulas in the underlying language as representing
the corresponding boolean formula.

Now let QTAUT denote the set of all encodings
of valid quantified propositional formulas, where the
quantification is over all the variables of the formula.
We define quantified propositional proof systems anal-
ogously to propositional proof systems.

Definition 2.2 A quantified propositional proof sys-
tem is a polynomial-time onto function A from {0, 1}∗
to QTAUT

Definition 2.3 Let A and B be two proof systems.
Then A p-simulates B if for all formulas f , the short-
est A-proof for f is at most polynomially longer than
the shortest B proof of f .
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A strongly p-simulates B if A p-simulates B and
moreover, there is a polynomial-time computable func-
tion f that transforms B-proofs of f into A-proofs of
f .

Remark 1. Note that our definition is implic-
itly with respect to some class of formulas. For
propositional systems A and B, the p-simulation is
(by default) with respect to propositional formulas
and for quantified propositional proof systems, the
p-simulation is (by default) with respect to quanti-
fied boolean formulas. More generally for any class of
formulas, and any two proof systems that can prove
formulas of this type, we can define a p-simulation
with respect to this class of formulas. When talking
about p-simulations, or effectively-p simulations (de-
fined next), we will explicitly mention the formulas
only when it is not the default.

As defined above, for tautology f , if one proof sys-
tem A always contains a proof of f that is within a
polynomial factor of the size of the smallest B-proof
of f , then A is said to p-simulate B. This relationship
maps B-proofs of f to similarly-sized A-proofs of f .
We can relax this definition to produce another kind
of simulation (an effectively-p simulation, defined be-
low) in which we map B proofs of f to similarly sized
A-proofs of f ′, where f ′ is some formula which is a
tautology if and only if f is a tautology, and moreover,
f ′ can be produced from f efficiently.

We use the following definition of a truth-preserving
transformation both for propositional and quantified
tautologies.

Definition 2.4 We say that R is a polynomial-time
in m truth-preserving transformation from boolean
formulas to boolean formulas if, for all boolean for-
mulas f , f is in TAUT (respectively QTAUT) if and
only if R(f,m) is in TAUT (respectively QTAUT),
and R(f,m) runs in time polynomial in |f |+m, where
|f | is the number of connectives in f and m is an aux-
iliary parameter.

Definition 2.5 Let A and B be two proof sys-
tems. Then A effectively-p simulates B if there is a
polynomial-time in m truth-preserving transformation
from (encodings of) boolean formulas to (encodings of)
boolean formulas, R(f,m) such that when m is at least
the size of the shortest B-proof of f , R(f,m) has an A
proof of size polynomial in |f |+m. If there also exists
a polynomial-time function (again polytime in |f |+m)
that maps B-proofs of f to A-proofs of R(f,m), then
we say that A strongly effectively-p simulates B.

Remark 2. The role of the parameter m in the
definition might not be clear at first sight. We could

define our notion omitting m completely by stipulat-
ing that R(f) is computable in time polynomial in
|f | and that R(f) has small A-proofs if f has small
B-proofs. The point is that our definition is more
relaxed - it allows the reduction to operate in time
polynomial in the size of the smallest A-proof for f
rather than in the size of f . As we show later, this
relaxed notion still gives a reduction from automati-
zability of B to automatizability of A. Since one of
our main motivations for exploring this notion is the
connection to automatizability, it makes sense to work
with the weakest notion of simulation for which this
connection holds. We note, though, that of the sev-
eral positive results about effectively p-simulations in
this paper, all but Proposition 3.1 and Theorem 3.3
go through even if the stronger notion where the re-
duction can only take time polynomial in |f | is used.

Remark 3. It is clear that if A can p-simulate B,
thenA can also effectively-p simulate B. For example,
EF can effectively-p simulate Frege. In the opposite
direction, it may seem at first that by using exten-
sion variables, many reverse effective simulations are
easily possible. Using our same example, we could
try to effectively simulate EF by Frege by adding a
polynomial-sized set of extension axioms for predi-
cates that are complete for P/poly, thereby allowing
Frege to simulate each EF step by using an instance
of the newly defined predicate. As far as we can see,
this is not possible, since one seems to need the ex-
act predicates that are required in the EF proof, even
in the presence of the substitution axiom. Thus in-
tuitively, obtaining an effective simulation of EF by
Frege seems to require either (i) that the reduction,
given f , finds an EF proof of f and then defines the
needed predicates via extension axioms (an impossi-
blility under complexity assumptions), or (ii) arguing
that there exists a small (polynomial in n) "core" of
predicates that would suffice to simulate EF proofs
for all formulas of size n.

We next define automatizability. Like p-simulation
and effectively-p simulation, automatizability comes
in two flavors: strong and weak.

Definition 2.6 A (propositional or quantified) proof
system A is strongly automatizable if there is an al-
gorithm Q such that if φ is a valid formula whose
smallest A-proof is of size s, then Q(φ) runs in time
poly(s+ |φ|) and produces an A-proof of φ. If Q pro-
duces not an A-proof but a proof in some other proof
system B, then A is said to be weakly automatizable.

When we say “automatizable” in future, we mean
“weakly automatizable” by default. effectively-p sim-
ulation of proof system A by proof system B implies
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that if B is weakly automatizable then so is A. In
other words, effective simulation gives a reduction be-
tween the automatizability properties of proof sys-
tems. This was observed in essence already by [22]
and [1]; it is even easier to see with our definitions.

Proposition 2.7 Let A and B be proof systems. If
B effectively-p simulates A and B is weakly automa-
tizable, then A is weakly automatizable.

We also consider at times in this paper the “quasi”-
analogues of the polynomial-time notions defined
above. For instance, a proof system is quasi-
automatizable if there is a proof-finding procedure
that operates in time quasipolynomial in the size of
the smallest proof, and a quasi-effective simulation
is one that operates in time quasipolynomial in the
parameter m. Analogues of our propositions for the
polynomial-time versions of simulation and automa-
tizability also hold for the quasi-analogues.

We now describe some specific proof systems.

2.1 Propositional Proof Systems
The resolution principle says that if C and D are

two clauses and x is a variable, then any assignment
that satisfies both (C ∨ x) and (D ∨¬x) also satisfies
C ∨D. The clause C ∨D is said to be the resolvent of
the clauses C ∨x and D∨¬x and derived by resolving
on the variable x. A resolution refutation of a clause
C from a CNF formula f consists of a sequence of
clauses in which each clause is either a clause of F or
is a resolvent of two previous clauses, and C is the last
clause in the sequence. It is a refutation of f if C is
the empty clause. The size of a resolution refutation
is the number of resolvents in it.

A linear resolution refutation of f is a resolution
refutation with the additional restriction that the un-
derlying graph structure must be linear. That is, the
proof consists of a sequence of clauses C1, . . . , Cm such
that Cm is the empty clause, and for every 1 ⩽ i ⩽ m,
either Ci is an initial clause or Ci is derived from Ci−1
and Cj for some j < i− 1.

We briefly review the definition of Frege and Ex-
tended Frege systems. More detailed definitions can
be found in [8, 26, 28]. The sequent calculus is a very
elegant proof system that can be used as a framework
for capturing many natural and well-studied proof
systems. A propositional sequent is a line of the form
Γ→ ∆, where Γ and ∆ are finite sets of propositional
formulas. The intended meaning of the sequent is that
the conjunction of the formulas in Γ implies the dis-
junction of the formulas in ∆. A PK proof (a proposi-
tional sequent calculus proof) of a sequent Γ→ ∆ is a
sequence of sequents, where: (i) each sequent is either

an instance of a PK axiom, or follows from one or two
previous formulas by an instance of a PK rule and (ii)
the final sequent is Γ → ∆. The PK rules are very
natural. They include some structural rules, as well
as two rules for each connective, one for introducing
the connective on the left side of the arrow, and one
for introducing the connective on the right side of the
arrow. The most important rule of PK is the cut-rule,
which allows one to infer Γ→ ∆ from Γ, A→ ∆ and
Γ → A,∆. A PK proof of a formula f is a proof of
the sequent → f .

With no restrictions on the cut-rule, PK is poly-
nomially equivalent to Frege systems. By restricting
the cut rule, we can elegantly obtain many commonly
studied subsystems of Frege systems. For example, if
the cut rule is restricted to formulas A which are just
literals, then we have a system which is equivalent to
resolution. By restricting the cut rule to bounded-
depth formulas (AC0), we obtain bounded-depth, or
AC0-Frege systems, and so on. An Extended Frege
proof of a formula f is a proof of E → f , where E is a
sequence of extension axioms. An extension axiom is
an axiom of the form (A ⇐⇒ l1 ∨ . . . ∨ lk), where li
are literals and A is a new variable. Extension axioms
allow efficient reasoning about predicates computable
by polynomial-size circuits, by introducing new vari-
ables to represent the various subcomputations of the
circuit.

2.2 Quantified Propositional Systems and
Beyond

First we recall the usual inductive definitions of
quantified boolean formulas. Σq0 = Πq0 is the class of
quantifier free propositional formulas. Both Σqi and
Πqi are closed under the boolean operations ∧, ∨ and
¬, and the negation of a Σbi formula is a Πqi formula,
and vice versa. Σqi+1 contains both Σqi and Πqi and
formulas of the form ∃x1 . . . ∃xkA, where A is a Πqi
formula. Similarly, Πqi+1 contains both Σbi and Πqi
and formulas of the form formulas are formulas of the
form ∀x1 . . . ∀xkA, where A is a Σqi formula. Thus, Σqi
(Πqi ) formulas are quantified boolean formulas with i
blocks of alternating quantifiers, beginning with ∃ (∀).

The system G is a proof system for QBF formulas
that extends PK [18]. Lines in the proof are still se-
quents, Γ → ∆ but now Γ,∆ are finite sets of QBF
formulas. The rules of G include all propositional
rules of PK, and additionally include rules for intro-
ducing each quantifier (on both the left side, and the
right side of the arrow). The system G0 is a proof
system for QBF where the cut rule is restricted to
propositional formulas only. Similarly, Gi is a subsys-
tem of G obtained by restricting the cut rule to Σqi
QBF formulas. Note that the G systems can be used
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to prove any QBF formula.
Beyond QBF proof systems, we can view any stan-

dard axiomatic system as being a proof system for
propositional reasoning. As mentioned earlier, Peano
Arithmetic, and even ZFC (Zermelo-Fraenkel Set
Theory) can be studied with respect to their abil-
ity to prove propositional formulas (with a suitable
encoding of propositional formulas).

3 Effectively-p Simulations: Positive
Results

As mentioned earlier, anytime we have a p-
simulation between two proof systems, we also have
an effectively-p simulation. Thus, for example, the
usual hierarchy of p-simulations continues to hold un-
der effectively-p simulation.

We also observe that effective simulations can
establish equivalences between two proof systems,
where the equivalence with respect to p-simulation
hinges on finding short proofs for a particular state-
ment. In our view, these are examples pointing out
that sometimes p-simulation is the better concept,
since effectively-p simulation does not provide a fine
enough granularity between systems for applications
in reverse mathematics. For example, it is known
that the monotone sequent calculus (monotone PK)
can quasipolynomially simulate PK with respect to
monotone sequents, and it is open whether or not a
p-simulation is possible [2]. On the other hand, it is
not hard to show that monotone PK can effectively-
p simulate PK with respect to monotone sequents.
Similarly, it is not hard to see, using the results of
Soltys and Cook [27], that Frege can quasipolynomi-
ally effectively-p simulate the system LAP (capturing
linear algebra reasoning).

Another simple observation allows us to obtain
effective p-simulations between two proof systems
whenever the stronger of the two is automatizable:

Proposition 3.1 Let P and P ′ be two proof systems
that are both automatizable. Then each effectively-p
simulates the other.

Proof. We show that P ′ effectively simulates P ; the
other direction follows by symmetry. Given an input
formula φ for P and the parameter m, we define an
efficient simulation as follows. We run the automati-
zation procedure for P on φ. If it halts with a proof
within poly(m) steps, we output a trivial tautology
which has polynomial-size proofs in P ′. If not, then
we output φ. This transformation is truth-preserving,
since the output of the reduction is a tautology iff the
input is. Also, if the input formula has proofs of size

⩽ poly(m) in P , then the output formula has small
proofs too, since it is a trivial tautology.

As a consequence, we get that the following pairs of
proof systems effectively (quasi)simulate each other:
Nullstellensatz and Polynomial Calculus, Tree Reso-
lution and Polynomial Calculus, small rank LS and
small rank LS+, tree-LS and small rank LS, small
rank LS+ and tree-LS. On the other hand, it is known
that between many of these systems there are no p-
simulations. For example, it is known that Nullstel-
lensatz does not (quasi)p-simulate PC [12]; low rank
LS does not p-simulate low rank LS∗; and Tree res-
olution does not (quasi)p-simulate any of the other
systems.

In this section we present some other examples
where an effectively-p simulation is possible, but a
p-simulation is not possible, or is conjectured to be
not possible.

3.1 Linear Resolution
Our first example is the theorem whose proof has

been known for some time, showing that linear reso-
lution can effectively-p simulate all of Resolution.

Theorem 3.2 [11] Linear resolution effectively-p
simulates Resolution.

We sketch the proof here, both for completeness,
and to give the reader an idea of how such a simulation
can be proven. Let f be a CNF formula over x1, . . . xn
and let g be the following set of 2n2 clauses:

{xi ∨ ¬xi ∨ xaj | 1 ⩽ i, j ⩽ n, a ∈ {0, 1}}.
Suppose that f is an unsatisfiable CNF formula

that has a resolution refutation of size S. Then it
can be shown inductively that there is a linear reso-
lution refutation of f ∧ g of size polynomial in S, as
follows. Let π = C1, . . . CS be the resolution refuta-
tion of f . Since C1 ∈ f , we can clearly derive C1 in
linear resolution. Now assume we have a linear res-
olution derivation L that ends with Ci and includes
C1, . . . Ci−1 in order along the line. We show how to
extend L to derive Ci+1.

There are two cases. The first is where Ci+1 is de-
rived from two earlier clauses Cj , Ck in π by resolving
on x, 1 ⩽ j < k ⩽ i. If i = k then we can simply add
Ci+1 to the end of L. Otherwise let l1, . . . , lw be the
literals in Ci. Resolve Ci with the following (initial)
clauses of g: (x ∨ ¬x ∨ ¬l1), . . . , (x ∨ ¬x ∨ ¬lw) until
the last clause in L is (x ∨ ¬x). Now resolve this last
clause on x with Cj and then Ck so the last clause
becomes Ci+1. The other case is when Ci+1 is an ax-
iom containing the literal xa. In this case, derive the
clause (x∨¬x) as above from Ci and then resolve the
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axiom Ci+1 with it to obtain Ci+1 again at the end of
the line.

It is still unknown whether or not linear resolution
can p-simulate resolution, but it is conjectured to be
false.

3.2 Clause Learning
Our second example is a very recent result proving

that Clause Learning effectively-p simulates Resolu-
tion. Clause Learning is a particular refinement of
Resolution that is very important. Most state-of-the-
art complete algorithms for SAT make use of highly
optimized Resolution SAT solvers and all are based
on the idea of Clause Learning. Informally, clause
learning is an implementation of DPLL whereby in-
termediate clauses that are generated are "learned"
or "cached" along the way. Then in later states of
the DPLL algorithm, the cache is checked to see if
the current subproblem to be solved has already been
solved earlier. This gives a way of pruning the DPLL
tree and it has been shown to be highly effective, not
only for SAT, but also for important generalizations
of SAT such as QBF solvers and Bayesian inference.
(See for example [5, 15, 21, 25].) [7] and [29] formalize
Clause Learning and the former shows that that it is
superpolynomially more efficient than other common
resolution refinements (such as regular and tree reso-
lution.) Whether or not Clause Learning p-simulates
Resolution is an important open problem. However,
the following somewhat surprising theorem was re-
cently proven.

Theorem 3.3 [4] Clause learning effectively-p simu-
lates Resolution.

On the one hand, this proves formally that Clause
Learning is as powerful as all of resolution with re-
spect to solving SAT. But on the other hand, it un-
fortunately shows that finding clause learning proofs
(in a worst-case sense) is as hard as finding general
resolution proofs.

3.3 Effectively-p Simulations for Local Ex-
tensions

We make a simple observation that allows us to see
several examples where p-simulations do not hold, but
effectively-p simulations do hold.

Definition 3.4 Let f be a boolean function on k vari-
ables, y1, . . . , yk. We assume without loss of generality
that f is a CNF formula. The formula fD is a CNF
formula defining f . The variables of fD are y1, . . . , yk
plus variables xC , for each clause C of f . The clauses
of fD are as follows. For each clause C of f , we have

clauses that express the fact that C is equivalent to
xC .

Definition 3.5 Let x1, . . . , xn be a vector of n
Boolean variables. The set of all k-local boolean func-
tions over �x consists of all functions f such that f
is a boolean function defined on a subset of k vari-
ables of �x. The formula EXT (k, n) consists of the
conjunction of the formulas fD, where f ranges over
all k-local boolean functions over �x.

Definition 3.6 (k-local extensions of proof systems)
Let P be a rule-based propositional proof system. De-
fine P (k) to be a propositional proof system containing
all rules and axioms of P plus the additional axioms
fD for all k-local functions f .

Examples of well-studied k-local extensions of stan-
dard proof systems include: Res(k), CP (k), LS(k)
and LS+(k). Indeed, Atserias and Bonet [1] implic-
itly show that Resolution effectively simulates Res(k)
for each constant k, and Pudlak [22] implicitly shows
that CP effectively simulates CP (2).

We generalize the above observations. Each of the
above proof systems is obtained from the base system
by introducing extension axioms for all conjunctions
of up to k-literals. Note that our k-local extension
is more general than these since we allow extension
variables for every function on k variables and not
just the AND function. The following lemma shows
that as long as we obtain P ′ from P by adding ex-
tension variables for some local functions, then P can
effectively-p simulate P ′.

Lemma 3.7 Let P be a rule based proof system.
Suppose that P ′ is another proof system such that
P (k) p-simulates P ′, and P ′ p-simulates P . Then P
effectively-p simulates P ′. In particular, P effectively-
p simulates P (k).

Proof. The proof is straightforward. Let P , P ′,
P (k) be defined as above, and let f be a formula over
n variables, �x. We map f to f ′ = f ∧ EXT (k, n).
It is clear that the mapping is polynomial-time, and
that it preserves satisfiability. We claim that if f has
a short P ′ proof, then f ′ = f ∧EXT (k, n) has a short
P -proof. By the p-simulation of P ′ by P (k), f has a
short P (k) proof, and thus f ′ has a short P proof.

It follows from the above lemma that Res
effectively-p simulates Res(k) [1] and similarly for
CP/CP (k), LS/LS(k), and LS+/LS+(k). In all of
these cases, it is known that p-simulations are not
possible. (See [26].)
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3.4 G0 Can Effectively-p Simulate any
Proof System

In this section, we will prove thatG0 can effectively-
p simulate any quantified propositional proof system,
including Peano Arithmetic, and Zermelo-Frankl Set
Theory (ZFC). Sadowski [24] showed that if there
is an optimal quantified propositional proof system,
i.e., a quantified propositional proof system that p-
simulates all others, then NP ∩ coNP has complete
languages, which is considered unlikely. Our result
shows that in contrast, there is a proof system which
is effectively optimal.

Theorem 3.8 For any i, G0 can effectively-p simu-
late any proof system for Σqi quantified boolean formu-
las.

Proof. (sketch) Let S be any quantified proof sys-
tem for Σqi -QBF formulas. We want to show that G0
can effectively-p simulate S. The high level idea is
as follows. We define a reduction from Σqi quanti-
fied propositional formulas to Σqi+1 quantified propo-
sitional formulas as follows. Given a Σqi QBF formula
f , and a number m, we map f to f ′, where f ′ is the
formula: ReflSm → f . ReflSm is the reflection princi-
ple for S and it will be a fixed ∀Σqi formula depending
only on S and m that asserts that for any Σqi formula
A, and for any α, if α is an S proof of A, Then A
is satisfied by all assignments. We now proceed with
the details, and begin by defining f ′.

By definition, S is a polynomial-time algorithm
that maps strings (encodings of S-proofs) to strings
(encodings of Σqi -QBF formulas). We will assume
without loss of generality that all proof systems S
map strings of length m to strings of length m: we
can always pad the output with leading zeroes if this
is not the case.

Now fix m and consider S on inputs of length m.
Since S is polynomial-time computable, there is a
fixed circuit, Cm, of size polynomial in m with in-
puts �x = x1, . . . , xm that computes S(α) for each
α ∈ {0, 1}m. Using extension variables to represent
each intermediate gate of Cm, we can define a for-
mula ProofSm(�x, �y) such that ProofSm(α, β) is true if
and only if Cm on input α outputs β. (Note that
the variables of the formula are �x, �y, plus the exten-
sion variables used to define each intermediate gate of
Cm.)

Fix some standard encoding of Σqi -QBF formu-
las. Then we can define a propositional formula
Formulai(�y) that is true if and only if y encodes a
(Σqi ∪ Πqi )-QBF formula. Similarly we can define a
Σqi formula SATi,m(�y, �z) that is true if and only if
Formulai(�y) is true, and �z satisfies the Σqi formula

encoded by �y. (Here m is the length of the vectors
�x, �y, �z.) SATi,m is defined inductively. For example,
the following equalities hold:
(1) SATi,m([∃xA(x)], τ) = ∃xSATi,m([A(x)], τ),
(2) SATi,m([∀xA(x)], τ) = ∀xSATi,m[A(x)], τ),
(3) SATi,m([¬A], τ) = ¬SATi,m([A], τ), and
(4) SATi+1,m([A], τ) = SATi,m([A], τ) whenever
A ∈ Πqi ∪ Σqi .

Note that SATi,m will be a Σqi formula. (Of course, we
will need to introduce polynomial in m many exten-
sion variables in order to be able to encode and decode
QBF formulas, and in order to manipulate them.)

Finally, we define ReflSm to be the following for-
mula: ∀�x∀�y∀�z(¬ProofSm(�x, �y) ∨ SATi,m(�y, �z). This
formula states that for every �x, �y, �z of length m, if �x
codes an S-proof of some formula, f encoded by �x,
then f is satisfied by every assignment �z to its free
variables. The formula ReflSm is a ∀Σqi formula.

Our reduction, given f and m, will map f to f ′ =
ReflSm → f . The reduction is clearly polynomial-time
and truth preserving. It is left to argue that if f is a
Σqi -QBF formula with a short S-proof, then f ′ has a
short G0 proof.

Let [f ] be the encoding of f , and suppose that f has
an S-proof, α, of size m. We will first argue that G0
can efficiently prove ∃�xProofSm(�x, [f ]). By definition,
the circuit Cm on input α, outputs [f ]. Therefore it is
not hard to see that G0 has a polynomial-size proof of
ProofSm(α, [f ]). This is just a matter of verifying in
G0 that the circuit Cm on input α, outputs [f ]. Now
using the rule for ∃, G0 can derive ∃�xProofSm(�x, [f ])
from ProofSm(α, [f ]), as claimed.

Secondly, we claim that G0 can prove that ¬f →
∃�z¬SATi,m([f ], �z). (See [18] for example.) Now com-
bining the above two arguments, it follows that G0
can efficiently prove ¬f → ¬ReflSm, as desired.

Could it be the case that there is a propositional
proof system which effectively simulates all proposi-
tional proof systems? This is a possibility, but the
construction of such a system would imply the ex-
istence of a complete disjoint NP -pair, which is a
longstanding open problem [16]. However, perhaps
the more interesting question is whether a “natural”,
well-studied propositional proof system like EF effec-
tively simulates all other propositional proof systems
that are “natural” in some sense. We have no evidence
in support of or against this possibility.

4 Effectively-p Simulation: Negative
Results

In this section we discuss several situations where
effectively-p simulations do not seem to be possible.

Our first observation in this direction is as follows.
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Claim 4.1 Let A be a propositional proof system that
is automatizable, and let B be another propositional
proof system that is not automatizable (under assump-
tions), then under the same assumptions, A cannot
effectively-p simulate B.

From the above claim, it follows that Tree-
Resolution, Nullstellensatz, PC, and low rank LS,
LS+ cannot effectively p-simulate Frege or Extended
Frege, under assumptions about hardness of factoring
[9, 10, 19].

As a further example, we show that Tree Resolution
is unlikely to effectively simulate G0.

Theorem 4.2 If NP �⊆ QP , then Tree Resolution
does not effectively-p simulate G0.

Proof. Theorem 5.4 in the next section shows that
if NP �⊆ P , then G0 is not automatizable. The same
proof scales to show that if NP �⊆ QP , then G0 is not
quasi-automatizable. If Tree Resolution effectively-p
simulated G0, then G0 would be quasi-automatizable,
since Tree Resolution is. Thus, under the assump-
tion that NP ∩ coNP �⊆ QP , Tree Resolution cannot
effectively-p simulate G0.

How about if both two proof systems are not autom-
atizable (under reasonable complexity assumptions)?
This is the typical case for strong enough proof sys-
tems, say bounded-depth Frege or stronger. We can
still show a negative result in this case, however one
of the proof systems involved is rather “unnatural”.

Theorem 4.3 There is a proposition proof system P
such that if Factoring is not in polynomial time in-
finitely often, then

1. EF(Extended Frege) is not automatizable
2. P is not automatizable
3. P does not effectively-p simulate EF

Proof Sketch. The basic idea is to define P to be a
“sparsified” version of EF in some sense. P will retain
enough of the nature of EF that automatizability of
P would have unlikely consequences, and yet an ef-
fective simulation of EF by P would imply that EF
is automatizable infinitely often, which again would
have an unlikely complexity consequence. This proof
idea is analogous to Ladner’s construction [20] of a set
in NP that is neither in P nor NP -complete, assum-
ing NP �= P .

We need to define what “sparsified” means. On in-
finitely many tautology lengths, P will be exactly like
EF , however there will be a triply exponential sep-
aration between each two consecutive input lengths.
On all remaining tautology lengths, P will be exactly

like the truth-table proof system, with each tautology
having only exponential-size proofs.

Bonet, Pitassi and Raz [10] showed that if EF is
automatizable, then Factoring is easy. Their proof
also shows that if EF is automatizable on infinitely
many tautology lengths, then Factoring is easy in-
finitely often. Thus, if EF is automatizable or P is
automatizable, then Factoring is easy infinitely often.

It remains to be shown that the same conclusion
follows if P effectively simulates EF. We focus on tau-
tology lengths n for which P looks like the truth-table
proof system for all input lengths between log(n) to 2n
- by definition of P , there are infinitely many of these.
Assume, for the sake of contradiction, that there is an
effectively polynomial simulation R of EF by P , and
let c be a constant such that if f has an EF-proof of
size m, then R(f,m) has a P -proof of size mc. Let f
be any tautology of length n. We define a procedure
Q(f,m) running in polynomial time such that if f is
a tautology of size n with an EF- proof of size at most
m, then Q outputs a proof of f (in a different proof
system). This implies that EF is automatizable.
Q(f,m) runs R(f,m). If R(f,m) outputs a for-

mula with more than c log(m) variables, then Q out-
puts something arbitrary. The point is that in such a
case, f cannot be a tautology with EF-proofs of size
at most m, since the output formula does not have P -
proofs of size at mostmc (P looks like the truth-table
proof system in this range of lengths), so it does not
matter what Q does. On the other hand, suppose that
R(f,m) outputs a formula with at most c log(m) vari-
ables. By exhaustive search, Q determines if R(f,m)
is a tautology or not. If it is, then Q outputs R(f,m)
together with the truth-table proof that R(f,m) is a
tautology, otherwise it does something arbitrary.

Since R is tautology-preserving, R(f,m) together
with its truth-table proof act as a proof of f in some
propositional proof system. It’s clear that Q operates
in polynomial time and outputs a proof of f whenever
f is a tautology of size at most m.

The argument given above works for all f of size n,
where n is in the “sparse” range of P , and there are
infinitely many n, as we observed. Thus under the
assumption that P effectively-p simulates EF, EF is
automatizable infinitely often, which means that Fac-
toring is easy infinitely often by the result of Bonet,
Pitassi and Raz [10].

4.1 No Effectively-p Simulations under Re-
stricted Reductions

We don’t know how to say anything in general
about the non-existence of effectively-p simulations
between two natural proof systems neither of which
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is believed to be automatizable. However, we can say
something if we constrain the form of the reduction.

Claim 4.4 Let P and P ′ be two propositional proof
systems for refuting unsatisfiable CNF formulas, and
such that P effectively-p simulates P ′. Let A be the
polynomial time algorithm that transforms f to f ′.
Then we can assume without loss of generality that A
maps f to f ′ = (f ∧ g), for some g that depends on f
and m.

Since the reduction is truth preserving, we can al-
ways take the conjunction of whatever formula A re-
turns with f . This formula will still preserve satisfi-
ability, and moreover the size of the P -refutation for
this new formula will be the same as before.

If NP = P , any two proof systems effectively-p
simulate each other. Hence we need to put some as-
sumptions on A in order to get negative results with-
out proving that P is different from NP . Next we
define a natural restrictions on A. We assume with-
out loss of generality that f is a 3CNF formula in n
variables. We slightly abuse notation and say that
such an f has size n.

Definition 4.5 (Oblivious reductions) Let A be a
polynomial-time truth-preserving reduction from f , m
to f ∧ g. A is an oblivious reduction if for all n there
exists a unique g such that for all f of size n, A(f)
maps to f ∧ g. That is, A is oblivious to everything
about f except for its size.

This type of reduction is natural and have been de-
fined and studied in many contexts similar to ours.
The intuition behind this restricted definition is that
it is hard to determine whether or not f is satisfi-
able, and that basically no useful information can be
obtained about an arbitrary f in polytime, just by
looking at f .

Now assume that A is an oblivious reduction map-
ping f to f ∧ g. We can assume without loss of gen-
erality that g is also a CNF formula. g is a formula
involving the original variables of f , call them �x, plus
new variables �y. Furthermore, it must be the case that
for every assignment α to the variables of f , there ex-
ists an assignment β to the new variables of g such
that g(α, β) is true. This is because the reduction is
oblivious. Assume for sake of contradiction that there
is an assignment α to the x variables such that for all
β, g(α, β) is false. Fix some f of size n such that f(α)
is true. Then A is not truth preserving on input f .
Thus g has the property that for every α, there exists
a β such that g(α, β) is true. Note that this implies
that each clause of g must involve at least one new
variable.

Other reasonable assumptions are as follows.

Definition 4.6 Let A be a polynomial-time truth-
preserving reduction from f , m, to f ∧ g. Let �x be
the original set of variables underlying f , and let g be
a CNF over the �x variables, plus new variables, �y. A
is symmetric if for all permutations π of x, there is a
permutation π′ to y such that g(�x, �y) = g(π(�x), π′(�y)).
A is extensional if for each assignment to �x, there is
exactly one assignment for �y such that g(�x, �y) is true.

All of our positive results for effectively-p simula-
tions excepting those based on automatizability are
oblivious, symmetric and extensional.

Our next results use only the symmetric and exten-
sional restrictions. We will need the following amaz-
ing theorem of Clote and Krannakis [13], later gener-
alized in [3].

Theorem 4.7 (Clote, Kranakis) Let f = {fn | n =
1, 2, . . .} be a boolean function, where fn denote the
function in ouputs of length n. For each n, we define
an equivalence relation on the set of all permutations
of �x as follows. Let π1 and π2 be two permutations of
�x Then π1 ≡ π2 if and only if f(π1(x)) is isomorphic
to f(π2(x)). We will say that the function fn is k-
symmetric if the number of equivalence classes for fn
is k. So if fn is a truly symmetric function, then it is
1-symmetric. We say that f is poly-symmetric if there
exists a constant k such that for all sufficiently large
n, the number of equivalence classes is at most nk. If
f is poly-symmetric, then f is an NC1 function.

Theorem 4.8 Assume that our reduction is symmet-
ric and extensional. Then Frege effectively-p simu-
lates Extended Frege if and only if Frege p-simulates
Extended Frege.

Proof. Let A be a symmetric, extensional reduction,
mapping f to f ∧ g. Since A is extensional g defines
a set of boolean functions H = {h1, . . . , hl}, using
using extension variables. For each such function, we
must have all symmetric versions of it defined in g.
Since g is polynomial size, this implies that each h
is poly-symmetric. Now by the above theorem, this
implies that each hi ∈ H is an NC1 function. But
this implies that Frege can efficiently prove f ∧ g if
and only if Frege can efficiently prove f . But this
implies that Frege (by itself, with no advice "g") can
p-simulate EF.

Finally, we can prove that if the reduction is exten-
sional and has low communication complexity, then
neither tree-like Cutting Planes nor sublinear width
Resolution can effectively p-simulate Frege. Note that

379



T. PITASSI AND R. SANTHANAM

the restriction on communication complexity is essen-
tial. Since we are not insisting in this result that
reductions are efficiently computable, if there is no
restriction on the communication complexity, Reso-
lution can simulate Frege by extensional reductions,
using Remark 3 in Section 2.

Theorem 4.9 Suppose that our reduction A is an ex-
tensional reduction, mapping f to f∧g, and such that
all functions defined by g have communication com-
plexity at most nε for some ε < 1. Then such a reduc-
tion will not give an effectively-p simulation for Frege
systems by tree-like Cutting Planes, or small width
Resolution

Proof. (sketch) We follow the proof of [10]. Let f be
the clique-coclique interpolant statement as in that
paper, over n variables in total. The formula has the
form Clique(x, y)∧coClique(x, z), where Clique(x, y)
states that y is a subset of k vertices in the graph x
(on n vertices) that forms a clique, and Coclique(x, z)
states that z is a partition of the n vertices of x into
k + 1 sets such that no edges exist between the sets.
These statements have polynomial-size Frege proofs.
Now suppose that A maps f to f ∧ g, where g defines
a set of new functions of low communication complex-
ity. Assume for sake of contradiction that A works.
Since f has short Frege proofs, f∧g should have short
tree-like CP (Resolution) proofs. On the other hand,
since g defines functions that have small communica-
tion complexity, we can still apply the feasible inter-
polation argument using the proof from [10]. That is,
we can build a monotone circuit of small size takes as
input an assignment to the x variables (a graph) and
that says "1" if the graph contains a k-clique, and says
"0" if the graph contains a k + 1-cocliques, violating
known monotone circuit lower bounds. Thus we reach
a contradiction from the existence of such a reduction
A.

5 Effectively Polynomial Simulations
and Automatizability

In this section, we use what we know about effective
simulations to draw conclusions about automatizabil-
ity.

First, we use some of our observations earlier to give
evidence that automatizing Linear Resolution might
be hard.

Proposition 5.1 If Res(k) is not automatizable for
some k, then Linear Resolution is not automatizable.

Proof. By Theorem 3.2, Linear Resolution effectively
simulates Resolution. By Lemma 3.7, Resolution ef-
fectively simulates Res(k) for any constant k. By

transitivity of effective simulations, Linear Resolution
effectively simulates Res(k). By the connection be-
tween automatizability and effective simulations, we
get the statement in the proposition.

Alekhnovich and Razborov showed that Resolution
is not strongly automatizable unless the parameter-
ized class W[P] is tractable. From the fact that The-
orem 3.2 actually gives a strong effective simulation,
we derive the following corollary to their result.

Corollary 5.2 Linear Resolution is not strongly au-
tomatizable unless W[P] is tractable.

Next, we try to say something more general about
how automatizability of proof systems relates to the
NP vs P question.

Lemma 5.3 If NP ! = P , then there is a proposi-
tional proof system that is not automatizable.

Proof. Consider the propositional proof system A
from {0, 1}∗ to ˆTAUT defined as follows:
A(〈φ, 0w〉) = φ ∨ (¬φ) if w is a satisfying assignment
to φ,
A(〈φ, 12|φ|〉) = φ if φ is a tautology,
A(z) = 1 for all other z.

First we show that A is indeed a propositional proof
system. A is polynomial-time computable since we
can check in time exponential in the length of a for-
mula whether the formula is a tautology or not. A is
onto since every tautology φ has pre-image 〈φ, 12φ〉.

Next, we prove that if there is an automatization
procedure F for A, then SAT can be solved in polyno-
mial time. Assume that F (z) runs in time Nk, where
N is the size of the smallest proof for z in proof sys-
tem A. Our algorithm to solve SAT is simple: Given
input φ, run F on φ ∨ (¬φ) for (2|φ|)k steps. If F
halts within that time, then output “yes”, otherwise
output “no”.

The correctness of this algorithm follows from the
fact that 〈φ ∨ (¬φ)〉 has proofs of size at most 2|φ|
according to A iff φ is satisfiable.

We show how to use the results of previous sections
to show that in some sense, G0 is “universal” in terms
of automatizability, i.e., if G0 is automatizable, so are
all quantified proof systems. Moreover, the automa-
tizability of G0 is equivalent to NP = P .

Theorem 5.4 The following four statements are
equivalent:

1. G0 is automatizable
2. All propositional proof systems are automatizable
3. NP = P
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4. All quantified proof systems are automatizable

Proof.
We show (1) implies (2) implies (3) implies (4) im-

plies (1).
(1) implies (2): This follows from the fact that ev-

ery propositional proof system is effectively simulated
by G0, using the connection between effective simula-
tions and automatizability.

(2) implies (3): This follows from Lemma 5.3.
(3) implies (4): Let A be a quantified proof system.

Using the assumption that NP = P , we define a pro-
cedure F that outputs A-proofs for valid formulae in
time polynomial in the size of the smallest A-proof.
Let φ be a valid formula given as input to F , and let
n = |φ|. We define F as a polynomial-time procedure
with an NP oracle L, but from the assumption that
NP = P , it follows that F itself can be implemented
in polynomial time. The NP-oracle L is defined as
follows: 〈φ, 1m, w〉 ∈ L iff there is an A-proof of φ of
size at most m with prefix w. F first sets an internal
parameterm to be equal to n. It queries its NP oracle
with 〈φ, 1m, ε〉. If the query answers yes, then it uses
self-reducibility to find the lexicographically smallest
proof of size at most m, using the NP -oracle L to
search for the proof. If the query answers no, it sets
m < −2m, and repeats the process. Since every tau-
tology has a proof in A, this process will eventually
terminate. By definition of L, the procedure actu-
ally halts and outputs an A-proof for φ in time that’s
polynomial in the smallest A-proof for φ.

(4) implies (1): This is immediate since G0 is a
quantified proof system.

6 Discussion
There are many research directions worthy of ex-

ploration. In this paper, we have given several exam-
ples of effectively polynomial simulations. It would
be interesting to generalize these results and provide
a high-level framework which would facilitate the dis-
covery of further examples. More challenging is to
find new lower bound techniques to rule out the pos-
sibility of effectively-p simulations in specific cases.
We highlight several problems below.
• Resolve (unconditionally) whether or not Res-

olution can obliviously effectively-p simulate a
stronger proof system such as Frege or Extended
Frege (or even AC0-Frege) A positive result
would be quite surprising, and as mentioned in
the introduction, could allow us to prove lower
bounds for stronger proof systems by proving
Resolution lower bounds for specific unsatisfi-
able formulas. On the other hand, a negative

result seems to require extending lower bound
techniques for Resolution. In either case, a new
and very interesting lower bound would be estab-
lished.
• We proved that if one proof system A is automa-

tizable, and another proof system B is not (under
assumptions), then A does not effectively-p simu-
late B (under the same assumptions). We would
like to know if the same implication holds for the
weaker notion of feasible interpolation. That is,
prove (or disprove) the following conjecture: If A
has feasible interpolation, and B does not (under
assumptions) then B does not effectively-p simu-
late A (under same assumptions). A proof would
show, under complexity assumptions, that Res-
olution cannot effectively-p simulate AC0-Frege,
Frege, or Extended Frege.
• Resolve whether or not Frege can effectively-p

simulate Extended Frege. We conjecture that
such a simulation is not possible. Note that a
negative answer will require some assumption(s)
since an effectively-p simulation would exist if
NP = P . Resolving the question even for exten-
sional reductions would also be very interesting.
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