
Innovations in Computer Science 2010

Circuit Lower Bounds, Help Functions, and the Remote Point
Problem

V. Arvind Srikanth Srinivasan
Institute of Mathematical Sciences, C.I.T Campus,Chennai 600 113, India

arvind@imsc.res.in srikanth@imsc.res.in

Abstract: We investigate the power of Algebraic Branching Programs (ABPs) augmented with help polyno-
mials, and constant-depth Boolean circuits augmented with help functions. We relate the problem of proving
explicit lower bounds in both these models to the Remote Point Problem (introduced in [3]). More precisely,
proving lower bounds for ABPs with help polynomials is related to the Remote Point Problem w.r.t. the rank
metric, and for constant-depth circuits with help functions it is related to the Remote Point Problem w.r.t. the
Hamming metric. For algebraic branching programs with help polynomials with some degree restrictions we
show exponential size lower bounds for explicit polynomials.
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1 Introduction

The goal of circuit complexity, which is central to
computational complexity, is proving lower bounds
for explicit functions. The area has made several ad-
vances in the last three decades mainly for restricted
circuit models. Some of the major results relating
to circuit size lower bounds are the following: Expo-
nential size lower bounds for constant-depth Boolean
circuits [6, 7, 12] and for monotone Boolean circuits
[2, 11] computing certain explicit Boolean functions;
in the arithmetic circuit complexity setting, exponen-
tial size lower bounds for monotone arithmetic circuits
[8] computing certain explicit polynomials, and expo-
nential size lower bounds for explicit polynomials in
the case of noncommutative algebraic branching pro-
grams [9]. More recently, [10] has shown superpolyno-
mial lower bounds for multilinear arithmetic circuits.
We can say that these restricted models of computa-
tion have been sufficiently well understood to show
the nontrivial explicit lower bounds.

However, most of the central problems in the area
continue to remain open. For example, we do not
know how to prove superlinear size lower bounds for
logarithmic depth Boolean circuits. We do not have
superpolynomial size lower bounds for depth-3 arith-
metic circuits over rationals.

The aim of this paper is to explore circuit complexity
by augmenting the power of some of these restricted
models by allowing help functions (in the arithmetic
circuit case, help polynomials). In this paper we con-

sider two specific problems.

1. Proving size lower bounds for constant depth
Boolean circuits augmented with help functions.
More precisely, given any set {h1, h2, · · · , hm} of
help Boolean functions where

hi : {0, 1}n −→ {0, 1},

and m is (quasi)polynomial in n, we want to
find an explicit Boolean function f : {0, 1}n −→
{0, 1} that requires superpolynomial size con-
stant depth circuits C that takes as input
x1, · · · , xn, h1, · · · , hm. The function f should
be explicit in the sense that it is computable in
2nO(1) time.

2. Proving size lower bounds for noncommutative
algebraic branching programs augmented with
help polynomials. More precisely, given any
set {h1, h2, · · · , hm} of help polynomials in the
noncommuting variables {x1, x2, · · · , xn} over a
field 𝔽, we consider algebraic branching programs
whose edges are labeled by 𝔽-linear combinations
of the hi. The problem is to prove superpolyno-
mial lower bounds for some explicit polynomial
in x1, · · · , xn over 𝔽.

We formally define explicit Boolean functions and ex-
plicit polynomials.

We say that a family of Boolean functions {fn}n>0,
where fn : {0, 1}n −→ {0, 1} for each n, is explicit
if there is a uniform 2nO(1) time algorithm that takes
x ∈ {0, 1}n as input and computes fn(x).
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We say that a family of multilinear polynomials
{Pn}n>0 where Pn(x) ∈ 𝔽[x1, · · · , xn] is explicit if
there is a uniform 2nO(1) time algorithm that takes as
input (m, 0n) for a multilinear monomial m (on inde-
terminates x1, x2, . . . , xn) and outputs the coefficient
of m in the polynomial Pn.

Contributions of this paper

For constant-depth circuits and noncommutative
ABPs, augmented with help functions/polynomials
respectively, proving lower bounds appears to be non-
trivial.

1. We show that both the above lower bound prob-
lems are related to the Remote Point Problem
studied by Alon et al [3]. For constant-depth cir-
cuits we show a connection to the Remote Point
Problem in the Hamming metric studied in [3].
For noncommutative ABPs the problem is con-
nected to the Remote Point Problem in the rank
metric which is defined as the rank distance be-
tween matrices.

2. We also study the Remote Point Problem in
the Rank metric, and we build on ideas from
Alon et al’s work (for the Hamming metric ver-
sion) in [3] to give a deterministic polynomial-
time algorithm for certain parameters. However,
these parameters are not sufficient to prove lower
bounds for ABPs augmented with help polyno-
mials. Similarly, the parameters achieved by
the algorithm in [3] for the Hamming metric are
not sufficient to prove explicit lower bounds for
constant-depth circuits with help functions.

3. On the positive side, when the degrees of the
help polynomials are somewhat restricted, us-
ing our solution to the Remote Point Problem
w.r.t. the rank metric, we show exponential size
lower bounds for noncommutative ABPs com-
puting certain explicit polynomials (e.g. Theo-
rem 14).

2 Constant Depth Circuits with Help
Functions

In this section, we address the problem of prov-
ing lower bounds for constant depth circuits of
polynomial size that have access to help functions
{h1, h2, · · · , hm} at the input level. Our goal is to
show how the problem is related to the Remote Point
Problem w.r.t. the Hamming metric.

Notice that we can consider the circuit inputs
x1, x2, · · · , xn to be included in the set of help func-
tions. Thus, we can assume that we consider constant
depth circuits with input h1, h2, · · · , hm and our goal
is to prove superpolynomial lower bounds for such cir-
cuits. Notice that we cannot predetermine a hard
Boolean function as the hard function chosen will de-
pend on h1, h2, · · · , hm.

It is well known that constant depth circuits can be
well approximated by polylogarithmic degree poly-
nomials, for different notions of approximation. We
state the results of Tarui [13] (also see [4]) in the form
that we require. In what follows, the field we work
in will be 𝔽2, but our results can be stated over any
constant sized field, and over the rationals.

A polynomial p(x1, x2, · · · , xn, r1, · · · , rk) is called a
probabilistic polynomial if it has as input the standard
input bits x1, x2, . . . , xn and, in addition, random in-
put bits r1, r2, . . . , rk. We say that the polynomial p
represents a Boolean function f : {0, 1}n −→ {0, 1}
with error ε if

Prob[p(x1, · · · , xn, r1, · · · , rk) = f(x1, · · · ,xn)]
≥1− ε,

where the probability is over random choices of bits
rj .

Theorem 1. [4, 13] There is a probabilis-
tic polynomial p(x1, x2, · · · , xn, r1, · · · , rk) of degree
O(log(1/ε) log2 n) with O(log(1/ε) log2 n) random bits
that represents OR(x1, · · · , xn) with error ε. Further-
more, AND(x1, · · · , xn) can be similarly represented.

Building on the above, the following well-known the-
orem is shown in [4, 13].

Theorem 2. [4, 13] Every function f computed by a
boolean circuit of depth d and size s is represented by
a probabilistic polynomial p(x1, x2, · · · , xn, r1, · · · , rk)
of degree O(log(1/ε) log2 n)d that represents
f(x1, · · · , xn) with error sε. 1

Now, consider Boolean functions computed by
constant-depth circuits with help functions. More
precisely, let H = {h1, h2, · · · , hm} denote a set of
Boolean help functions hi : {0, 1}n −→ {0, 1}. For
s, d ∈ ℕ, we define SizeDepthH(s, d) to be the set

1Tarui’s construction yields a probabilistic polynomial q
with integer coefficients. We can obtain the desired polyno-
mial p over 𝔽2 from q by reducing the coefficients modulo 2.
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of Boolean functions f : {0, 1}n −→ {0, 1} such that
there is a depth d circuit C of size at most s such that

f(x) = C(h1(x), h2(x), · · · , hm(x)),

where x denotes the n-tuple (x1, x2, · · · , xn). The
lower bound problem is to construct, for each fixed d,
and for any given set of help functions H and s ∈ ℕ,
an explicit Boolean function g such that g is not in
SizeDepthH(s, d).

We do not have a solution to this problem. However,
we show that this lower bound problem is connected
to the Remote Point Problem (RPP) introduced by
Alon et al [3]. An interesting deterministic algorithm
for RPP is presented in [3]. A deterministic algorithm
with somewhat stronger parameters would solve our
lower bound question. We now explain this connec-
tion.

The Remote Point Problem (RPP) [3]. Given
a k-dimensional subspace V ⊆ 𝔽N2 the problem is to
find a vector v ∈ 𝔽N2 such that the Hamming distance
d(u, v) ≥ r for every u ∈ V if it exists,. We will call an
efficient algorithm that does this an (N, k, r)-solution
to the problem.

The challenge is to give an efficient deterministic al-
gorithm for RPP. A randomized algorithm that sim-
ply picks v at random would be a good solution with
high probability (for most parameters k and r of in-
terest). Alon et al in [3] give an (N, k, r) solution
for r = O

(
N log k
k

)
, where their deterministic algo-

rithm runs in time polynomial in N . We now state
and prove the connection between RPP and our lower
bound question.

Theorem 3. Let N = 2n. For any constant d ∈
ℕ, and any constants c0 > c1 > c2 > 0 such that
c0 > (c1 + 2c2)d + c2, if the Remote Point Problem
with parameters (N, k, r) – for k = 2(logn)c0 and r =
N

2(logn)c1 – can be solved in time 2nO(1) , then, for any
given set of help functions H such that |H | = 2(logn)c2

and s = cnc, there is an explicit Boolean function that
does not belong to SizeDepthH(s, d) for large enough
n (depending on c).

Proof. The proof is an easy application of Theorem 2.
Let H = {h1, h2, . . . , hm}. Consider a circuit C cor-
responding to the class SizeDepthH(s, d). To wit, the
function it computes is C(h1(x), h2(x), · · · , hm(x)),
where C is depth-d, unbounded fanin and of
size cmc. Now, for x picked uniformly at ran-
dom from {0, 1}n suppose the probability distribu-

tion of (h1(x), h2(x), · · · , hm(x)) on the set {0, 1}m
is µ. By Theorem 2 there is a probabilistic
polynomial p(y1, y2, · · · , ym, r1, r2, · · · , rt) of degree
O(log(1/ε) log2m)d that represents C(y1, y2, · · · , ym)
with error cmcε. By a standard averaging argument it
follows that we can fix the random bits r1, r2, · · · , rt
to get

Prob
µ

[p(y1, y2, · · · ,ym, r1, r2, · · · , rt) =

C(y1, y2, · · · , ym)] ≥ 1− cmcε,

where (y1, y2, · · · , ym) is picked according to distribu-
tion µ. But that is equivalent to

Prob[p(h1(x), · · · , hm(x), r1, r2, · · · , rt) =
C(h1(x), h2(x), · · · , hm(x))] ≥ 1− cmcε,

(1)

where x is picked uniformly at random from {0, 1}n.

Choose c′0 < c0 − c2 and c′1 > c1(> c2) such that
c′0 = (c′1 +2c2)d. Let ε = 1

2(logn)c
′
1

. Then the degree of

p above is O(logn)c′0 . We will consider Boolean func-
tions on n bits as vectors in 𝔽N2 . Let V be the sub-
space in 𝔽N2 spanned by all monomials (i.e, products
of help functions) of degree at most O(log n)c′0 . Then
the dimension k of V is mO(logn)c

′
0 < 2(logn)c0 . By

Inequality (1), it follows that finding a vector v ∈ 𝔽N2
that is r-far from V for r = N

2(logn)c1 > cNm
cε in time

2nO(1) would give us an explicit Boolean function that
is not in SizeDepthH(s, d).

Remark 4. We recall a nice related result of Jin-Yi
Cai: He has shown in [5] an exponential lower bound
for the size of constant-depth circuits that computes
m specific parities in the presence of (any) m−1 help
functions, where m ≤ n1/5. His proof is essentially
based on Smolensky’s dimension argument [12]. How-
ever, in our setting where we allow for polynomially
many help functions Smolensky’s argument [12] does
not work.

We now state an interesting connection between ex-
plicit lower bounds against SizeDepthH(nc, d) and
lower bounds against the polynomial time many-one
closure of AC0. The proof proceeds by a simple diag-
onalization argument. For any complexity class C, let
Rpm(C) denote the polynomial-time many-one closure
of C, i.e, the class of languages that can be reduced in
polynomial time to a language in C.

Theorem 5. Suppose, for every fixed d ∈ ℕ, there
is a 2nO(1) time algorithm A that takes as input a set
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of help functions H = {hi : {0, 1}n → {0, 1} | i ∈ [m]}
where m ≤ nlogn 2 (where each hi is given by its truth-
table), and A outputs the truth-table of a Boolean
function g : {0, 1}n → {0, 1} such that for any
c > 0, g /∈ SizeDepthH(nc, d) for almost all n. Then
EXP ⊈ Rpm(AC0).

Proof. For any d ∈ ℕ, let AC0
d denote the class of lan-

guages that are accepted by polynomial-sized circuit
families of polynomial size and depth d.

Note that to prove that EXP ⊈ Rpm(AC0), it suffices
to prove that EXP ⊈ Rpm(AC0

d) for each fixed d ∈ ℕ,
since EXP contains problems that are complete for it
under polynomial-time many-one reductions. We will
now describe, for any fixed d ∈ ℕ, an EXP machine
that accepts a language Ld /∈ Rpm(AC0

d).

We proceed by diagonalization. Let R1, R2, R3, . . .
be any standard enumeration of all polynomial-time
many-one reductions such that each reduction ap-
pears infinitely often in the list. Fix n ∈ ℕ and let
m = maxy∈{0,1}n |Rn(y)|. On an input x ∈ {0, 1}n,
the EXP machine does the following: for each y ∈
{0, 1}n, it runs Rn for nlogn time and computes Rn(y)
(if Rn does not halt in time nlogn, the machine out-
puts 0 and halts). It can thus produce the truth tables
of functions hi : {0, 1}n → {0, 1} (i ∈ [m]) such that
for each y ∈ {0, 1}n, hi(y) is the ith bit of Rn(y) if
|Rn(y)| ≥ i and 0 otherwise. Now, by assumption, in
time 2nO(1) , the EXP machine can compute the truth
table of a function gn : {0, 1}n → {0, 1} such that, for
any c > 0, gn /∈ SizeDepth{h1,...,hm}(n

c, d) for large
enough n. Having computed gn, the EXP machine
just outputs gn(x).

It is clear, by a standard argument, that Ld cannot be
polynomial-time many-one reduced to any language in
AC0
d.

3 Noncommutative Algebraic Branch-
ing Programs

Let X = {x1, x2, · · · , xn} be a set of n noncommuting
variables, and 𝔽〈X〉 denote the non-commutative ring
of polynomials over X with coefficients from the field
𝔽. For f ∈ 𝔽〈X〉, let d(f) denote the degree of f . Let
Mond(X) be the set of degree d monomials over X .
For a polynomial f and a monomial m over X , let

2Here, logn can be replaced by any function f : ℕ → ℕ

such that f(n) is 2nO(1) -time computable, f(n) = ω(1), and
f(n) ≤ nO(1).

f(m) denote the coefficient of m in f . A nonempty
subset H ⊆ 𝔽〈X〉 is homogeneous if there is a d ∈ ℕ
such that all the polynomials in H are homogeneous
of degree d.

Let G = (V,E) be a directed acyclic graph. For
u, v ∈ V , let Pu,v be the set of paths from u to
v, where a path in Pu,v is a tuple of the form
((u0, u1), (u1, u2), . . . , (ul−1, ul)) where u0 = u and
ul = v.

Definition 6. Let X = {x1, x2, . . . , xn} and Y =
{y1, y2, . . . , ym} be disjoint variable sets. Let H =
{h1, h2, . . . , hm} ⊆ 𝔽〈X〉. An Algebraic Branching
Program (ABP) with help polynomials H is a layered
directed acyclic graph A with a source s and a sink t.
Every edge e of A is labeled by a linear form L(e) in
variables X ∪ Y . If L(e) =

∑
i αixi +

∑
j βjyj, the

polynomial L′(e) associated with edge e is obtained
by substituting hj for yj, 1 ≤ j ≤ m, in L(e). I.e.
L′(e) =

∑
i αixi +

∑
j βjhj. The size of A is the

number of vertices in A.

Given a path γ = (e1, e2, . . . , el) in A, define the poly-
nomial fγ = L′(e1)·L′(e2)·. . .·L′(et) (note that the or-
der of multiplication is important). For vertices u and
v of A, we define the polynomial fu,v =

∑
γ∈Pu,v fγ .

The ABP A computes the polynomial fs,t.

Suppose L(e) =
∑
i αixi +

∑
j βjyj . We say that the

edge e is homogeneously labeled if all the polynomials
in the set {xi | αi 	= 0} ∪ {hj | βj 	= 0} are homoge-
neous and of the same degree d(e). If the above set is
empty, we let d(e) = 0. Now, suppose all edges of an
ABP A are homogeneously labeled; then, for a path
γ = (e1, e2, . . . , et) in A let d(γ) =

∑t
i=1 d(ei). The

ABP A with help polynomials H is homogeneous if:

• all the edges in A are homogeneously labeled,
• For all u, v in A and γ1, γ2 ∈ Pu,v, d(γ1) = d(γ2).

For a homogeneous ABP A with help polynomials and
any pair of vertices u, v in A, the polynomial com-
puted from u to v is homogeneous.

In the absence of help polynomials, this gives the
standard Algebraic Branching Programs as defined
in, e.g. Nisan [9]. Nisan [9] has shown explicit lower
bounds, e.g. for the Permanent and Determinant, for
this model of computation. Our aim is to prove lower
bounds for ABPs with help polynomials.

We show that any ABP with arbitrary help poly-
nomials computing a homogeneous polynomial can
be transformed into an equivalent homogeneous ABP
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with homogeneous help polynomials with only a small
increase in size. Thus, it suffices to prove lower
bounds against homogeneous ABPs with help poly-
nomials. Fix the help polynomial set H ⊆ 𝔽〈X〉. Let
m = |H | and d(H) = maxh∈H d(h). Also, fix some
d ∈ ℕ.

Given f ∈ 𝔽〈X〉 and i ∈ ℕ, let f (i) denote the ith
homogeneous part of h. For 2 ≤ i ≤ d, let H̃i ={
h(i) ∈ 𝔽〈X〉

∣∣ h ∈ H}; let H̃ =
⋃

2≤i H̃i. Let m̃i de-
note |H̃i| for each i, and let m̃ denote |H̃ | =

∑
i m̃i.

We show the following homogenization theorem.
Theorem 7. Given any ABP A using the help poly-
nomials H computing a homogeneous polynomial f of
degree d ≥ 1, there is a homogeneous ABP Ã using
the help polynomials H̃ that computes the same poly-
nomial as A, where the size of Ã is at most S(d+ 1),
where S denotes the size of A.

Proof. The following construction is fairly standard.
Let s and t be the designated source and sink, respec-
tively, of the ABP. We will use the notation of Section
3.

We now define Ã. Ã will use the variables X ∪ Ỹ ,
where Ỹ =

{
y

(j)
i

∣∣∣ 1 ≤ i ≤ m, 2 ≤ j ≤ d(hi)}. The
vertices of Ã are tuples (u, i), where u is a vertex of A
and i ∈ ℕ is a number between 0 and d. The source
of Ã will be (s, 0) and the sink (t, d). We will define
the set of edges of Ã in two stages. We will first con-
struct an ABP on the set of vertices of Ã which will
include edges with weights from 𝔽 (i.e, edges e such
that L(e) is a non-zero degree 0 polynomial), and we
will then show how to remove these edges from the
ABP. Consider any edge e in the ABP A; let the label
L(e) of e be

∑n
i=1 αixi +

∑m
j=1 βjyj and 0 ≤ k ≤ d,

define the linear form L(e)k – which captures the kth
homogeneous part of L′(e), the polynomial computed
by edge e – as follows:

• If k = 0, define L(e)k to be the field element∑m
j=1 βjh

(0)
j .

• If k = 1, define L(e)k to be
∑n
i=1 αixi +∑m

j=1 βjh
(1)
j .

• If k > 1, define L(e)k to be
∑m
j=1 βjy

(k)
j

Fix any vertex (v, k) of Ã. Let {u1, u2, . . . , ul} be
the predecessors of v in A and let ei denote the edge
(ui, v). Then, it is easy to see that

f (k)
s,v =

l∑
i=1

k∑
j=0
f (j)
s,uiL

′(ei)(k−j)

Hence, we define edges ei,j in Ã from vertices (ui, j)
to (v, k) with label L(ei,j) = L(ei)k−j . (Note that the
label L(ei,k) is just a field element. We will change
this presently.) This concludes the first stage. Note
that, since we only add edges from (u, i) to (v, j) when
(u, v) is an edge in A, the graph of Ã is acyclic. Also
note that an edge e is labeled by a field element if and
only if it connects vertices of the form (u, k) and (v, k),
for some u, v, and k. Finally, it is easily seen from the
definition of Ã that the polynomial computed from
(s, 0) to (u, i) is the polynomial f (i)

s,u for any s, u, and
i.

In the second stage, we will get rid of those edges
in Ã such that L(e) ∈ 𝔽. We do this in two passes.
Fix some topological ordering of the vertices of Ã,
and order the edges (ũ, ṽ) of Ã lexicographically. As
long as there is an edge e = (ũ, ṽ) of Ã such that
ṽ is not the designated sink (t, d) and L(e) ∈ 𝔽, we
let e be the least such edge and do the following: we
remove the edge e, and for each edge e′ = (ṽ, w̃) of
Ã going out of v, we change the label of the edge
e′′ = (ũ, w̃) to L(e′′) + L(e) · L(e′) (if no such edge
e′′ exists, we add this edge to the ABP and give it
the label L(e) · L(e′)). It should be clear that the
homogeneity of the ABP is preserved. After at most
O((sd)2) many such modifications, all edges in Ã that
are labeled by field elements are of the form (ũ, (t, d)).
Moreover, by the above construction, it is clear that
ũ = (u, d) for some vertex u 	= t of A. Since d ≥ 1,
we know that ũ 	= (s, 0), the designated source node.
We also know that there are no edges into ũ which are
labeled by a field element. We now do the following:
for each edge e = (ũ, (t, d)) labeled by a field element,
we remove the vertex ũ and for each edge e′ = (ṽ, ũ),
we remove e′ and change the label of e′′ = (ṽ, (t, d))
to L(e′′) + L(e′) · L(e) (if no such e′′ exists, we add
such an edge e′′ and set its label to L(e′) ·L(e)). This
concludes the construction.

It is easy to prove inductively that after every mod-
ification of Ã, the polynomial computed from (s, 0)
to (t, d) remains f (d)

s,t . Hence, the ABP Ã computes
exactly the polynomial f computed by A. Also, by
construction, the edges of Ã are all homogeneously
labeled; finally, it can also be seen that given a path
γ from vertex (u, i) to vertex (v, j) in Ã, d(γ) = j− i:
hence, the ABP is indeed homogeneous, and we are
done.
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4 Decomposition of Communication
Matrices

We now generalize the key lemma of Nisan [9] that
connects the size of noncommutative ABPs for an
f ∈ 𝔽〈X〉 to the ranks of certain communication ma-
trices Mk(f). The generalization is for noncommuta-
tive ABPs with help polynomials, and it gives a more
complicated connection between the size of ABPs to
the ranks of certain matrices. For usual noncommu-
tative ABPs considered in [9], Nisan’s lemma directly
yields the lower bounds. In our case, this generaliza-
tion allows us to formulate the lower bound problem
as a Remote Point Problem for the rank metric.

We will assume that the explicit polynomial for which
we will be proving lower bounds is homogeneous.
Thus, by Theorem 7 we can assume that each help
polynomial in H = {h1, h2, . . . , hm} is homogeneous
and of degree at least 2.

We first fix some notation. Let d ∈ ℕ be an even
number. Let d(H) = maxh∈H d(h). Also, for 2 ≤ i ≤
d(H), let Hi = {h ∈ H | d(h) = i}.

Suppose f ∈ 𝔽〈X〉 is homogeneous of even de-
gree d ≥ 2, and k ∈ ℕ such that 0 ≤ k ≤
d. We define the nk × nd−k matrix Mk(f) (as in
[9]): Each row is labeled by a distinct monomial in
Monk(X) and each column by a distinct monomial in
Mond−k(X). Given monomials m1 ∈ Monk(X) and
m2 ∈ Mond−k(X), the (m1,m2)th entry of Mk(f) is
the coefficient of the monomial m1m2 in f and is de-
noted by Mk(f)(m1,m2).

Call M an (l,m)-matrix if M is an nl × nm matrix
with entries from 𝔽, where the rows of M are labeled
by monomials in Monl(X) and columns by monomials
in Monm(X). Suppose 0 ≤ l ≤ k and 0 ≤ m ≤ d− k.
Let M1 be an (l,m)-matrix and M2 a (k − l, (d −
k)−m)-matrix. We define the (k, d− k)-matrix M =
M1 ⊗kl,mM2 as follows: Suppose m1 ∈ Monk(X) and
m2 ∈ Mond−k(X) are monomials such that m1 =
m11m12 with m11 ∈ Monk−l(X) and m12 ∈ Monl(X)
and m2 = m21m22 with m21 ∈ Monm(X) and m22 ∈
Mon(d−k)−m(X). Then the (m1,m2)th entry of M is
defined as

M(m1,m2) =M1(m12,m21) ·M2(m11,m22).

Let A be a homogeneous ABP with help polynomials
H computing a polynomial f of degree d. Let u, v
and w be vertices in the ABP A, and γ1 ∈ Pu,v and
γ2 ∈ Pv,w be paths. We denote by γ1 ◦ γ2 ∈ Pu,w the

concatenation of γ1 and γ2.

Since A is homogeneous, each of the polynomials fu,v
for vertices u, v of A is homogeneous. For 1 ≤ k ≤
d/2, define the k-cut of A, Ck ⊆ V (A) ∪ E(A), as
follows: A vertex v ∈ V (A) is in Ck iff d(fs,v) = k,
and an edge e = (u, v) ∈ E(A) is in Ck iff d(fs,u) < k
and d(fs,v) > k. For each x ∈ Ck, let Px denote the
set of s-t paths passing through x. Clearly, the sets
{Px | x ∈ Ck} partition Ps,t, the set of all paths from
s to t. Thus, we have

f =
∑
x∈Ck

∑
γ∈Px
fγ

=
∑

v∈Ck∩V (A)

∑
γ∈Pv
fγ +

∑
e∈Ck∩E(A)

∑
γ∈Pe
fγ . (2)

We now analyze Equation 2. For v ∈ Ck ∩ V (A),
Pv = {γ1 ◦ γ2 | γ1 ∈ Ps,v, γ2 ∈ Pv,t}. Hence, for any
v ∈ Ck ∩ V (A):∑

γ∈Pv
fγ =

∑
γ1∈Ps,v
γ2∈Pv,t

fγ1◦γ2 =
∑
γ1∈Ps,v
γ2∈Pv,t

fγ1 · fγ2

= fs,vfv,t. (3)

Similarly, for any edge e = (u, v) ∈ Ck ∩ E(A),
Pe = {γ1 ◦ (e) ◦ γ2 | γ1 ∈ Ps,u, γ2 ∈ Pv,t}, where (e)
denotes the path containing just the edge e. Thus,∑

γ∈Pe
fγ =

∑
γ1∈Ps,u
γ2∈Pv,t

fγ1◦(e)◦γ2 (4)

=
∑
γ1∈Ps,v
γ2∈Pv,t

fγ1 · L′(e) · fγ2

= fs,uL′(e)fv,t. (5)

From Equations 2, 3, and 4, we get

f =
∑

v∈Ck∩V (A)

fs,vfv,t +

∑
e=(u,v)∈Ck∩E(A)

fs,uL
′(e)fv,t.

As A is homogeneous of degree d, each polynomial in
the sums above is homogeneous of degree d. Hence

Mk(f) =
∑

v∈Ck∩V (A)

Mk(fs,vfv,t) +

∑
e=(u,v)∈Ck∩E(A)

Mk(fs,uL′(e)fv,t). (6)
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For any v ∈ Ck ∩ V (A), fs,v and fv,t are homoge-
neous degree k and d − k polynomials respectively.
We denote by Mv the matrix Mk(fs,vfv,t). Notice
that for m1 ∈ Monk(X) and m2 ∈ Mond−k(X), the
(m1,m2)th entry of the matrix Mv = Mk(fs,vfv,t) is
fs,v(m1)fv,t(m2). Thus, Mv is an outer product of
two column vectors and is hence a matrix of rank at
most 1. Therefore, the first summation in Equation 6
is a matrix of rank at most |Ck ∩ V (A)|.

For e = (u, v) ∈ Ck ∩E(A), we know that d(fs,u) < k
and d(fs,v) > k and thus, d(e) ≥ 2. Hence, L′(e) =∑
h∈Hd(e)

βe,hh, for βe,h ∈ 𝔽. Therefore, expanding
the second summation in Equation 6, we get∑
e=(u,v)∈
Ck∩E(A)

Mk(fs,uL′(e)fv,t) =

∑
e=(u,v)∈
Ck∩E(A)

∑
h∈Hd(e)

βe,hMk(fs,u · h · fv,t) (7)

Consider a term of the form Mk(fs,uhfv,t). For
the rest of the proof let d(w) denote d(fs,w),
for any vertex w of A. Given monomials
m11 ∈ Mond(u)(X), m12 ∈ Monk−d(u)(X), m21 ∈
Mond(h)−(k−d(u))(X), and m22 ∈ Mond−d(v)(X),
the entry Mk(fs,uhfv,t)(m11m12,m21m22) =
h(m12m21)fs,u(m11)fv,t(m22), since all poly-
nomials involved are homogeneous. Hence,
the matrix Mk(fs,uhfv,t) is precisely
Mk−d(u)(h) ⊗kk−d(u),d(h)−(k−d(u)) Me, where
Me(m11,m22) = fs,u(m11)fv,t(m22), for
m11 ∈ Mond(u)(X),m22 ∈ Mond−d(v)(X). Clearly,
Me is a matrix of rank at most 1, for any e ∈ Ck∩E(A)
and h ∈ Hd(e). Continuing with the above calcula-
tion, we get∑

e=(u,v)∈
Ck∩E(A)

Mk(fs,uL′(e)fv,t)

=
∑

e=(u,v)∈
Ck∩E(A)

∑
h∈Hd(e)

βe,hMle(h)⊗kle,me Me

=
∑
h∈H

d2(h)∑
i=d1(h)

Mi(h)⊗ki,d(h)−i ·
∑

e=(u,v)∈Ck:
d(e)=d(h)
d(u)=k−i

βe,hMe,

where d1(h) = max{1, d(h) − (d − k)}, d2(h) =
min{d(h) − 1, k}, le = k − d(u), and me = d(h) −
(k − d(u)).

Plugging the above observations into Equation 6, we

have

Mk(f) =

⎛
⎝ ∑
v∈Ck∩V (A)

Mv

⎞
⎠

︸ ︷︷ ︸
M′

+

∑
h∈H

d2(h)∑
i=d1(h)

Mi(h) ⊗ki,d(h)−i

⎛
⎜⎜⎜⎜⎝

∑
e=(u,v)∈Ck:
d(e)=d(h)
d(u)=k−i

βe,hMe

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
M′
i,h

Notice that M ′ above has rank at most |V (A)|, and
M ′i,h has rank at most |E(A)| ≤ |V (A)|2 for any h ∈
H and d1(h) ≤ i ≤ d2(h). Hence, we have proved the
following result:

Theorem 8. Let A be a homogeneous ABP of size
S computing a (homogeneous) polynomial f of degree
d using the help polynomials H. Then, for any k ∈
{0, 1, . . . , d}, we can write Mk(f) as:

Mk(f) =M ′+
∑
h∈H

d2(h)∑
i=d1(h)

Mi(h)⊗ki,d(h)−iM
′
i,h,

where d1(h) = max{1, d(h) − (d − k)} and d2(h) =
min{d(h) − 1, k} such that rank(M ′) ≤ S and
rank(M ′i,h) ≤ S2 for each h ∈ H, and i ∈
{max{1, d(h)− (d− k)} . . . ,min{d(h)− 1, k}}.

5 Remote Point Problem for the Rank
Metric

We now introduce an algorithmic problem that will
help us prove lower bounds on the sizes of ABPs com-
puting explicit polynomials using a (given) set of help
polynomials H . This problem is actually the Remote
Point Problem for matrices in the rank metric that
we denote RMP. This problem is analogous to the
Remote Point Problem (RPP), which we discussed in
Section 2.

Given two matrices P,Q ∈ 𝔽a×b, the Rank distance
between P and Q is defined to be rank(P −Q). It is
known that this defines a metric, known as the rank
metric on the set of all a× b matrices over 𝔽.

The RMP problem. Given as input a set ofN×N
matrices P1, P2, . . . , Pk over a field 𝔽 and r ∈ ℕ, the
problem is to compute an N ×N matrix P such that
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for any matrix P ′ =
∑k
i=1 αiPi in the subspace gen-

erated by P1, P2, . . . , Pk, the rank distance between P
and P ′ is at least r.

In the problem N is taken as the input size, and k and
r are usually functions of N . We say that the RMP
problem has an (N, k, r)-solution over 𝔽 if there is a
deterministic algorithm that runs in time polynomial
in N and computes a matrix P that is at rank dis-
tance at least r from the subspace generated by the
P1, P2, . . . , Pk.

Remark 9. How does a solution to RMP give us an
explicit noncommutative polynomial f for which we
can show lower bounds for the sizes of noncommuta-
tive ABPs with help polynomials? We now explain the
connection.

Let A be a homogeneous ABP of size S comput-
ing a polynomial f of degree d. Let d1(h) denote
max{1, d(h)−d/2} and d2(h) denote min{d/2, d(h)−
1}. For a, b, p, q ∈ ℕ such that p ∈ [na] and
q ∈ [nb], let Ep,qa,b be the na × nb elementary matrix
with 1 as (p, q)th entry, and 0 elsewhere. The ma-
trices

{
Ep,qa,b

∣∣∣ p ∈ [na], q ∈ [nb]
}

span all matrices in

𝔽n
a×nb . By Theorem 8

Md/2(f) =M ′ +
∑
h∈H

d2(h)∑
i=d1(h)

Mi(h)⊗d/2i,d(h)−iM
′
i,h,

where rank(M ′) ≤ S. For h ∈ H and i ∈
{d1(h), . . . , d2(h)}, the matrix M ′i,h is an nd/2−i ×
nd/2−d(h)+i dimension matrix. We can write M ′i,h as
a linear combination of the elementary matrices in
{Ep,qd/2−i,d/2−d(h)+i | p ∈ [nd/2−i], q ∈ [nd/2−d(h)+i]}.

Let A be the set of matrices of the form
Mi(h) ⊗d/2i,d(h)−i E

p,q
d/2−i,d/2−d(h)+i, where h ∈ H,

i ∈ {d1(h), . . . , d2(h)}, and p ∈ [nd/2−i], q ∈
[nd/2−d(h)+i]. Each matrix in A is an nd/2 × nd/2
matrix, with its rows and columns labeled by mono-
mials in Mond/2(X). Every matrix of the form
Mi(h) ⊗d/2i,d(h)−i M

′
i,h is a linear combination of ma-

trices in A. Crucially, note that A depends only on
the set of help polynomials and the parameter d, and
it does not depend on the ABP A.

By substitution for M ′i,h we obtain the following ex-
pression for Md/2(f) in terms of linear combination
of matrices in A.

Md/2(f) =M ′ +
∑
M∈A
αMM,

where αM ∈ 𝔽. Since, M ′ has rank at most S, it im-
plies that Md/2(f) is at rank distance at most S from
the subspace generated by the matrices in A. Thus,
if we can compute a matrix M̂ in deterministic time
polynomial in nd that has rank distance S = 2O(n)

from the subspace generated by A we would obtain an
explicit homogeneous degree d polynomial f with lower
bound 2Ω(n) by setting M̂ =Md/2(f). This is the ap-
proach that we will take for proving lower bounds.

We present the following simple algorithm, which suf-
fices for our lower bound application.

Theorem 10. For any k, the RMP has an
(N, k, 
N/k + 1�)-solution over any field 𝔽 such that
field operations in 𝔽 and Gaussian elimination over 𝔽
can be performed in polynomial time.

Proof. We assume that k < N ; otherwise the problem
is trivial. Let r denote 
N/k + 1�. Choose the first r
column vectors in each of the matrices P1, P2, . . . , Pk.
Let v1, v2, . . . , vrk ∈ 𝔽N be these vectors in some or-
der. As rk ≤ N − r, using Gaussian elimination, we
can efficiently choose vrk+1, vrk+2, . . . , vr(k+1) ∈ 𝔽N

with the following property: for every i ∈ [k + 1],
vrk+i is linearly independent of v1, v2, . . . , vrk+(i−1).
Let P be any matrix that has vrk+1, vrk+2, . . . , vr(k+1)
as its first r columns. It is not too difficult to see
that given any matrix P ′ in the subspace generated
by P1, P2, . . . , Pk, the first r columns of P−P ′ remain
independent, i.e rank(P − P ′) ≥ r.

Remark 11. The Remote Point Problem is fascinat-
ing as an algorithmic question. In [3] Alon et al pro-
vide a nontrivial algorithm for RPP in the Hamming
metric (over 𝔽2). We use similar methods to provide
an improved solution to RMP for small prime fields.
The result is proved in Section 7. Unfortunately, the
improvement in parameters over the trivial solution
above is not enough to translate into an appreciably
better lower bound.

6 Lower Bounds for ABPs with Help
Polynomials

In this section, we prove some lower bounds for ABPs
computing some explicit polynomials using a set of
given help polynomials H . Here, ‘explicit’ means that
the coefficients of the polynomial can be written down
in time polynomial in the number of coefficients of the
input (the help polynomials H) and the output (the
hard to compute polynomial).
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Throughout this section, 𝔽 will be a field over which
field operations and Gaussian elimination can be per-
formed efficiently. Let the set of help polynomials be
H = {h1, h2, . . . , hm}; let d(H) = maxh∈H d(h).

We will first consider the case of homogeneous ABPs
using the help polynomials H ; H is, in this case, as-
sumed to be a set of homogeneous polynomials. We
will then derive a lower bound for general ABPs and
a general set of help polynomials using Theorem 7.

6.1 The Homogeneous Case

Let H be a set of homogeneous polynomials in this
section. Our aim is to produce, for any degree d ∈ ℕ,
an explicit homogeneous polynomial Fd of degree d
that cannot be computed by homogeneous ABPs. To
avoid some trivialities, we will assume that d is even.

We first observe that, to compute homogeneous poly-
nomials of degree d, a homogeneous ABP cannot
meaningfully use help polynomials of degree greater
than d:

Lemma 12. Let A be a homogeneous ABP using the
help polynomials H to compute a polynomial f of de-
gree d. Then, there is a homogeneous ABP A′, of size
at most the size of A, such that A′ computes f and
furthermore, for every edge e ∈ E(A′), d(e) ≤ d.

Proof. Simply take A and throw away all edges e ∈
E(A) such that d(e) > d; call the resulting homo-
geneous ABP A′. Since A is homogeneous, no path
from source to sink in A can contain an edge e that
was removed above. Hence, the polynomial computed
remains the same.

Hence, to prove a lower bound for an explicit ho-
mogeneous polynomial of degree d, it suffices to
prove a lower bound on the sizes of ABPs com-
puting this polynomial using the help polynomials
H≤d = {h ∈ H | d(h) ≤ d}. As above, let d(H≤d) =
maxh∈H≤d d(h).

We begin with a simple explicit lower bound. Call a
homogeneous polynomial F ∈ 𝔽〈X〉 of degree d d-full-
rank if rank(Md/2(F )) = nd/2. Full-rank polynomials
are easily constructed; here is a simple example of
one: F (X) =

∑
m∈Mond/2(X)m ·m. It follows easily

from Nisan’s result [9] that, without any help polyno-
mials, homogeneous ABPs computing any d-full-rank
polynomial are of size at least nd/2.

Theorem 13. Assume that d(H≤d) ≤ d(1 − ε), for
a fixed constant ε > 0 and let F ∈ 𝔽〈X〉 be a d-
full-rank polynomial. Then, any homogeneous ABP
A computing F has size at least

(
n
εd
4 /
√

2md
)

.

Proof. Consider a homogeneous ABP A computing F
using the help polynomials H . By the above lemma,
we may assume that A uses only the polynomialsH≤d.
Let S denote the size of A. For any h ∈ H≤d, let
d1(h) denote max{1, d(h) − d/2} and d2(h) denote
min{d/2, d(h)− 1}. By Theorem 8, we know that

Md/2(F ) =M ′ +
∑
h∈H≤d

d2(h)∑
i=d1(h)

Mi(h) ⊗d/2
i,d(h)−iM

′
i,h

where rank(M ′) ≤ S and rank(M ′i,h) ≤ S2, for each
h ∈ H≤d and i ∈ {d1(h), . . . , d2(h)}. For any h
and any i such that 0 ≤ i ≤ d(h), rank(Mi(h)) ≤
min{ni, nd(h)−i}, which is at most nd(h)/2 ≤
nd(H≤d)/2. By our assumption on d(H≤d), we see
that rank(Mi(h)) ≤ n(1−ε)d/2. By the definition
of ⊗d/2i,d(h)−i, this implies that rank(Mi(h) ⊗d/2i,d(h)−i
M ′i,h) ≤ rank(Mi(h)) · rank(M ′i,h), which is at most
n(1−ε)d/2S2. Thus, we see that

rank(Md/2(F )) ≤ S +
∑
h∈H≤d

d2(h)∑
i=d1(h)

n(1−ε)d/2S2

≤ S + |H≤d|dn(1−ε)d/2S2

≤ 2mdS2n(1−ε)d/2

As F is d-full-rank, this implies that

2mdS2n(1−ε)d/2 ≥ nd/2

∴ S ≥ n
εd
4

√
2md

The above theorem tells us that as long as the help
polynomials are not too many in number (m = no(d)
will do), and of degree at most (1− ε)d, then any full
rank polynomial remains hard to compute for ABPs
with these help polynomials.

We now consider the case when d(H≤d) can be as
large as d. In this case, we are unable to come up
with an unconditional explicit lower bound. A strong
solution to the RMP introduced in Section 5 would
give us such a bound. However, with the suboptimal
solution of Theorem 10, we are able to come up with
explicit lower bounds in a special case. Let δ(H) de-
note minh∈H d(h). By assuming some lower bounds
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on δ(H), we are able to compute an explicit hard func-
tion.

Theorem 14. Assume δ(H) ≥ (1
2 + ε)d, for a fixed

constant ε > 0. Then, there exists an explicit homo-
geneous polynomial F ∈ 𝔽〈X〉 of degree d such that
any homogeneous ABP A computing F using the help
polynomials H has size at least 
n εd2 /2md�.

Proof. Let A be a homogeneous ABP A of size
S computing a polynomial f of degree d. Let
d1(h) denote max{1, d(h) − d/2} and d2(h) denote
min{d/2, d(h) − 1}. As explained in Remark 9, let
Ep,qa,b denote the na×nb-sized elementary matrix with
1 in the (p, q)th entry and 0s elsewhere. The matrices{
Ep,qa,b

∣∣∣ p ∈ [na], q ∈ [nb]
}

span all na × nb matrices.

By Theorem 8

Md/2(f) =M ′ +
∑
h∈H≤d

d2(h)∑
i=d1(h)

Mi(h)⊗d/2
i,d(h)−iM

′
i,h

where rank(M ′) ≤ S. As explained in Remark 9,
M ′i,h is an nd/2−i × nd/2−d(h)+i dimension matrix
and is in the span of {Ep,qd/2−i,d/2−d(h)+i}, where p ∈
[nd/2−i], q ∈ [nd/2−d(h)+i].

Let A denote the set of nd/2 × nd/2 matrices of the
form Mi(h) ⊗d/2i,d(h)−i E

p,q
d/2−i,d/2−d(h)+i, where h ∈

H≤d, i ∈ {d1(h), . . . , d2(h)}, and p ∈ [nd/2−i], q ∈
[nd/2−d(h)+i]. Then we obtain

Md/2(f) =M ′ +
∑
M∈A
αMM, (8)

where αM ∈ 𝔽. Since M ′ is a matrix of rank at most
S, this implies that M is at rank distance at most S
from the subspace generated by the matrices in A.

Let k = |A|. For each h ∈ H and i ∈
{d1(h), . . . , d2(h)}, we have added precisely nd−d(h)

many matrices of the form Mi(h) ⊗d/2i,d(h)−i E, where
E is an elementary matrix of dimension nd/2−i ×
nd/2−d(h)+i. Since d(h) ≥ d(1

2 +ε) for each h ∈ H≤d ⊆
H , this implies that k ≤ mdn d2 (1−ε). Let N denote
nd/2; A consists of k ≤ mdN1−ε N × N matrices.
By Theorem 10, we can, in time poly(N), come up
with an N ×N matrix M0 that is at rank distance at
least 
 Nk+1� from the subspace generated by the ma-
trices in A. We label the rows and columns of M0
by monomials from Mond/2(X), in the same way as
the matrices in A are labeled. Using M0, we define
the homogeneous degree d polynomial F ∈ 𝔽〈X〉 to

be the unique polynomial such that Md/2(F ) = M0;
that is, given any monomial m ∈Mond(X) such that
m = m1 ·m2 for m1,m2 ∈ Mond/2(X), F (m) is de-
fined to be M0(m1,m2).

Let A be a homogeneous ABP of size S computing F
using the help polynomials H . Then, by Equation 8
we have

Md/2(F ) =M ′ +
∑
M∈A
αMM

where αM ∈ 𝔽, and rank(M ′) ≤ S. Since Md/2(F )
is M0, which is at rank distance at least 
N/(k + 1)�
from the subspace generate by A, we see that S ≥
rank(M ′) ≥ 
N/(k + 1)�. This implies that,

S ≥
⌊

N

mdN1−ε + 1

⌋
≥
⌊
N ε

2md

⌋
=

⌊
n
εd
2

2md

⌋

Remark 15. The rather unnatural condition on δ(H)
above can be removed with better solutions to the RMP
problem. Specifically, one can show along the above
lines that if the RMP has an (N, k,N/k1/2−ε)-solution
for k = N2δ, then for any H, there is an explicit
polynomial that cannot be computed by any ABP A
using H of size at most nΩ(εd)/(md)O(1). Here, ε and
δ are arbitrary constants in (0, 1).

6.2 The Inhomogeneous Case

Let H̃ denote the set of all homogeneous parts of
degree at least 2 obtained from polynomials in H ,
i.e H̃ =

{
h

(i)
j

∣∣∣ j ∈ [m], 2 ≤ i ≤ d(hj)
}

. For 2 ≤
i ≤ d(H), let H̃i =

{
h ∈ H̃

∣∣ d(h) = i
}

. Note that
H̃ =
⋃

2≤i≤d(H) H̃i.

As in the previous subsection, we construct explicit
hard polynomials for even d ∈ ℕ. Let H̃≤d denote⋃

2≤i≤d H̃i if d ≤ d(H), and H̃ otherwise.

Corollary 16. Assume d(H̃≤d) ≤ d(1−ε), for a fixed
constant ε > 0. Then, there is an explicit homoge-
neous polynomial F of degree d such that any ABP
that computes F using the help polynomials H has
size at least n

εd
4√

2md(d+1) .

Proof. Let F be a d-full-rank polynomial, as defined
in Section 6.1. Consider any ABP A computing F
using H . By Theorem 7, there exists a homogeneous
ABP Ã computing F using H̃ , where the size of Ã
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is at most S(d + 1). By Lemma 12, we may assume
that Ã uses only the help polynomials in H̃≤d. Since
|H̃≤d| ≤ md, Theorem 13 tells us that S(d + 1) ≥
n
εd
4 /
√

2md2, which implies the result.

Corollary 17. Let δ(H̃) = minh∈H̃ d(h), and assume
δ(H̃) ≥ (1

2 +ε)d for a fixed constant ε > 0. Then, there
exists an explicit homogeneous polynomial F ∈ 𝔽〈X〉
of degree d such that any ABP A computing F using

the help polynomials H has size at least 1
d+1

⌊
n
εd
2

2md2

⌋
.

Proof. By Theorem 7, given any ABPA of size S com-
puting a homogeneous polynomial of degree d, there
is a homogeneous ABP Ã of size at most S(d + 1)
that computes the same polynomial as A using the
help polynomials H̃. By Lemma 12, we may assume
that Ã only uses the help polynomials H̃≤d. Now, let
F be the explicit polynomial from Theorem 14, with
H̃≤d taking on the role of H in the statement of the
theorem; since |H̃≤d| ≤ md, Theorem 14 tells us that
S(d+ 1) ≥ 
n εd2 /2md2�, which implies the result.

7 A Better Solution to the RMP

Following the approach of Alon et al [3], who provide a
nontrivial algorithm for RPP in the Hamming metric
(over 𝔽2), we improve on the parameters of Theorem
10 for the RMP over small prime fields. It is interest-
ing to note that in our solution we get similar param-
eters as [3]. As mentioned earlier, the improvement
in parameters over the simple solution of Theorem 10
is too little to give us a much better lower bound.

Throughout this section, 𝔽 will denote a constant-
sized field. The main result is stated below.

Theorem 18. For any fixed constant c > 0, the
RMP has an (N, �N, r)-solution over any constant-
sized field 𝔽 and for any �, r > 0 such that � · r <
c logN .

In proving the above theorem, we will follow the al-
gorithm of [3]. We need the following lemma, implicit
in [3]:

Lemma 19. Fix any field 𝔽 such that Gaussian elim-
ination over 𝔽 can be performed in polynomial time.
There is a poly(M,m, |𝔽|) time algorithm for the fol-
lowing problem: Given subspaces V1, V2, . . . , Vm of 𝔽M
such that

∑m
i=1 |Vi| < |𝔽|M , find a point u ∈ 𝔽M such

that u /∈
⋃
i Vi.

Proof. The algorithm will fix the coordinates of u
one by one. Assuming that the values u1, u2, . . . , ui
have been fixed for 0 ≤ i ≤ n, let Ui ={
w ∈ 𝔽M

∣∣ wj = uj for 1 ≤ j ≤ i
}

. The algorithm
will fix the coordinates of u, ensuring that the fol-
lowing is true: For each i such that 1 ≤ i ≤ M ,∑m
j=1 |Vj∩Ui| < |Ui| = |𝔽|M−i. Note that, since U0 is

just 𝔽M , the inequality is satisfied at i = 0 by the as-
sumption on the size of the subspaces V1, V2, . . . , Vm;
also note that the inequality is satisfied at i = M if
and only if u /∈

⋃
i Vi.

Assuming u1, u2, . . . , ui have been fixed for i <
M , we define, for every α ∈ 𝔽, the set Ui,α =
{w ∈ Ui | wi+1 = α}. Clearly, the sets {Ui,α}α par-
tition Ui. Hence, we see that

∑m
j=1 |Vj ∩ Ui| =∑

α∈𝔽
∑m
j=1 |Vj ∩ Ui,α| and thus, there is some α ∈ 𝔽

such that
∑m
j=1 |Vj ∩ Ui,α| <

|Ui|
|𝔽| = |𝔽M−i−1|.

Here is the algorithm:

• While u1, u2, . . . , ui have been determined for i <
M , do the following:

– As mentioned above, the following invari-
ant is maintained:

∑k
j=1 |Vj ∩ Ui| < |Ui| =

|𝔽|M−i.
– Find α ∈ 𝔽 such that

∑k
j=1 |Vj ∩ Ui,α| <

|Ui|
|𝔽| = |𝔽M−i−1|. By the reasoning in

the paragraph above, such an α exists and
surely, it can be found in poly(M,k, |𝔽|)
time using Gaussian elimination.

– Set ui+1 to α.

The correctness of the algorithm is clear from the rea-
soning above.

We now briefly describe the improved algorithm for
the RMP. Let P1, P2, . . . , Pk be the input matrices.
We denote by L the subspace of 𝔽N×N spanned by
these matrices. Also, let Br denote the matrices of
rank at most r. The idea of the algorithm is to “cover”
the set L+Br by a union of subspaces V1, V2, . . . , Vm
such that

∑
i |Vi| < |𝔽|N

2 . We then use the algorithm
from Lemma 19 to find a matrix P that is not in

⋃
i Vi;

by the way we have picked the subspaces, it is clear
that M will then be at rank distance at least r from
the subspace L.

What follows is an important definition.

Definition 20. Fix positive integers (d1, d2). Given
T , a collection of subspaces of 𝔽N , we say that T is
(d1, d2)-good if:
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• dim(U) ≤ N − d1 for each U ∈ T .
• Each A ⊆ 𝔽N of size d2 is contained in some
U ∈ T .

The following claim illustrates the importance of
(d1, d2)-good subspaces of 𝔽N .

Claim 21. There is an algorithm that, when given
as input T , a (d1, d2)-good collection of subspaces of
𝔽N , produces a collection S of subspaces of 𝔽N×N of
cardinality at most |T |, with the following properties:

• dim(V ) ≤ N2 − d1N for each V ∈ S.
• Bd2 ⊆

⋃
V ∈S V

Moreover, the algorithm runs in time poly(|T |, N).

Proof. For each U ∈ T , let V (U) denote the subspace
of 𝔽N×N generated by all vectors of the form uvT,
where u ∈ U and v ∈ 𝔽N . The collection S is the
collection of all such vector spaces V (U), for U ∈ T .
Clearly, the cardinality of S is bounded by |T |.

Note that a basis for V (U) can be constructed by pick-
ing only uvT where u and v range over bases for U
and 𝔽N respectively. This shows that dim(V (U)) ≤
N2 − d1N and that V (U) can be constructed effi-
ciently.

Finally, given any matrix Q of rank at most d2, it
can be written as a sum of matrices Q1 +Q2 + . . .+
Qd2 , where each Qi is a matrix of rank at most 1
and hence can be written as uivTi , where ui, vi ∈ 𝔽N .
Let A = {u1, u2, . . . , ud2}. Since T is (d1, d2)-good,
there is some U ∈ T such that A ⊆ U . This implies
that uivTi ∈ V (U) for each i ∈ [d2]. As V (U) is a
subspace, it must contain their sumQ. This concludes
the proof.

It is easily seen that a random collection of subspaces
of 𝔽N of appropriate dimension is (d1, d2)-good for
the values of d1 and d2 that are of interest to us. We
now assert the existence of an explicit collection of
subspaces with this property.

Claim 22. Fix any constant c ≥ 1. For any �, r ∈ ℕ
such that �·r < c logN , there is an algorithm that runs
in time NO(c) and produces an (�, r)-good collection of
subspaces of 𝔽N .

We prove the above claim in the next section. Assum-
ing the claim, we can prove Theorem 18.

Proof of Theorem 18. We will describe an algorithm
for the problem. Without loss of generality, assume
that c ≥ 1. Let L be the input subspace of dimension
at most �N . We would like to find a matrix P that is
at rank distance at least r from L.

We first use the algorithm referred to in Claim 22 to
construct an (�+ 1, r)-good collection of subspaces T
of 𝔽N in time NO(c). Clearly, |T | = NO(c). Then, we
use the algorithm of Claim 21 to construct a collec-
tion of subspaces S of 𝔽N×N of size NO(c) with the
following properties:

• dim(V ) ≤ N2 − (�+ 1)N for each V ∈ S.
• Br ⊆

⋃
V ∈S V

Consider the collection of subspaces S′ = {L+V | V ∈
S}. Clearly, L + Br ⊆

⋃
V ∈S′ V . Moreover, the di-

mension of each subspace in S′ is at most �N +N2−
(�+ 1)N ≤ N2 −N . Hence, each subspace in S′ is of
cardinality at most |𝔽|N2−N . Since |S′| = NO(c), for
large enough N , we have

∑
V ∈S′ |V | < |𝔽|N

2 . Hence,
using the algorithm described in Lemma 19, we can,
in time NO(c), find a matrix P /∈

⋃
V ∈S′ V . By con-

struction, this matrix P is at rank distance greater
than r from the subspace L. The entire algorithm
runs in time NO(c).

7.1 Proof of Claim 22

We give two different constructions: one for the case
that � ≥ r and the other for the case that � ≤ r.

The following notation will be useful. For each i ∈
[N ], let ei ∈ 𝔽N denote the vector that has a 1 in
coordinate i and is 0 elsewhere. For any vector x ∈ 𝔽N

and S ⊆ [N ], we denote by x|S the vector in 𝔽|S| that
is the projection of x to the coordinates indexed by
S.

7.1.1 Case 1: � ≥ r

For each A ⊆ 𝔽2� of cardinality r, let VA be the sub-
space generated by

{
x ∈ 𝔽N

∣∣ x|[2�] ∈ A}. It is easily
seen that dim(VA) ≤ N − 2�+ r ≤ N − �. Moreover,
given any A1 ⊆ 𝔽N of size r, A1 ⊆ VA where A is
any subset of 𝔽2� of size r containing

{
x|[2�]

∣∣ x ∈ A1
}

.
Hence, the collection T =

{
VA
∣∣A ⊆ 𝔽2�, |A| = r

}
is

an (�, r)-good collection of subspaces.

The cardinality of T is
(|𝔽|2�
r

)
≤ |𝔽|2�r = NO(c).

Surely, T can be constructed in time NO(c).
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7.1.2 Case 2: � ≤ r

Given a set A ⊆ 𝔽m for some m ∈ ℕ, we denote
by rank(A) the size of any maximal set of linearly
independent vectors from A; we denote by corank(A)
the value (|A| − rank(A)).

Fix a set A ⊆ 𝔽m for somem ∈ ℕ. Given d, d′ ∈ ℕ, we
say that A is d-wise corank d′ if each B ⊆ A such that
|B| = d satisfies corank(B) ≤ d′; A is said to be d-
wise linearly independent if it is d-wise corank 0. Sets
that are d-wise linearly independent have been stud-
ied before: see [1, Proposition 6.5], where matrices
whose columns form a d-wise linearly independent set
of vectors are used to construct d-wise independent
sample spaces. The following claim follows from this
result and from the lower bound on the size of any
d-wise independent sample space proved in [1, Propo-
sition 6.4].

Claim 23 (implicit in [1]). Consider a set A ⊆ 𝔽m of
cardinality t. If A is d-wise linearly independent with
d ≤ 2

√
t, then m ≥ d log|𝔽| t

5 , for large enough d, t.

Using the above claim, we prove the following lower
bound on the size of sets that are d-wise corank d′ for
suitable d, d′.

Claim 24. Consider a set A ⊆ 𝔽r of cardinality t.
There is an absolute constant c0 such that the fol-
lowing holds. Let A be d-wise corank d′ for positive
integers d, d′ with c0d′ ≤ d ≤ 2

√
t. Then, r ≥ d log|𝔽| t

12d′
if t, d, d′ are large enough.

Proof. Denote by d′′ the value 
d/2d′�. We construct
a sequence of sets A0, A1, . . . as follows: A0 is the
set A; for any i ≥ 0, if Ai has been constructed and
is d′′-wise linearly independent, we stop; otherwise,
there is a B ⊆ Ai of cardinality d′′ that is not linearly
independent – in this case, we set Ai+1 = Ai \ B; we
stop at i = d′. It is easy to see that the cardinality
ti of Ai is t − id′′. It can also be checked that if
Ai is di-wise corank d′i, then Ai+1, if constructed, is
(di − d′′)-wise corank d′i − 1; it therefore follows that
the set Si, if constructed, is (d−id′′)-wise corank d′−i,
for any i ≥ 0 – in particular, Sd′ is d/2-wise linearly
independent.

We base our analysis on when the above process stops.
Let i0 be the largest i so that Ai is constructed. Its
size ti0 is at least t − d′d′′ ≥ t − d/2 ≥ t/2 for large
enough t. If i0 = d′, then Ai0 is a set of size at
least t/2 that is d/2-wise linearly independent – by

Claim 23, we get r ≥ d log|𝔽| t
12 for large enough d, t.

Otherwise, i0 < d′ and we must have Ai0 is d′′-wise
linearly independent – in this case, by Claim 23, we
get r ≥ d

′′ log|𝔽| t
5 ≥ d log|𝔽| t

12d′ if c0 is large enough. Thus,
in either case, our claim holds.

Now, we apply the above lemma with t =
|𝔽|�

20
c0

√
c logN� and d = c0�

√
c logN�. We obtain the

following corollary:

Corollary 25. Let t, d be as defined above. For large
enough N , given any A ⊆ 𝔽r of size t, there is a subset
B of A of cardinality d such that corank(B) ≥ �.

Proof. Assume that A is d-wise corank d′ for some d′.
We will show that d′ ≥ �. For large enough N , by
Claim 24, we have d′ ≥ min{ dc0 ,

d log|𝔽| t
12r }. It remains

to be shown that this quantity is at least �.

Note that, since � ≤ r, �2 ≤ �r ≤ c logN . Hence,
� ≤
√
c logN . Thus, by the choice of d, we see that

d/c0 ≥ �. Moreover,

d log|𝔽| t
12r

≥ 20c logN
12r

> �

Hence, we see that d′ ≥ �.

We now define the (�, r)-good collection of subspaces.
For each S ⊆ [t] of cardinality d, and each A ⊆ 𝔽d

of size d − �, let VS,A be the subspace generated by{
x ∈ 𝔽N

∣∣ x|S = u for some u ∈ A
}

. It can be seen
that dim(VS,A) ≤ N −d+d− � = N − � for each S,A.

Given any A1 ⊆ 𝔽N of cardinality r, let P ∈ 𝔽r×N be
the matrix the rows of which are the elements of A1.
Let A2 denote the set of the first t columns of P . By
Corollary 25, there is a B ⊆ A2 of size d such that
corank(B) ≥ �. Let S ⊆ [t] index the columns of B in
P . It can be seen that A1 ⊆ VS,A′ for any A′ of size
d− � containing a set that spans {v|S | v ∈ A1} (such
an A′ exists since corank(B) ≥ �).

Thus, we can take for our collection T of (�, r)-good
subspaces the collection of all VS,A, where S ⊆ [t]
with |S| = d, and A ⊆ 𝔽d of size d − �. The size of
T is bounded by

(
t
d

)(|𝔽|d
d−�
)
≤ td|𝔽|d2 = NO(c), by our

choice of d and t. Clearly, T can be constructed in
time NO(c).
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