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Abstract: Getting the deterministic complexity closer to the best known randomized complexity is an
important goal in algorithms and communication protocols. In this work, we investigate the case where instead
of one input, the algorithm/protocol is given multiple inputs sampled independently from an arbitrary unknown
distribution. We show that in this case a strong and generic derandomization result can be obtained by a simple
argument.
Our method relies on extracting randomness from “same-source” product distributions, which are distributions
generated from multiple independent samples from the same source. The extraction process succeeds even for
arbitrarily low min-entropy, and is based on the order of the values and not on the values themselves (this may
be seen as a generalization of the classical method of Von-Neumann [26] extended by Elias [8] for extracting
randomness from a biased coin.)
The tools developed in the paper are generic, and can be used in several other problems. We present applica-
tions to streaming algorithms, and to implicit probe search [9]. We also refine our method to handle product
distributions, where the i’th sample comes from one of several arbitrary unknown distributions. This requires
creating a new set of tools, which may also be of independent interest.
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1 Introduction
A central goal in complexity theory is achieving de-

randomization in as many settings as possible. The
object of derandomization is to take computational
tasks that can be achieved with the aid of randomness,
and find ways to perform them using less randomness,
or ideally none at all. We want to achieve derandom-
ization without increasing the use of other resources
by much. For example, we would like the amount of
time, space, communication, etc. used in the deter-
ministic solution to be similar to the corresponding
quantities in the original randomized solution.

In this paper we deal with both algorithms for de-
cision problems and communication complexity pro-
tocols. In the first case, a long line of work initiated
by [5, 14, 21, 24, 28] shows that, assuming certain cir-
cuit lower bounds, any randomized polynomial time
algorithm can be converted into a deterministic poly-
nomial time algorithm However, proving such lower
bounds seems well beyond reach and in fact, Kabanets
and Impagliazzo[17] building on Impagliazzo et. al
[13] show that proving lower bounds is necessary for
proving such results. For communication complexity,
there are exponential separations between determin-
istic and randomized protocols (see [19]).

It thus seems well motivated to look for relaxed
(but still interesting) models where derandomization
can be achieved. Consider the case of time-bounded
algorithms. A first (very naïve) attempt at such a re-
laxation might be to require that instead of succeeding
on every input, we succeed with high probability on
any distribution of inputs. Of course, this is no relax-
ation at all, as we can consider distributions concen-
trated on one hard input. A natural way to further
relax this is to require high-probability of success only
on distributions of inputs that can be efficiently sam-
pled. Impagliazzo and Wigderson [15], followed by
Trevisan and Vadhan[25], give conditional derandom-
izations (and unconditional Gap Theorems for BPP)
in this model. Another type of relaxation, which we
investigate here, is to allow arbitrary distributions on
individual inputs, but to require multiple independent
samples from the same distribution1. In this setting,
when receiving k inputs for large enough k, we would
like our deterministic algorithm to solve all k inputs
correctly, at a running time close to k-times the run-

1We also consider the case of multiple samples that are not
from the same distribution. Moreover, one might want to con-
sider the case of multiple samples that are correlated in some
way, and this might be a direction for further work.
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ning time of the randomized algorithm. Note that in
the case of a distribution concentrated on one hard in-
put, the running time on this input will be amortized
over k instances. Similarly, we would like a determin-
istic communication protocol that when receiving k
inputs from an arbitrary distribution (over the inputs
of both parties) solves all instances correctly with a
number of communication bits that is close to k times
the number of bits used by the randomized protocol.
We show that such results can be achieved by simple
argument. We show that our constructions are almost
optimal, in some sense. Here is a concrete example,
which gives the feel of the parameters.

1.1 A Motivating Example and Result
Consider the equality problem in communication

complexity: Alice and Bob receive n-bit strings x
and y, respectively. They want to decide whether
x = y. The deterministic communication complexity
is n, and shared randomness reduces this to O(1). Re-
peating the randomized protocol we get that for any
k, O(log k) communication bits suffice such that Alice
and Bob will have the incorrect answer with proba-
bility at most 1/100k.

Consider the setting discussed above: Alice and
Bob are now given k-tuples of instances (x1, . . . , xk)
and (y1, . . . , yk) respectively, such that each pair
(xi, yi) is sampled independently from the same ar-
bitrary unknown distribution D. Obviously, we have
a deterministic protocol that uses k · n communica-
tion bits for solving the entire sequence correctly, and
a public coin randomized protocol using O(k log k)
communication bits solving the entire sequence cor-
rectly with high probability. We show that when
k > c · n logn for some universal constant c, there
exists a deterministic protocol using O(k log k) com-
munication bits, which solves all instances correctly
with probability 2/3. This result is almost optimal —
if k < n/ logn facing the same hard input k times any
deterministic protocol must send more than k log k
bits to succeed.

1.2 Main Results
The parameters presented above are derived from

the following theorem.
Theorem 1.1. Let f : {0, 1}n × {0, 1}n → {0, 1} be
any function. Let PR be a public coin randomized
protocol with error ε for f using cr communication
bits and r random bits. Let PD be a deterministic
protocol for f using cd communication bits. For every
integer k ≥ min{10·r·n, 100·r2·(cd/cr)}, there exists a
deterministic protocol P using at most k·(cr+log r+6)
communication bits, such that for any distribution D
on {0, 1}n × {0, 1}n,

Pr(P ((x1, y1), . . . , (xk, yk)) = (f(x1, y1), . . . , f(xk, yk)))

≥ 1 − (ε · k + 2−r), where (x1, y1), . . . , (xk, yk) are
drawn independently from D.

We get a similar theorem in the case of algorithms
for decision problems.
Theorem 1.2. Let C be the class of product distribu-
tions on ({0, 1}n)k. Let f : {0, 1}n → {0, 1} be any
function. Let AR be a randomized, two-sided error,
algorithm with error ε for f , running in time tr and
using r random bits, and let AD be a deterministic
algorithm for f running in time td. For every integer
k ≥ 10 · (td/tr) · r, there exists a deterministic algo-
rithm A that runs in time k · tr +Õ(n · k), such that
for any distribution D on {0, 1}n,

Pr(A(x1, . . . , xk) = (f(x1), . . . , f(xk)) ≥ 1 − (ε · k + 2−r)

where (x1, . . . , xk) are drawn independently from D.
Remark 1.3. The reader may wonder whether The-
orem 1.2 is interesting as in case the original deter-
ministic algorithm AD is exponential, we will require
an exponential number of independent inputs to use
the theorem, and thus still need exponential time. We
note again that nothing better is possible in this model
(unless a worst case derandomization is achieved).
Also one gets more interesting instantiations in the
case where AD’s running time is a larger polynomial
than AR (this is the case in the currently known algo-
rithms for primality testing) , and in cases where AD
is polynomial or linear and AR is sublinear - as is the
case in many property testing algorithms. That said,
we agree that the communication complexity setting of
Theorem 1.1 is probably more convincing.

We also consider the case where the inputs or
sampled several arbitrary distributions. To formally
present our results, we need the following definition.
Definition 1.4. Let D1, . . . , Dd be any distributions
on ({0, 1}n × {0, 1}n). A d-part product distribution
(defined using D1, . . . , Dd) on ({0, 1}n × {0, 1}n)k, is
a distribution X = (X1, . . . , Xk) such that the Xi’s
are all independent, and for each 1 ≤ i ≤ k, Xi is
distributed according to Dj, for some 1 ≤ j ≤ d.

Our main theorem for d-part product distributions
is as follows.
Theorem 1.5. Fix any positive integers d, n and k
and let C be the class of d-part product distributions
on ({0, 1}n)k. Let f : {0, 1}n → {0, 1} be any func-
tion. Let AR and AD be algorithms for f , simi-
larly to Theorem 1.2. For any 0 < γ < 1 and any
k ≥ (td/tr) · ((r · 8(d + 1)) + 16·(2d)5

γ ), there exists a
deterministic algorithm A that runs in time at most
k ·tr+O(n·k ·d2) that solves f on C with error ε·k+γ.
The analogous theorem for communication protocols
can be found in the full version.
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1.3 Overview of Technique — using ‘Con-
tent Independent’ Extraction

We sketch the proof of Theorem 1.2. The proof of
Theorem 1.1 is similar but requires additional tech-
nical details. We are given a sequence of inputs
(x1, . . . , xk) and we want to deterministically com-
pute f(x1), . . . , f(xk) very efficiently. We distinguish
between two cases. In the first there are ‘few’ dis-
tinct inputs among x1, . . . , xk. In this case we simply
run the deterministic algorithm AD on all these in-
puts and as there are few of them, it will not take too
long.2 In the second case, we have ‘many’3 distinct
inputs among x1, . . . , xk. In this case, we extract a
random string from the sequence, and use that ran-
dom string to run the randomized algorithm AR on
each input. Let {z1, . . . , zs} be the distinct values
among x1, . . . , xk. A potential problem with this ap-
proach would be that the random string we are using
depends on the values z1, . . . , zs and thus might be a
‘bad’ string for some zi with high probability. This
does not occur as our extraction method is essentially
independent of the actual values of the inputs. More
specifically, the random string we extract is simply a
function of the order in which (the potentially mul-
tiple instances of) z1, . . . , zs appear in the sequence.
This may be seen as a generalization of the classical
method of Von-Neumann [26] extended by Elias [8] on
extracting randomness from a biased coin. (see also
the work of Peres[22])

Remark 1.6. As the inputs in the sequence are inde-
pendent, a more straightforward approach might have
been to apply a (deterministic) multi-source extractor
on the inputs. However, multi-source extractors re-
quire that each input be sampled from a distribution
having a certain min-entropy. Thus, to use a multi-
source extractor we would have needed to assume the
individual inputs come from such a distribution, and
would not get results for arbitrary distributions.

Generalizing to multiple distributions We now
sketch the ideas used to prove Theorem 1.5. As in the
above, the problem essentially reduces to extracting
randomness from d-part product distributions condi-
tioned on seeing ‘many’ distinct values. Moreover, the
extraction procedure should be independent of the ac-
tual values and depend only on their order.
Consider the following simple example: We are given
3 independent samples, such that the first and third

2In the case of Theorem 1.1 there is an additional compli-
cation here of having Alice and Bob conclude what indeed are
the distinct input pairs (xi, yi) with small communication.

3‘many’ in this sketch roughly corresponds to the number of
random bits used by the randomized algorithm for f .

are sampled from a distributionD1 distributed on val-
ues a, b ∈ {0, 1}n. The second sample comes from a
distribution D2 that gives probability one to a value
c ∈ {0, 1}n such that c �= a, b. In our terminology,
this is a 2-part product distribution D on ({0, 1}n)3.
Let us look at D conditioned on seeing 3 distinct val-
ues. In this case we have a uniform distribution on
the sequences (a, c, b) and (b, c, a) (note that we in-
deed have a uniform distribution on these sequences
no matter how D1 is distributed on a and b). This
suggests the following method for extracting one bit:
Given x ∈ ({0, 1}n)3 , for each pair of indices i < j ∈
{1, . . . , 3}, let zi,j be 1 if xi < xj by lexicographical
ordering, and 0 otherwise. Now output the sum mod
2 of the zi,j ’s. Let us call this function the ‘all-pairs
compare’ (APC) function. The APC function has the
property that if (x1, x2, x3) are all distinct then any
substitution of the order of a pair of elements changes
the output value. Note that it is essential that all the
xi’s are distinct. For example, it is easy to check that
for any a < b, APC(a, a, b) = APC(b, a, a). Thus
to extract many random bits, we need many ‘blocks’
where all inputs are distinct. This suggests the follow-
ing extraction scheme for d-part product distributions
conditioned on seeing many distinct values: Given a
sequence of inputs, delete the values that appear ‘too
many times’ in the sequence. Now divide the (pos-
sibly trimmed) sequence into blocks of d + 1 inputs
each. Count the number of blocks such that all in-
puts in the block are distinct. If there are at least m
such blocks - where m is the number of bits we want
to extract - output the APC function on each block.
It can be shown that if we start out with enough dis-
tinct values (where the exact number is a function of
d and m) with high probability we will indeed have
m blocks of distinct inputs.

1.4 Related Work
Goldreich and Wigderson [11], using an observa-

tion of Noam Nisan, attain results similar to ours for
the case of the uniform distribution4. Their tech-
nique uses seeded extractors, and their correctness
argument is different (and would not work for prod-
uct distributions of arbitrary distributions). Barak,
Braverman, Chen and Rao [4] show that randomized
communication protocols require about k-times the
communication bits to solve k instances with high
probability over product distributions. Together with
our result this shows that deterministic and random-
ized protocols have approximately5 the same compu-

4In fact, for this case their probability of error is smaller
than ours.

5with the exception that in our result deterministic algo-
rithms only work for large enough k.
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tational power in this setting.

1.5 Applications
Beside our main results, we present two applica-

tions of extracting randomness based on the order of
elements in a sequence.

1.5.1 Implicit Probe Search
For domain size m and table size n, implicit probe

search is the problem of searching for an element
x ∈ [m] in a table T containing n elements from [m]
using as few queries as possible to T . Arranging T by
the regular ordering of [m] and using binary search
we can always use at most logn queries. Yao [27]
showed that when m is allowed to be arbitrarily large
as a function of n, logn queries are necessary. Fiat
and Naor [9] showed that when m = poly(n), T can
be efficiently arranged such that a constant number
of queries suffice6. The results of [9] are obtained by
reducing this problem to the one of explicitly con-
structing rainbows, which may be viewed as a kind
of randomness extraction problem (details in the full
version). Using this reduction we extend their results,
showing that for any m ≤ 2n, O( logn

log logn ) = o(logn)
queries suffice. Thus, we show that even when the
domain is exponentially large there is a scheme sig-
nificantly better than binary search.

1.5.2 Streaming Algorithms
The data stream model was introduced by Munro

et al. [20] (see also the seminal work by Alon, Ma-
tias and Szegedy [1]). In this model, an algorithm
is presented with a sequence of n elements, and its
goal is to estimate a function of it, when it is allowed
to pass over the data just once. The algorithm runs
in bounded space, usually poly-logarithmic in n. We
restrict our attention to algorithms which perform in
poly-logarithmic space, and compute a frequency mo-
ment of the input. For this problem, it is known
that even when the order of the appearance of ele-
ments in the stream is chosen in an adversarial man-
ner, the algorithm can approximate the p’th moment
for 0 ≤ p ≤ 2 [1, 16], and that this is not possible for
moments p > 2, see [3, 7].

A relaxation of the problem assumes that the ad-
versary chooses the values of the elements, but they
are presented to the algorithm in a random ordering
[2, 6, 12]. For a random ordering of the elements,
known bounds only imply that one cannot approxi-
mate moments larger than 2.5, although it is believed

6Gabizon and Shaltiel[10] showed that for m = npolylogn a
constant number of queries also suffice, although with today’s
dispersers [9] could have gotten the same result.

that the right lower bound is 2, as in the adversar-
ial ordering case. We show a strong derandomization
result in this model, which enables concentrating on
proving lower bounds for deterministic algorithms7.

We briefly sketch the proof, showing how any ran-
domized algorithm can be simulated by a determin-
istic one. Let R be a randomized algorithm which
approximates (to within any constant) a moment
p > 2, with any constant success probability. We
present a deterministic algorithm D with the same
success probability and approximation ratio, up to
an (1 + n−α) factor, for a constant α < 0.25. To
simulate R, D first extracts randomness from the be-
ginning of the stream, using the extractors presented
later. If the number of elements required to extract
enough randomness is small, it uses this random-
ness to load a pseudo random generator against space
bounded machines, and uses this to simulate the ran-
dom algorithm on the rest of the input; we prove that
with high probability this does not change the qual-
ity of the approximation by much. If the randomness
requires many elements, the deterministic algorithm
simply counts the number of appearances of the first
polylogn different elements in the stream; we prove
that with high probability this is sufficient to approx-
imate the frequency moments over the entire stream
8. Details appear in the full version.

2 Preliminaries
For background on communication complexity we

refer the reader to [19]. The following definitions will
be useful for discussing high probability of success on
a sequence on inputs.

Definition 2.1. Let C be a class of distributions on
({0, 1}n)k. Let f : {0, 1}n → {0, 1} be any function.
We say that a deterministic algorithm A solves f on
C with error ε, if for any distribution X in C, when
sampling a sequence (x1, . . . , xk) according to X, A
answers correctly on all inputs in the sequence with
probability at least 1− ε. That is,

Pr(A(x1, . . . , xk) = (f(x1), . . . , f(xk))) ≥ 1− ε,
when (x1, . . . , xk) is sampled from X.

7Approximating frequency moments is perhaps the most
common studied problem in this model. Our results apply to
other problems as well. For adversarial order there are separa-
tions between randomized and deterministic algorithms

8We note that it is impossible to use PRG’s and exhaust over
the seeds, as the stream appears just once (in the adversarial
order model deterministic algorithm are provably weaker than
random ones). Also, the coins used by the random algorithm
should be uncorrelated with the ordering of the elements; this
is the reason for running it only on part of the stream. Getting
a strong result requires some fine tuning of the parameters.
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We define extractors for families of distributions.
Note that we are talking only about deterministic ex-
tractors.

Definition 2.2. Let C be a class of distributions on
a set Ω. A function E : Ω → {0, 1}m is an extractor
for C with error γ (also called a γ-extractor for C),
if for every distribution X in C, E(X) is γ-close to
uniform.

3 The Main Result
A product distribution consists of multiple indepen-

dent samples from an arbitrary distribution.

Definition 3.1 (Product Distributions). A distribu-
tion X = (X1, . . . , Xk) on ({0, 1}n)k is a product dis-
tribution if it consists of k independent samples from
the same distribution D, where D can be any distri-
bution over {0, 1}n.

Our method relies on the fact that product distri-
butions can be written as convex combinations of dis-
tributions that just permute a fixed set of values. We
now define these distributions.

Definition 3.2 (Multinomial distributions). The
class of multinomial distributions on ({0, 1}n)k con-
sists of all distributions of the following form:
Let z1, . . . , zs ∈ {0, 1}n be distinct strings and let
a1, . . . , as be non-zero positive integers such that∑s
i=1 ai = k. The multinomial distribution X on

({0, 1}n)k defined by z1, . . . , zs, a1, . . . , as, is the uni-
form distribution on sequences of n-bit strings of
length k such that for 1 ≤ i ≤ k, the string zi appears
ai times in the sequence. Moreover, we call such a
distribution X an s-valued multinomial distribution.

Lemma 3.3. Any product distribution is a convex
combination of multinomial distributions.

Proof. Let X = (X1, . . . , Xk) be a product distri-
bution on ({0, 1}n)k. For any distinct z1, . . . , zs ∈
{0, 1}n and positive integers a1, . . . , as such that∑s
i=1 ai = k. Condition X on the event that the dis-

tinct strings outputted were z1, . . . , zs and zi appears
ai times. Given this conditioning X , because of the
independence of X1, . . . , Xk, any sequence where zi
appears ai times has equal probability, and therefore
we get a multinomial distribution. Writing X as a
convex combination of such conditional distributions,
the lemma follows.

For positive integers k, a1, . . . , as such that∑s
i=1 ai = k, the multinomial coefficient

(
k

a1,...,as

)
is

the number of different sequences of length k consist-
ing of s distinct elements such that the i’th element

appears ai times:
(

k
a1,...,as

)
= k!
a1!···as! . We use the

following estimate:

Lemma 3.4. For any integers s ≤ k with k ≥ 32 and
s ≥ 4 we have log

(
k

a1,...,as

) ≥ s·log k
4 .

The following claim will enable us to convert uni-
form distributions over arbitrary sized sets into distri-
butions over binary strings that are close to uniform.
A proof can be found in [18].

Claim 3.5. Let N > M be any integers. Suppose
that R is uniformly distributed over {1, . . . , N}. Then
R mod M is 1

�N/M� -close to uniform on {0, . . . ,M −
1}.
Lemma 3.6. Fix integers s ≤ k with k ≥ 32 and
s ≥ 4, and let t = � s·log k

8 �. There exists an extrac-
tor E : ({0, 1}n)k → {0, 1}t for the class of s-valued
multinomial distributions with error γ = 2−t. E is
computable in time Õ(k · n).
Proof. Given a sequence (x1, . . . , xk), let z1 < z2 . . . <
zs be the distinct elements that appear in the se-
quence, where < denotes the lexicographical order-
ing. For i = 1, . . . , s denote by ai the number of
times zi appears in the sequence. Let S be the set
of sequences of length k over {1, . . . , s} such that
i appears ai times. Then |S| =

(
k

a1,...,as

)
. The

work of Ryabko and Matchikina[23] gives a corre-
spondence of S with {1, . . . , ( k

a1,...,as

)} computable in
time Õ(k · n). 9 Let r be the image of the sequence
(x1, . . . , xk) in {1, . . . , ( k

a1,...,as

)} through this corre-
spondence. Define E(x1, . . . , xk) ≜ r (mod 2t). For
any s-valued multinomial distribution X , r is uni-
formly distributed. Thus using Claim 3.5, E(X) will
be γ-close to uniform for γ ≤ 1

�( k
a1,...,as)/2t�

≤ 1
2t ,

where we used the definition of t and Claim 3.4 in
the second inequality.

A basic principle in this work, is that when we re-
strict our input distribution to a component that only
‘reorders’ a fixed set of values, we can use random-
ness extracted from the input to run our algorithm or
protocol. The following definition and two lemmata
formalize this.

Definition 3.7. We say a distribution X on
({0, 1}n)k is same-valued, if there is a fixed set of val-
ues {z1, . . . , zs} ⊆ {0, 1}n , such that the support of
X consists of sequences x1, . . . , xk such that the set of
distinct values in each sequence is exactly {z1, . . . , zs}.

9[23] do this for the case s=2, but it is easy to reduce to this
case.
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Lemma 3.8. Let C be a class of same-valued distri-
butions on ({0, 1}n)k. Let E : ({0, 1}n)k → {0, 1}m
be a γ-extractor for C computable in time tE. Fix any
f : {0, 1}n → {0, 1} and any ε > 0, and let AR be a
randomized algorithm computing f with error ε run-
ning in time tr. Then, there exists a deterministic
algorithm A running in time k · tr + tE that solves f
on C with error ε · k + γ.

Proof. Given x1, . . . , xk ∈ ({0, 1}n)k, A computes r =
E(x1, . . . , xk) and outputs AR(xi, r) for every i ∈ [k].
The probability that a uniformly chosen r ∈ {0, 1}m is
bad for some xi is at most ε ·k. Thus, the probability
that r = E(X) is bad for some xi is at most ε ·k+γ.

We are now ready to prove the theorems stated in
the introduction.

Proof of Theorem 1.2. Given k instances x1, . . . , xk,
let z1, z2 . . . , zs be the distinct elements that appear in
x1, . . . , xk. The algorithm A works as follows. Denote
t = � s·log k

8 �. If t ≤ r or s ≤ 4, we run AD on zi for
every i ∈ [s]. This takes time td · s ≤ td · 10 · r ≤ k · tr,
which satisfies the theorem for the chosen value of
k. Thus we can assume t ≥ r and s ≥ 4. In this
case, we compute y = E(x1, . . . , xk), where E is the
extractor for multinomial distributions from Lemma
3.6.10 We now apply the randomized algorithm AR
on all inputs using y as randomness. Let X be a
product distribution on ({0, 1}n)k. By Lemma 3.3, X
is a convex combination of multinomial distributions.
Thus, it is enough to prove the theorem in the case
that X itself is a multinomial distribution. But in this
case, as a multinomial distribution is same-valued the
claim follows immediately from Lemma 3.8. As the
running time of E is Õ(n · k), the total running time
of A is at most k · tr + Õ(n · k).

For communication protocols the proof requires ad-
ditional details, as Alice and Bob need to commu-
nicate to find out what are the distinct input pairs
(x, y). Details appear in the full version.

3.1 On the Optimality of our Scheme
Using the notation of Theorem 1.2, our method

works given at least k = O((td/tr) · r) samples. Can
we get a similar result for smaller k? It is easy to see
that to get running time k · tr we need k ≥ td/tr. In
the full version we prove a stronger lower bound for
a restricted type of scheme. We also show that our
extraction scheme is almost optimal.

10Note that using td, r > 1 (otherwise the claim is trivial),
we get k ≥ 10 · td · r ≥ 40, and thus can use Lemma 3.6.

Theorem 3.9. Let C be the class of product distri-
butions on ({0, 1}n)k conditioned on having at least
s distinct values. Then C contains a distribution X
with H∞(X) ≤ O(s · log k). Thus any extractor for
C with error ε ≤ 1/2 can extract at most O(s · log k)
bits.

Proof. As a first step to construct X , we define a dis-
tribution D on {0, 1}n as follows: Fix distinct ele-
ments z0, . . . , z2s ∈ {0, 1}n. D will give z0 probability
1− 2s

k and, for 1 ≤ i ≤ 2s, D gives zi probability 1/k.
Let us denote byX the product distribution D⊕k con-
ditioned on seeing at least s distinct elements. Denote
by X ′ the distribution X conditioned on having be-
tween s and 3s appearances of z1, . . . , z2s. As the
min-entropy of a distribution is at most the log of its
support size, using the bound of Lemma 3.4 , we have
H∞(X ′) ≤ O(s · log k+log s) = O(s · log k). Note that
the log s term came from having 2s+ 1 options as to
how many appearances of z1, . . . , z2s we have.

By Chebychev, with probability at least 1 − 2/s
we have between s to 3s appearances of the elements
z1, . . . , z2s in a sequence of k independent samples
from D. Thus, X ′ has mass at least 1 − 2/s in
X and therefore H∞(X) = H∞(X ′) + O(log s) =
O(s · log k).

4 Handling Multiple Distributions
In this section we show that a similar derandomiza-

tion for can be achieved when the sequence of inputs
is sampled independently from several distributions.
It is convenient to view d-part product distributions
(see Definition 1.4) as convex combinations of certain
same-valued distributions.

Definition 4.1. A d-multinomial distribution on
({0, 1}n)k is a distribution X = (X1, . . . , Xk) such
that there is a partition C1∪. . .∪Cd = [k] into disjoint
subsets such that for every i �= j ∈ [d], X |Ci and X |Cj
are independent, and for every i ∈ [d] XCi is a multi-
nomial source. It will be convenient to allow some of
the Ci’s to be empty. Thus, every d′-multinomial dis-
tribution for some 1 ≤ d′ ≤ d is also a d-multinomial
distribution.

For distinct strings z1, . . . , zs ⊆ {0, 1}n and positive
integers a1, . . . , as such that

∑s
i=1 ai = k denote by

Ddz1,...,zs,a1,...,as the set of d-multinomial distributions
whose support consists of sequences where zi appears
ai times.

Lemma 4.2. A d-part product distribution is a con-
vex combination of d-multinomial sources.

402



DERANDOMIZING ALGORITHMS ON PRODUCT DISTRIBUTIONS AND OTHER APPLICATIONS OF · · ·

4.1 The All Pairs Extractor
In the following definition, for strings x, y ∈ {0, 1}n

we denote by (x < y) the value 1 if x < y (by lexico-
graphical ordering of strings) and 0 otherwise. For an
integer l, define the l-string-all-pairs compare function
APC : ({0, 1}n)l → {0, 1} by

APC(x1, . . . , xl) ≜
⊕

1≤i<j≤l
(xi < xj),

where ⊕ denotes addition modulo 2. That is, we take
the parity of comparisons between all pairs.

Claim 4.3. Fix integers l and n. The l-string all-
pairs compare function APC : ({0, 1}n)l → {0, 1}
is an extractor with error ε = 0 for the subclass
Ddz1,...,zl,1,...,1 of d-multinomial distributions for any
d < l.
Proof. We first prove the following claim. Let x =
(x1, . . . , xl) ∈ ({0, 1}n)l be a sequence such that xi �=
xj for all i < j ∈ [l]. Denote by xi↔j the sequence
obtained from x by swapping xi and xj . We show that
for all i < j ∈ [l], APC(x) �= APC(xi↔j): To see
this11 notice that swapping adjacent values changes
the value of E. That is, for every 1 ≤ i ≤ l − 1,
APC(x) �= APC(xi↔i+1). Loosely speaking, this is
because one comparison has changed and the rest have
stayed the same. Formally,

APC(xi↔i+1) = APC(x)⊕ (xi < xi+1)⊕ (xi+1 < xi)
= APC(x)⊕ 1

Now note that xi↔j can obtained from x by an odd
number of swap operations performed on adjacent
places: j − (i + 1) swap operations to move xi to
the (j − 1)’th position and another j − i operations
to move xj to the i’th position. Thus we have shown
that APC(x) �= APC(xi↔j) for all i < j ∈ [l]. Re-
turning to the original claim, let X be a distribution
in Ddz1,...,zl,1,...,1. Recall that this means there are dis-
joint subsets C1 ∪ . . . ∪ Cd = [l] such that X |Ci is a
multinomial distribution. As d < l there must be an
i such that |Ci| > 1. Assume w.l.g. that |C1| > 1,
and fix two indices i < j ∈ C1. Look at the dis-
tribution X conditioned on a fixing of values in all
positions except i and j. Under such a condition-
ing, we are left we two distinct strings z and z′ that
are to be assigned in these positions, and as X |C1 is
a multinomial distribution, each of the two possible
assignments has probability half. From our previous
argument it follows that the different assignments will
lead to different values of E. Thus, under any such

11Another way to see this is that if x1, . . . , xl are distinct, the
APC function just corresponds to the sign of the permutation
which sorts the values. Swapping two elements changes the
sign.

conditioning APC(X) is uniform. Viewing X as a
convex combination of such conditional distributions
finishes the proof.

4.2 Reducing to All Pairs
It will be useful to talk about d-multinomial distri-

butions where ‘no value appears too frequently’. The
following definition formalizes such a notion.

Definition 4.4. Let X be a d-multinomial distribu-
tion on ({0, 1}n)k. We say that X is δ-bounded if X
belongs to a subclass Ddz1,...,zs,a1,...,as of d-multinomial
distributions such that for every i ∈ [s] ai ≤ δ ·k. That
is, no value zi appears in more than a δ-fraction of
the indices.

The following lemma shows that a general d-
multinomial distribution can be converted into a δ-
bounded one, provided it has enough distinct values.

Lemma 4.5. Fix any 0 < δ < 1 and integers n and k.
There is a deterministic algorithm F such that for any
s-valued d-multinomial distribution X on ({0, 1}n)k
with s ≥ (1/δ)·log k, the distribution F (X) is a convex
combination of s′-valued δ-bounded d-multinomial dis-
tributions on ({0, 1}n)k′ , for some s′ ≥ s−(1/δ)·logk
and k′ ≤ k.
Proof. Given x = (x1, . . . , xk), F operates as follows:

1. Check if there exists a value z ∈ {0, 1}n such that
xi = z for more than a δ-fraction of the xi’s. If so,
let z be the most common value in the sequence
and remove all xi’s with xi = z.

2. If sequence was changed and it is non-empty, re-
peat first step on the newly obtained sequence.

Each application of the first step on a d-multinomial
distribution, results in a convex combination of d-
multinomial distributions. After m repetitions of the
first step we are left with at most (1−δ)m·k < e−δ·m·k
strings. Thus, after (1/δ) · log k repetitions we are left
with an empty sequence, and therefore the number of
repetitions is bounded by (1/δ) · log k. Since each rep-
etition reduces the number of values by one, the final
components are s′-valued for some s′ ≥ s−(1/δ)·log k,
as required.

Theorem 4.6 shows how to extract many random
bits from δ-bounded d-multinomial distributions.

Theorem 4.6. Fix any integers n,m, d and k such
that (d + 1)|k and m ≤ k

d+1 . The exractor E :
({0, 1}n)k → {0, 1}m be defined as follows. Given
input x ∈ ({0, 1}n)k, first partition x into k

d+1 blocks
x1, . . . , x

k
d+1 , each containing (d+1) n-bit strings. We

say a block is good if all (d + 1) n-bit strings in the
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block are distinct. If there are at least m good blocks
xi1 , . . . , xim , E outputs the all-pairs compare function
on each one, E(x) = APC(xi1 ), . . . , APC(xim). Oth-
erwise, E outputs the 0-string.

Fix any 0 < γ < 1 and let δ = γ
16d5 . E is

a γ-extractor for the class of s-valued δ-bounded d-
multinomial distributions on ({0, 1}n)k, whenever s ≥
m · 4(d+ 1).

The theorem will follow easily from the following
lemma.
Lemma 4.7. Fix any integers n, s, d and k such that
(d + 1)|k. Fix any 0 < γ < 1 and let δ = γ

8·(d+1)·d4 .
Let X be an s-valued δ-bounded d-multinomial dis-
tribution on ({0, 1}n)k. Partitioning a string x ∈
({0, 1}n)k and defining a good block as in Theorem
4.6, we have

Prx←X
(
x has less than

s

4 · (d + 1)
good blocks

)
≤ γ.

Proof. Let C1 ∪ . . .∪Cd = [k] be the subsets defining
X . That is, X |Ci is some multinomial distribution.
We show that after removing frequent values as in
Lemma 4.5, each one of the underlying distributions
X |Ci is either rare or bounded. Note that if for some
0 < η < 1 and i ∈ [d] X |Ci is not η-bounded, then
|Ci| ≤ δ

η · k. Taking η = 2δ · d · (d + 1)2 we get
that at most ( δ

2δ·d·(d+1)2 · d) · k = 1
2(d+1)2 · k indices

belong to sets Ci such that X |Ci is not η-bounded.
Thus, at most (d + 1) · ( 1

2(d+1)2 · k) = k
2(d+1) blocks

contain an index j ∈ [k] belonging to a subset Ci
where X |Ci is not η-bounded. Therefore, we have at
least k

d+1− k
2(d+1) = k

2(d+1) blocks such that all indices
in the block belong to a set Ci such that X |Ci is η-
bounded. Assume without loss of generality that the
first k

2(d+1) blocks have this property. For each i =
1, . . . , k

2(d+1) define a random variable Zi by Zi = 1 if
X i is bad, and 0 otherwise.

Note that E(Zi) = Pr(Zi = 1) ≤ (d+1)·d
2 · η =

δ · (d2)(d+ 1)3. Define Z =
∑ k

2·(d+1)
i=1 Zi. Then,

E(Z) ≤ δ · (d2)(d + 1)3 · k

2 · (d+ 1)
=

δ · d2 · (d+ 1)2

2
· k ≤ δ · 2d4 · k.

Therefore, using Markov’s inequality, for any 0 < γ <
1, Pr(Z > 1

γ · (δ · 2d4 · k)) ≤ γ. Conversely, with
probability at least 1 − γ, we have at least k

2·(d+1) −
δ
γ · 2d4 · k good blocks. Finally, noting that k ≥ s and
using the value of δ we get

k

2 · (d+ 1)
− δ
γ
· 2d4 · k ≥ s

2 · (d + 1)
− δ
γ
· 2d4 · s ≥ s

4 · (d+ 1)

and the lemma follows.

Proof of Theorem 4.6. Let X be a δ-bounded s-
valued d-multinomial distribution on ({0, 1}n)k. Let
l = k

d+1 . For subsets Z1, . . . , Zl ⊆ {0, 1}n, with
|Zi| ≤ d+1, we define the distribution XZ1,...,Zl to be
X conditioned on the event that for every 1 ≤ i ≤ l,
the set of distinct values in X i is exactly Zi. We can
view X as a convex combination of the distributions
XZ1,...,Zl . Note that these distributions are simply
concatenations of independent d-multinomial distri-
butions on ({0, 1}n)d+1. Call a distribution XZ1,...,Zl

‘good’ if for at least m values i ∈ [l], |Zi| = d + 1,
i.e., the i’th block contains d+ 1 distinct elements. It
follows from Lemma 4.7 that the mass of ‘good’ dis-
tributions in the convex combination representing X ,
is at least 1 − γ. using Claim 4.3, for a good distri-
bution XZ1,...,Zl , E(XZ1,...,Zl) is completely uniform.
Thus, E(X) is γ-close to uniform.

Using our conversion from general d-multinomial
distributions to δ-bounded d-multinomial distribu-
tions, we get an extractor for general d-multinomial
distributions.

Corollary 4.8 (Extractors for d-multinomial distri-
butions). Fix any integers n,m, d and k and any
0 < γ < 1. There is a γ-extractor E : ({0, 1}n)k →
{0, 1}m for the class of s-valued d-multinomial distri-
butions whenever s ≥ m · 8(d+ 1) + 16·(2d)5

γ · log k. E
is computable in time O(nk · d2)

Proof. Let F be the algorithm from Lemma 4.5 for
δ = γ

16·(2d)5 Given x ∈ ({0, 1}n)k, our extractor E
works by first applying F on x. We then possibly
add at most d n-bit strings to F (x) to make the num-
ber of n-bit strings it contains a multiple of d + 1
(at each step, we add the lexicographically first string
that does not yet appear in F (x)). We then compute
E′(F (x)), where E′ is the extractor for δ-bounded d-
multinomial distributions from Theorem 4.6. Let X
be an s-valued d-multinomial distribution. Lemma
4.5 guarantees that F (X) is a convex combination
of s′-valued δ-bounded d-multinomial distribution for
s′ ≥ s − (1/δ) · log k ≥ m · 8(d + 1). The possible
additions make the components of F (X) δ-bounded
2d-multinomial distributions. As s′ ≥ m · 8(d + 1) >
m · 4(2d + 1) it now follows from Theorem 4.6 that
E(X) = E′(F (X)) is γ-close to uniform.

Using Corollary 4.8, the proof of Theorem 1.5 is
similar to the one of Theorem 1.2.
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