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Abstract: Perhaps the two most significant theoretical questions about the programming of self-assembling
agents are: (1) necessary and sufficient conditions to produce a unique terminal assembly, and (2) error correc-
tion. We address both questions, by reducing two well-studied models of tile assembly to models of distributed
shared memory (DSM), in order to obtain results from the memory consistency conditions induced by tile assem-
bly systems when simulated in the DSM setting. The Abstract Tile Assembly Model (aTAM) can be simulated
by a DSM system that obeys causal consistency, and the locally deterministic tile assembly systems in the
aTAM correspond exactly to the concurrent-write free programs that simulate tile assembly in such a model.
Thus, the detection of the failure of local determinism (which had formerly been an open problem) reduces to
the detection of data races in simulating programs. Further, the Kinetic Tile Assembly Model can be simulated
by a DSM system that obeys GWO, a memory consistency condition defined by Steinke and Nutt. (To our
knowledge, this is the first natural example of a DSM system that obeys GWO, but no stronger consistency
condition.) We combine these results with the observation that self-assembly algorithms are local algorithms,
and there exists a fast conversion of deterministic local algorithms into deterministic self-stabilizing algorithms.
This provides an “immediate” generalization of a theorem by Soloveichik et al. about the existence of tile as-
sembly systems that simultaneously perform two forms of self-stabilization: proofreading and self-healing. Our
reductions and proof techniques can be extended to the programming of self-assembling agents in a variety of
media, not just DNA tiles, and not just two-dimensional surfaces.
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1 Introduction
In August 2009, IBM and the DNA and Natural Al-

gorithms Group at Caltech announced a joint project
to use “DNA origami” as a scaffolding in order to
place microchip components 6 nm apart, breaking
the 22 nm barrier that is the current state of the
art in chip manufacturing [1]. In contrast to some
other emerging models of computation, such as quan-
tum computing or membrane computing, about which
there are extensive theoretical results but as yet little
experimental success, the experimental results of al-
gorithmic DNA self-assembly are significantly ahead
of the theory. (A recent survey of nanofabrication by
DNA self-assembly, including a high-level explanation
of DNA origami, appears in [2].) Indeed, there are
only a handful of results about perhaps the two most
significant theoretical questions about self-assembly
programming: (1) necessary and sufficient conditions
to produce a unique terminal assembly, and (2) error
correction. The goal of this paper is to recast those
two questions as programming questions of memory
consistency conditions and self-stabilizing algorithms,
thus making techniques from the study of concurrent

architectures and programming languages, and self-
stabilization, available to this emerging area of re-
search.

When a global structure (or organism) forms be-
cause of the connections formed by strictly simpler
structures to one another, following only local rules,
we say the global structure self-assembles. The goal of
algorithmic self-assembly is to direct (or to program)
the self-assembly of desired structures, by construct-
ing self-assembling agents, and their environment, so
they combine to form a desired result. We will fo-
cus on algorithmic DNA self-assembly in this paper,
a field merging computer science and nanotechnology
that began in the 1990s, spurred especially by the
work of Adleman, Rothemund, and Winfree [3]. The
formalisms to model self-assembling systems contain
the following: a finite set of distinct types of self-
assembling agents, a set of local binding rules that
completely determines the behavior of the agents, and
an initial configuration of the system. A particular
self-assembly “run” starts with an operator placing a
finite seed assembly on the surface, and then allowing
a “solution” containing infintely many of each agent
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type to mix on the surface. Agents bind to the seed
assembly, and to the growing configuration, consistent
with the local rules, and in a random, asynchronous
manner. In the tile assembly models we consider in
this paper, each agent is a four-sided tile, and the as-
sembly surface is the two-dimensional integer plane.

In [4], we proved a time lower bound for cer-
tain computational problems in self-assembly on a
surface, by reducing a class of self-assembly mod-
els to message-passing models of distributed comput-
ing, and then applying a known impossibility result
about local algorithms. We follow a similar strat-
egy in this paper: we reduce well-studied tile assem-
bly models to models of distributed shared memory
and then explore some of the consequences of those
reductions. In particular, we consider the Abstract
Tile Assembly Model (aTAM), due to Winfree [5] and
Rothemund [6], and the Kinetic Tile Assembly Model
(kTAM) due to Winfree [5]. In the aTAM, binding
between self-assembling agents is error-free and irre-
versible; while in the kTAM, binding errors are pos-
sible, and agents can bind but later dissociate with
some positive probability. We show that tile assembly
systems defined in the aTAM can be simulated by sys-
tems of distributed shared memory (DSM) that obey
causal consistency [7], a memory consistency condi-
tion weaker than the better-known sequential consis-
tency. In a sense, this level of memory consistency is
“tight” for any DSM model that simulates the aTAM.

Next, we translate one of the fundamental theorems
about the aTAM—that “locally deterministic” tile
assembly systems produce a unique terminal assem-
bly [8]—into the language of memory consistency. We
show that locally deterministic tile assembly systems
correspond exactly to the concurrent-write free pro-
grams that simulate tile assembly in our DSM model.
Hence, the programming techniques to produce data-
race free and concurrent-write free programs—and to
detect data races—can be applied to the programming
of self-assembling agents.

Regarding the kTAM, we show it reduces to a
model of DSM obeying memory consistency condi-
tion GWO, which is strictly weaker than causal con-
sistency. Again, there is a sense in which this level
of memory consistency is tight. GWO was defined
by Steinke and Nutt, to fill out a lattice with which
they compared all known memory consistency condi-
tions [9]. To our knowledge, the only DSM system
in the literature that precisely obeys GWO is the one
Steinke and Nutt built to show that some such model
exists. The DSM simulation of the kTAM, then, is
the first natural example of a model that lies within
GWO but no stronger level of memory consistency.

Finally, we combine these results with the obser-
vation that self-assembly algorithms are local algo-
rithms, and there exists a fast conversion of determin-
istic local algorithms into deterministic self-stabilizing
algorithms. This provides an “immediate” generaliza-
tion of a theorem by Soloveichik et al. about the ex-
istence of tile assembly systems that simultaneously
perform two forms of self-stabilization: proofreading
and self-healing. Our general reduction and proof
techniques can be extended to the programming of
self-assembling agents in a variety of media, not just
DNA tiles, and not just two-dimensional surfaces.

Several researchers have voiced intuitions about
a connection between self-assembly and distributed
computing, for example Klavins [10], or an Arora et
al. 2007 NSF Report [11]. However, the first rigorous
application of the theory of distributed computing to
questions in self-assembly appeared in [4]. Subsequent
to [4] (and its extended version [12]), we used the wait-
free consensus hierarchy to separate models of self-
assembly based on their synchronization power [13];
and we showed that graph assembly systems (a graph
grammar self-assembly formalism due to Klavins) are
distributed systems in a strong sense [14]. To the best
of our knowledge, the current paper is the first to
consider self-assembly within the context of memory
consistency models, and the first to show rigorously
that multiprocessor programming techniques can be
usefully applied to biomolecular computation

The rest of the paper is structured as follows. Sec-
tion 2 provides background on tile assembly models
and memory consistency models. In Section 3.1 we
reduce the Abstract Tile Assembly Model to a DSM
system that obeys causal consistency. In Section 3.2
we reduce the Kinetic Tile Assembly Model to a DSM
system that obeys GWO. In Section 4 we show how
to generalize an existence theorem about proofreading
and self-healing tilesets by using techniques from self-
stabilizing algorithms. Section 5 concludes the paper
and suggests directions for future research.

2 Background
2.1 Tile Assembly Background

We now give the formal definitions of the tile as-
sembly models we will work with.

2.1.1 Abstract Tile Assembly Model
Winfree’s objective in defining the Abstract Tile

Assembly Model was to provide a useful mathemati-
cal abstraction of DNA tiles combining in solution in
a nondeterministic, asynchronous manner [5]. Rothe-
mund [6], and Rothemund and Winfree [15], extended
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the original definition of the model. For a comprehen-
sive introduction to tile assembly, we refer the reader
to [6]. Intuitively, we desire a formalism that mod-
els the placement of square tiles on the integer plane,
one at a time, such that each new tile placed binds
to the tiles already there, according to specific rules.
Tiles have four sides (often referred to as north, south,
east and west) and exactly one orientation, i.e., they
cannot be rotated.

A tile assembly system T is a 5-tuple (T, σ,Σ, τ, R),
where T is a finite set of tile types; σ is the seed tile
or seed assembly, the “starting configuration” for as-
semblies of T ; τ : T × {N,S,E,W} → Σ × {0, 1, 2}
is an assignment of symbols (“glue names”) and a
“glue strength” (0, 1, or 2) to the north, south, east
and west sides of each tile; and a symmetric relation
R ⊆ Σ × Σ that specifies which glues can bind with
nonzero strength. In this model, there are no negative
glue strengths, i.e., two tiles cannot repel each other.

A configuration of T is a set of tiles, all of which are
tile types from T , that have been placed in the plane,
and the configuration is stable if the binding strength
(from τ and R in T ) at every possible cut is at least 2.
An assembly sequence is a sequence of single-tile ad-
ditions to the frontier of the assembly constructed at
the previous stage. Assembly sequences can be finite
or infinite in length. The result of assembly sequence
−→α is the union of the tile configurations obtained at
every finite stage of −→α . The assemblies produced by
T is the set of all stable assemblies that can be built
by starting from the seed assembly of T and legally
adding tiles. If α and β are configurations of T , we
write α −→ β if there is an assembly sequence that
starts at α and produces β. An assembly of T is ter-
minal if no tiles can be stably added to it.

We are, of course, interested in being able to prove
that a certain tile assembly system always achieves a
certain output. In [8], Soloveichik and Winfree pre-
sented a strong technique for this: local determinism.
An assembly sequence −→α is locally deterministic if (1)
each tile added in−→α binds with the minimum strength
required for binding; (2) if there is a tile of type t0 at
location l in the result of α, and t0 and the immediate
“OUT-neighbors” of t0 are deleted from the result of
−→α , then no other tile type in T can legally bind at l;
then (3) the result of −→α is terminal. Local determin-
ism is important because of the following result.

Theorem 1 (Soloveichik and Winfree [8]). If T is
locally deterministic, then T has a unique terminal
assembly.

2.1.2 Kinetic Tile Assembly Model
The Kinetic Tile Assembly Model (kTAM) was de-

fined by Winfree [5], to provide a mathematical model
for self-assembly (and disassembly) in solution, based
on the kinetics of chemical reactions. Slightly differ-
ent versions of the kTAM appear in different papers
on the subject. We will follow the treatment in [16],
because we will use techniques from distributed com-
puting to address an open question in [16].

Whereas the aTAM is an error-free, irreversible,
nondeterministic model, the kTAM is a probabilis-
tic model in which tiles bind with some probability of
error, and bound tiles can dissociate with some prob-
ability. These probabilities are derived from the equa-
tions of chemical reaction kinetics. There is a forward
rate f , which we assume is the same for any tile type
at any position of the perimeter in the growing assem-
bly, defined as f = kf e−Gmc , where kf is a constant
that sets the time scale, and Gmc is the logarithm of
the concentration of each tile type in solution. We
assume that tiles can only fall off of the perimeter of
the assembly; this assumption matches experimental
observation. The rate of dissociation (reverse rate rb)
depends exponentially on the number of bonds that
must be broken: rb = kfe−bGse , where b is the total
interaction strength with which the tile is attached to
the assembly, and Gse is the unit bond free energy,
which may depend on the overall temperature of the
system.

As with our treatment of the aTAM, we assume
that “strength 2” bonds are sufficient for tiles in the
kTAM to bind stably. Hence we let f = r2, which
ensures that the forward growth of the kTAM mir-
rors (with high probability) the binding rules of the
aTAM, and incorrectly bound tiles (with high prob-
ability) quickly dissociate. We assume that kf is a
physical constant that cannot be experimentally con-
trolled, but by changing concentrations or tempera-
ture we could change Gmc and/or Gse.

One objective of this paper is to develop proof tech-
niques that would be applicable to models of self-
assembly other than the aTAM and kTAM. To this
end, we will not use all the information available
about the kTAM when we simulate it, but rather
will use a more general construction, with the under-
standing that specific values for probabilities could be
plugged in as required, based on the rate equations of
the kTAM. In particular, we will limit ourselves to
the existence of a forward rate f which is the same
for each bond, a reverse rate rb which is much higher
for erroneous bonds than for correct ones, and an er-
ror probability πe that a tile will bind incorrectly to
the frontier of the assembly.
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2.2 Distributed Shared Memory Back-
ground

A distributed shared memory model (or system) is a
model of distributed processors and (possibly shared)
read/write registers. A processor p can perform a
read or a write on register r, if p has permission to
perform that operation on r. The only operations
a processor can perform on a register are reads and
writes. The read operation begins with an invocation
and terminates when p receives a value. The write
operation begins with an invocation that includes a
value, and ends when p receives an ack. A processor
can only perform one operation at a time. We do
not assume atomicity of reads and writes to a given
register r.

A memory consistency model specifies the allow-
able behavior of memory. Study of memory consis-
tency models arose from a conflict between the goals
of hardware and compiler designers, to permit ag-
gressive optimization (which requires “weak” mem-
ory consistency), and the desire of programmers to
have concurrent code execute in a predictable fashion
(which requires “strong” memory consistency). We
refer the reader to [17] for a survey and tutorial on
these issues. In 2004, Steinke and Nutt presented a
theory that unified the various memory consistency
models that had been proposed in the literature [9].
They showed the existence of a lattice of 13 memory
consistency models; this lattice contained all known
models, and showed the logical interrelation between
each. We now describe the memory consistency con-
ditions that will be most important for this paper.

A system of distributed processors is sequentially
consistent [18] if the result of any execution is the
same as if the operations of all the processors were
executed in some sequential order, and the operations
of each individual processor appear in this sequence
in the order specified by its program. A system of
distributed processors is causally consistent [7] if for
each processor the operations of that processor plus
all writes known to that processor appear to that pro-
cessor to appear in a total order that respects poten-
tial causality. A system of distributed processors is
PRAM consistent [19] if writes performed by a single
processor are seen by all other processors in the order
in which they were issued, but writes from different
processors may be seen in different orders by different
processors. These three consistency conditions are in
descending order of strength: a sequentially consis-
tent system is causally consistent, and a causally con-
sistent system is PRAM consistent, but the converses
do not always hold.

To compare consistency conditions, Steinke and

Nutt defined logical properties about processor views
of a DSM system. A processor view is a total order on
a subset of operations that occurred during an execu-
tion of a DSM system, the subset being those opera-
tions an individual processor performed or could de-
duce occurred. The property GPO (“global process
order”) is the condition that there is global agree-
ment on the order of operations from each process.
The property GWO (“global write-read-write order”)
is the condition that there is global agreement on the
order of any two writes when a process can prove it
has read one before the other. A DSM system sat-
isfies GPO exactly when it is PRAM consistent, and
it satisfies both GPO and GWO exactly when it is
causally consistent.

A relation ≺ is a causality order of operations if
o1 ≺ o2 means that one of the following holds for any
operations o1 and o2:

1. o1 and o2 were performed by the same processor
p, and p executed o1 before o2.

2. o2 reads the value written to a shared register by
o1.

3. There is some other operation o′ such that o1 ≺
o′ ≺ o2.

We will say that program P is concurrent-write free
in DSM model M if every processor in M runs P ,
and there is no legal execution history H of P such
that the causality order induced by H contains two
writes w1 and w2 such that w1 ⊀ w2 and w2 ⊀ w1
(i.e., there are no writes that are causally concur-
rent under any possible execution). In other words,
P is concurrent-write free if a single program Q that
simulates each processor in the system executing P
is concurrent-write free under the standard definition
that no execution of Q contains conflicting writes.

3 Reduction of Tile Assembly Mod-
els to Distributed Shared Memory
Models

3.1 The aTAM Reduces to Causally Con-
sistent Models of DSM

The objective of this section is to show that the
aTAM can be simulated by a causally consistent DSM
system, and, under a reasonable definition of “sim-
ulation,” no DSM system that fails to obey causal
consistency can simulate the aTAM. First, we define
formally what it means for a DSM system to simulate
a tile assembly system. For simplicity, we limit con-
sideration to tile assembly systems that self-assemble
on the first quadrant of ℤ2; our definitions could be
extended to the entire integer plane.

Definition 1. Let T = 〈T, σ,Σ, τ, R〉 be a tile as-
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sembly system in the aTAM, and M be a model of
distributed processors. We say M simulates T on the
k × k surface if the following holds.

1. The network topology of M is that of a k × k
square.

2. Each processor pij (0 ≤ i, j < k) in M has a
write-once output register ρij that is initialized
to value EMPTY, and can take on |T | distinct
values other than EMPTY.

3. There is a bijection ψ from tile types in T to pos-
sible values of ρ (not including EMPTY).

4. For each legal tile assembly sequence −→α of T ,
there is a legal execution E of M such that, if
tile type t is placed on coordinate (i, j) in −→α , then
processor pij writes ψ(t) to ρij in E. Moreover,
processors write to their respective ρ in E in the
same order that tiles get placed on the surface
in −→α . (The placement of the seed assembly σ
is simulated by writing the value ψ(t) to ρij if
σ(i, j) = t.)

5. For each legal execution E of M , there is a cor-
responding legal assembly sequence −→α , such that
if pij writes ψ(t) to ρij, then tile type t is placed
on location (i, j) in −→α . Moreover, the order of
writing values in E is preserved by the order of
placing tiles in −→α .

Intuitively,M simulates T on a finite surface if each
process in M behaves like a location on the surface,
with each processor executing a local algorithm that
mimics the binding rules required by R. We now gen-
eralize the above definition to arbitrary tile assembly
systems.

Definition 2. Let T be a tile assembly system in the
aTAM. We say a class M = {M0,M1, . . .} of DSM
models simulates T if, for each k ∈ ℕ, Mk simulates
T on a k × k surface. Let φ be a mapping from tile
assembly systems to algorithms. Then we say that
(M, φ) simulates the aTAM if, for any tile assem-
bly system T , M simulates T when the processors in
the models in M run φ(T ) as their local algorithm,
beginning at an initial state determined by the seed
assembly σ as above.

We now prove that there exists a class of causally
consistent DSM models that simulates the aTAM.

Theorem 2. There exists a class of DSM modelsM
that simulates the aTAM. Each M ∈ M is causally
consistent. Further, the models in M do not obey a
memory consistency condition in Steinke and Nutt’s
lattice that is stronger than causal consistency.

Proof. Fix k ∈ ℕ. We define a DSM modelMk as fol-
lows. M contains k2 processors, with network graph

of a k × k grid. We will refer to the processors as pij
(i, j < k), to denote the processor at location (i, j) in
the network grid. Note this is a convenience for the
proof; the processors do not have unique ID’s, and do
not know whether they are on the edge, the corner, or
the interior of the grid. We assume that all tile assem-
bly systems have temperature 2, as that is sufficient
for Turing universality. Each processor can read from
two registers, r1ij and r2ij . Each processor can write to
twelve registers, r1, r2 and Index of each of its neigh-
bors to the north, south, east and west on the grid.
(For processors on the edge of the grid, these regis-
ters exist, and ack when written to, but no processor
ever reads from them if they “belong” to nonexistent
processors. This way, a processor cannot deduce that
it is on the edge of the grid.) To simulate τ > 2, we
could use registers r1, . . . , rτ instead of just two such
registers per processor.

The register Indexij is initialized to the value 1,
and can take 3 possible values: 1, 2, and “1 and 2.”
The algorithm each processor runs will look first at
the value in Index to determine whether to write to
r1, r2 or both.

Each processor pij has a write-once register ρij ini-
tialized to the value EMPTY. Only pij can write to
ρij , and it can write one of |T | distinct values. Fix a
bijection ψ between tile types of T and possible val-
ues that can be written to each ρ. The processors of
Mk all run a common nondeterministic, distributed,
local, algorithm as follows. Before starting execution,
Mk is configured to simulate the seed assembly of T :
for i, j < k, if σ(i, j) �= ∅ then pij writes ψ(σ(i, j)) to
ρij .

Once placement of the seed assembly is simulated,
execution of the algorithm proceeds in synchronized
stages (rounds), beginning at stage s = 0. At the start
of time stage s, if at stage s−1, pij wrote a value ψ(t)
(for t ∈ T ) to ρij , then pij writes to each of its neigh-
bors in a way that communicates the glues and glue
strengths of the tile pij is simulating, as follows. (We
limit discussion to communication with the neighbor
to the north; communication to the other neighbors
is similar.)

First, pij reads Indexij+1. If pij wants to communi-
cate a bond with strength 2 to its northern neighbor,
then it writes its message in both r1ij+1 and r2ij+1. If
it wants to communicate a bond with strength 1, then
pij writes 〈S, g〉 to r1ij+1, to r2ij+1, or to both registers,
based on the value it read from Indexij+1; here g is
a message that corresponds to the glue type on the
north side of t. This indicates to the northern neigh-
bor of pij that glue type g is present immediately to
the south. More generally, each message written to r1
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or r2 of a given processor will be of form 〈d, g〉 where
d ∈ {N, S, E, W} is a direction, and g is a glue type.

After processors write, the second phase of stage s
takes place as follows. The algorithm of exactly one
processor pij (chosen nondeterministically from the
set of processors that could legally write a value to
their respective ρ using the protocol explained below)
with pij still set to EMPTY chooses (again nondeter-
ministically) which message it will “hear” in each of
r1ij and r2ij , of all the messages that have been writ-
ten to r1ij and r2ij since the start of execution of the
algorithm. Processor pij then writes a value to ρij ,
by applying ψ and ψ−1 to the binding rules induced
by the relation R of T , so pij writes ψ(t) for some
t such that t can legally bind given neighbors with
glue types as indicated by the values of r1ij and r2ij .
If more that one tile type can legally bind given the
same set of neighbors, the value ψ(t) is again chosen
nondeterministically from the set of legal values.

Finally, pij “increments” the value of Index of each
of its neighbors that it wrote to. Continuing with our
example of writing to the northern neighbor, if the
value is 1, it writes the value 2 to Indexij+1. If the
value is 2, it writes “1 and 2” to Indexij+1. This
concludes stage s of the algorithm.
Mk simulates T on a k× k surface in the “natural”

way. For each nondeterministic run of T , i.e., each
tile assembly sequence −→α , there is a nondeterministic
execution of Mk such that the behavior of each pij
mimics the behavior of the location (i, j) in −→α . Sim-
ilarly, for each nondeterministic execution E of Mk,
there is a legal tile assembly sequence that makes the
same nondeterministic choices, since the choices of E
are constrained by the binding rules that determine
the legal behavior of any assembly sequence of T .

Since our choice of k was arbitrary, we can define
M = {Mk | k ∈ ℕ}. Such an M simulates T . Fur-
ther, our definition of each Mk was uniform with re-
spect to any set of binding rules determined by a given
R. So we can define a class of models M′ such that
each M ′k runs an algorithm that simulates σ and R
for any tile assembly system. Hence there is a class of
modelsM′ that simulates the aTAM.

We turn now to the memory consistency conditions
obeyed by the M ′k. First, each M ′k must be causally
consistent, because each processor writes only once
to any memory location, and writes deterministically
based on values read from other writes (values written
either to r1 and r2), or at stage 0 to simulate the seed
assembly, which is a finite, completely determined set
of decisions. Therefore, for any process pij , the oper-
ations of that process, and any writes known to that
process, occur in a total order that respects potential

causality, even though the values of those writes were
nondeterministically chosen.

Causal consistency is an upper bound for the mem-
ory consistency of theM ′k as well. This is because the
only memory consistency conditions that are stronger
than causal consistency in the lattice by Steinke and
Nutt are conditions that include the property GDO
(Global Data Order, which is equivalent to cache con-
sistency). But M ′k makes no guarantee that all writes
to the same memory location are performed in some
sequential order: a write to r1 or r2 that occurs at an
earlier stage than another write may still be nonde-
terministically chosen as the value of that register in
a legal execution. So causal consistency exactly cap-
tures the memory consistency of this simulation of the
aTAM.

It is worth noting that if a DSM model is going
to simulate the behavior of a tile assembly system
in the aTAM, then causal consistency is the weakest
memory consistency model it can follow. This is so
because causal consistency is the combination of prop-
erties GPO and GWO. If a DSM model does not sat-
isfy GPO (i.e., does not satisfy PRAM consistency),
then consider processor pij that writes multiple times
to a neighbor q, yet q does not see these writes in the
order in which they were issued. There is no legal tile
assembly sequence that corresponds to such an exe-
cution, as tiles in the aTAM are placed one at a time,
error-free, based on information transmitted to neigh-
boring locations by already-placed tiles. Similarly, if a
DSM model does not satisfy GWO, there exists some
execution where q1 and q2 disagree on the ordering
of writes, even though q1 can prove that a particular
write happened first. As before, no legal tile assembly
sequence captures this behavior, as a tile assembly se-
quence induces a total order on the system, such that
at each stage of assembly, a newly placed tile com-
municates its glue types to all neighboring locations.
So with respect to the lattice defined by Steinke and
Nutt, causal consistency is “tight” for simulations of
the aTAM.

We now show that, under our reduction, locally de-
terministic tile assembly systems correspond to an im-
portant class of simulating programs. Let P be a pro-
gram that simulates a tile assembly system; we will
call P binding-rule determined if for each set of mes-
sages that simulates strength 2 bonds, there is at most
one value P writes to ρ to simulate a tile type. It is
easy to check whether P is binding-rule determined,
but harder to check whether a tile assembly system is
locally deterministic, as we discuss below.

Theorem 3. Let M be the class of DSM systems in

495



A. STERLING

Theorem 2. Then if T is a locally determinstic assem-
bly system, the program P for which 〈M, P 〉 simulates
T is concurrent-write free. Conversely, ifM running
concurrent-write free, binding-rule determined, pro-
gram P , simulates tile assembly system T , then T is
locally deterministic.

Proof. Let T be a locally deterministic tile assembly
system, let −→α be a legal assembly sequence of T , and
let (x, y) be a location in the result of −→α . As before,
we assume we are operating within the aTAM at tem-
perature 2. Either (x, y) is part of the seed assembly,
or, in the sequence −→α , prior to a tile being placed at
(x, y), either one neighbor of (x, y) has a tile placed
with a strength 2 bond incident to (x, y), or two neigh-
bors have tiles placed with strength 1 bonds incident
to (x, y). The simulation of −→α in M via the reduc-
tion of Theorem 2 produces a concurrent-write free
program, as for processor pxy, each of r1xy and r2xy
is written to at most once; and, if two neighbors of
pxy write to Indexxy with writes w1 and w2, in all
legal execution histories, there will be an operation of
one processor reading the value written by the other
processor to Index in between w1 and w2, so either
w1 ≺ w2 or w2 ≺ w1, because of the definition of
causal ordering.

Conversely, suppose 〈M, P 〉 simulates a tile assem-
bly system T , and P is concurrent-write free. Then
there is no execution history for 〈M, P 〉 that contains
concurrent writes on r1ij and r2ij for any pij . But this
means that at most two neighbors could have writ-
ten to the registers of pjk, as otherwise two neighbors
q1 and q2 would have written to r1ij , and causal con-
sistency permits histories in which those writes could
happen in either order. So the writes are concurrent
after all, contrary to assumption. So at most two
neighbors write to any location before that location
decides which tile type to simulate. Further, suppose
one of the neighbors of pij that writes to the registers
of pij before pij decides, writes to pij with a strength
2 bond. Then that neighbor writes to both r1ij and r2ij ,
so no other neighbor can write to the registers of pij
before pij decides, or there will be concurrent writes,
by the above argument. Hence the neighbors writing
to pij write messages that simulate exactly a strength
2 bond. Finally, since P is binding-rule determined,
the conditions of local determinism are satisfied, and
T must be locally deterministic.

“T is locally deterministic” is an undecidable prop-
erty, as the standard tile assembly Turing machine
simulation is locally deterministic, and it could be
modified to do something not locally deterministic
iff a machine achieves a halting state. Neverthe-

less, it would be useful to test for that property
when programming—and debugging—a tile assembly
system, hence self-assembly simulation and program-
ming tools have attempted to include that functional-
ity [20] [21]. Theorem 3 classifies this problem within
the context of concurrent programming, and indicates
that, for example, typed programming languages that
prevent data races [22], and software techniques that
detect data races [23], could well be used productively
to program self-assembling agents.

3.2 The kTAM Reduces to GWO-
consistent Models of DSM

Whereas the aTAM was a nondeterministic model,
the kTAM is a stochastic model. In order to apply a
result about self-stabilizing algorithms to the kTAM,
we will construct a DSM simulation whose processors
run deterministic algorithms and whose registers re-
turn values probabilistically, for example by providing
erroneous information with some nonzero probability.
We use the same definition as above for what it means
for a DSM system to simulate a tile assembly system,
except substituting “kTAM” for “aTAM” when it ap-
pears, and the ρij can be written to multiple times,
not just once, since the kTAM is a reversible model
in which binding errors can occur. It turns out that
the probabilistic behavior of the registers is captured
by the memory consistency condition GWO.

Theorem 4. There exists a class of DSM modelsM
that simulates the kTAM. EachMk ∈M obeys GWO.
Further, the models inM do not obey a memory con-
sistency condition in Steinke and Nutt’s lattuce that
is stronger than GWO.

Proof. We use a DSM system that is largely the same
as the one used in Theorem 2: each processor has an
Index register, registers r1, r2, and ρ. Index and ρ
when read always returns the most recent value writ-
ten to them, but r1 and r2 only satisfy a weaker con-
sistency condition, as follows.

Let V = {EMPTY, v1, v2, . . . , vi} be the set of val-
ues that has been written to r1 (the behavior of r2
will follow this same condition also). Let πe be the
probability of a tile binding error in the kTAM. Then,
when r1 is read, with probability πe it returns a value
that simulates a glue in the tile assembly system, but
is not a value that had been previously written to r1.
With probability 1− πe, r1 returns one of the values
previously written to it. This value is determined by
selecting at random from the sample space V , with
each of the vi weighted by f . Lastly, if in a previous
stage, r1 returned an erroneous value, at subsequent
stages, with probability rb, r1 when read will return
the value EMPTY; this simulates the dissociation of
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a bond. After returning the value EMPTY, r1 no
longer returns EMPTY with probability rb, unless at
some future stage it returns an erroneous value again.

Execution of the algorithm proceeds in synchronous
rounds, much as before. This time, though, instead
of one processor nondeterministically choosing to be
the location to act this round, all processors on the
perimeter of the simulated assembly act if they can.
(Recall that the kTAM assumes, consistent with ex-
perimental observation, that addition and dissocia-
tion of tiles only occurs on the perimeter; we mimic
that assumption here.) The specific algorithm is as
follows.

At stage 0, each pij that is part of the seed assembly
writes the appropriate value to ρij . All other ρ, and
all r1 and r2 are initialized to EMPTY. All values of
Index are set to 1.

At stage s ≥ 1, all pij with non-EMPTY value in
ρij write glues to their neighbors following the same
method as in the aTAM simulation (i.e., reading from
Index and using that value to determine which subset
of {r1, r2} to write to). Then, each processor on the
perimeter of the assembly reads the contents of its r1
and r2; those registers return values probabilistically,
as explained above. Each processor on the perimeter
then writes to ρ, if appropriate (based on the bind-
ing rules of T ), perhaps to EMPTY. To conclude the
round, processors that sent messages at the beginning
of the round increment the value of the appropriate
Index registers, similar to the aTAM simulation.

The behavior of each pij mirrors the behavior of
the locations of the surface on which T is assem-
bling. So for any legal execution of M, there is a
legal tile assembly sequence in which the tiles were
placed in the same order. Note that there is a signif-
icant change from the previous simulation: multiple
processors may act in a round, instead of just one at
a time, as in the aTAM simulation, so multiple loca-
tions may write to the same r1. That is consistent
with our definition of “simulation,” because for every
tile assembly sequence of T , there will be an execu-
tion of M that writes to each ρ in the same order
that locations add or remove tiles. The order is what
matters, not the exact time step at which a change
takes place. SoM simulates the kTAM.

We now show thatM obeys GWO, but no stronger
consistency model in the lattice of Steinke and Nutt.
Recall that GWO means that there is global agree-
ment on the order of potentially causally-related
writes. The writes of processor p are causally related
in history H to the writes of processor q only if one
processor simulates a tile that binds or dissociates,
and there is a sequence of processors (WLOG from

p to q) S = 〈p, p1, p2, . . . , q〉, such that each proces-
sor is a neighbor of its successor, and each processor
chose to simulate its particular tile type because of
information written to it by its predecessor. There is
global agreement on the ordering of writes, because
any processor q′ that could view a write w by p′, or
view a write causally related to w, is a member of a
sequence S′ from p′ to q′ as above. So M satisfies
GWO.

On the other hand, M does not satisfy ei-
ther of the consistency conditions immediately
stronger than GWO in Steinke and Nutt’s lattice.
These two stronger conditions are causal consistency
(GPO+GWO), and GDO+GWO, where GDO is
equivalent to cache consistency. M does not satisfy
GDO for the same reason as in the aTAM simula-
tion: there is no guarantee that writes performed to
a given memory location will return the most recent
value as a read. GPO, which is equivalent to PRAM
consistency, was satisfied by the DSM models simu-
lating the aTAM, but is not satisfied under this model
because of the possibility that a register will return a
value that has never been written to it. This is in fact
a violation of slow consistency, which requires that a
read return a value that has previously been written
to it. Slow consistency is strictly weaker than PRAM
consistency, hence PRAM consistency cannot be sat-
isfied. So GWO is the strongest consistency condition
in the lattice obeyed byM.

As in the previous section, there is a sense in which
GWO is the “tight” memory consistency condition for
kTAM simulation. The only consistency condition in
Steinke and Nutt’s lattice weaker than GWO is lo-
cal consistency, which requires that each process’s lo-
cal operations appear to occur in the order specified
by its program. Without such a requirement, pro-
cessors in a simulation could potentially change the
value of ρ before receiving the values written to them
by their neighbors, which would be inconsistent with
our intuition of simulating tiles binding to other tiles.
However, the lack of consistency conditions between
local consistency and GWO is due only to the fact
that no one has defined and studied such conditions,
not because it is logically impossible to do so. More
precise consistency conditions for simulation of error-
permitting self-assembly may be an area of future in-
vestigation.

4 Self-stabilization Applied to Tile
Self-assembly

Now that we have reduced the kTAM to mod-
els of DSM that run deterministic algorithms with
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sometimes-faulty registers, we can apply the theory
of self-stabilization to prove the existence of certain
error-correcting tile assembly systems. Recall that a
distributed system is self-stabilizing if, starting from
any initial state, the system is guaranteed to converge
to, and stay in thereafter, one of a set of “legitimate”
states; this research topic was begun by Dijkstra [24].
In the case of tile assembly, the legitimate states are
the assemblies achievable from error-free assembly se-
quences.

While not in wide use in the distributed com-
puting literature, there is a simple, polynomial-time
conversion that, given a constant-time local algo-
rithm, yields a constant-time self-stabilizing algo-
rithm [25] [26]. (See [27] for a recent exposition of
this conversion, with additional motivation and ex-
amples.) Molecular self-assembly algorithms are in-
herently local, and the self-assembly literature has
considered two main classes of self-stabilizing algo-
rithms: proofreading tilesets [28], which correct initial
binding errors; and self-healing tilesets [29], which re-
build completed assemblies that have been damaged.
Soloveichik et. al. recently demonstrated a “proof of
concept,” by constructing a tile assembly system that
combined both proofreading and self-healing prop-
erties within a restricted version of the kTAM [16].
Their construction worked for tile assembly systems
that only built north and east. We can use tools from
self-stabilization to generalize their result to the full
kTAM, and to locally deterministic models that grow
in any direction.

If T is a tile assembly system, the c-scaled result of
T is the colored shape on the integer plane obtained
by “blowing up” each location in the result of T to a
c× c block of tiles, such that each tile in the block is
colored the same as the tile on the source location in
the result of T .

Theorem 5. There is a polynomial-time algorithm
that does the following: upon input of a locally de-
terministic tile assembly system T for the kTAM, it
outputs a self-healing, proofreading, tile assembly sys-
tem T ′ such that T ′ builds the c-scaled result of T ,
for some constant c. Further, |T ′| ≤

(4
3
)2
c2|T |2.

Proof. Let T be a locally deterministic tile assem-
bly system, and let 〈M, P 〉 be the DSM model that
simulates it, as produced by the reduction in Theo-
rem 4. Then let P ∗ be the self-stabilizing algorithm
obtained by applying the conversion of [25] [26] to P .
(Briefly, P is a constant-time algorithm. To convert
P to a self-stabilizing algorithm, “unroll” all possible
executions of P , over all possible inputs, as a circuit.
The program P ∗ simulates that circuit, and assumes

the inputs to the circuit are correct. Then it repeats
that same step k times, where k is large enough such
that, with high probability, all the inputs at round k
really are correct.) P ∗ is also a constant-time algo-
rithm, whose running time depends on the size of the
P -simulating circuit and the value of k we choose.

As tile assembly is Turing universal, we can of
course convert P ∗ into tiles. More importantly, there
is some constant c such that we need lay out only c-
many tiles in order to simulate the behavior P ∗ on
any of its legal inputs. WLOG we assume that c is
large enough, and our tile simulation is “padded” if
necessary, so that the simulation of P ∗, on input of
tile type t, takes up a c × c square, for any t. Fur-
ther, we dedicate a set of tile types to each input t,
so the color of each tile in this c × c square is the
same color as the input tile t. Finally, in order to
ensure that self-healing does not generate nondeter-
ministic behavior, we have to differentiate each tile
that could potentially add tiles in more than one di-
rection. (This is why the construction in [16] assumed
that tiles could only grow north and east.) In other
words, if a “hole gets punched” in a completed assem-
bly, self-healing tiles can rebuild the empty area, by
building in the reverse direction from the original as-
sembly sequence. So for each tile type in T , we need
T ′ to include a unique tile type that encodes “Tile
type t attached to the assembly using input sides S.”
It takes at least one side to attach, so at most three
sides of t remain as output sides, which is where we
need to encode the information to reverse the pro-
cess of binding t at that location. So the number of
tiles we need to place into T ′ to simulate a given tile
t of T is upper-bounded by

(4
3
)
. Further, we need

sufficient new tile types that encode “I have received
information from tile type t.” There are at most an-
other

(4
3
)
|T | of those. Since for each tile type in T

there are at most c2 tile types that simulate P ∗ on t,
we get the overall upper-bound |T ′| ≤

(4
3
)2
c2|T |2.

A discussion of theoretical and practical reasons to
choose particular values of k (i.e., the optimal number
of iterations to minimize the possibility of error) for
DNA self-assembly appears in [16]. For our purposes,
it suffices to use the conversion from constant-time
algorithm to self-stabilizing algorithm as a black box,
without considering the specific types of error that are
most likely to occur in the kTAM. Therefore, Theo-
rem 5 gives much weaker tile complexity bounds than
the dedicated construction that appears in [16], but it
provides a general method that can be extended to a
variety of self-assembly models, not just DNA tiling,
and not just two-dimensional surfaces.
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Theorem 5 may be a “proof of applicability” of self-
stabilization techniques to self-assembly, but more is
needed than “just” self-stabilization. Perhaps the
most troublesome form of error in nanoscale self-
assembly experiments occurs when a tile binds incor-
rectly, and then other tiles bind around it, preventing
it from dissociating. To address this in the language
of self-stabilization, one needs a fault-containing self-
stabilizing algorithm with minimal fault gap [30], that
is to say, a self-stabilizing algorithm in which the ef-
fects of a processor’s failure are contained within that
processor’s local neighborhood, and, after recovering
from a given fault, there is only a small time gap until
the system can recover from a new fault. Fujibiyashi
et al. have suggested extending the kTAM with spe-
cial tile mechanisms that would achieve a one-time-
step fault gap with high probability [31], though they
did not phrase their results in the language of self-
stabilization. There is some evidence that handling
fault-containment probabilistically instead of deter-
ministically will reduce an algorithm’s fault-gap [32],
but little is known about such tradeoffs, either in self-
assembly or in general distributed systems.

5 Conclusion
In this paper, we reduced the Abstract Tile Assem-

bly Model and the Kinetic Tile Assembly Model to
systems of distributed shared memory with particu-
lar memory consistency conditions. We then applied
the reductions to show that (1) local determinism is
closely related to concurrent-write freedom in parallel
programming, and (2) the theory of self-stabilization
can be usefully applied to questions of error correction
in self-assembly.

We focused on the aTAM and the kTAM because
they have been the most theoretically studied self-
assembly models. However, both models are lim-
ited to the binding of DNA tiles to other DNA tiles,
and as the recent nanofabrication survey [2] points
out, the “greatest promise” of algorithmic DNA self-
assembly “may lie in applications where DNA nanos-
tructure templates have been used to assemble other
inorganic components and functional groups.” The
IBM/Caltech microchip project is an example of this
research direction. Therefore, we believe it is critical
to develop a programming theory for “mixed-media”
models of self-assembly (such models by-and-large do
not yet exist), and that programming theory may be
advanced by continuing the investigation begun in
this paper.

From the perspective of “pure theory,” there has
been initial work to classify shared read/write vari-
ables [33], much as Steinke and Nutt classified known

memory consistency systems. It would be useful
to explore further the weak consistency, like GWO,
offered by registers that simulate the binding of
self-assembling agents, whether in DNA or another
medium. It would also be useful to explore what
“more robust” registers (like the consensus objects
in [13]) could be built, to know how agents might co-
operate to form more fault-tolerant structures. Lastly,
we believe it would be productive to explore fur-
ther the relationship between self-assembling struc-
tures and the placing of geometric constraints on local
and self-stabilizing algorithms.
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