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Abstract: Consider the problem of pricing n items under an unlimited supply with m single minded buyers, each
of which is interested in at most k of the items. The goal is to price each item with profit margin p1, p2, . . . , pn

so as to maximize the overall profit. There is an O(k)-approximation algorithm by [BB06] when the price on
each item must be above its margin cost; i.e., each pi > 0.
We investigate the above problem when the seller is allowed to price some of the items below their margin cost.
It was shown in [BB06, BBCH08] that by pricing some of the items below cost, the seller could possibly increase
the maximum profit by Ω(log n) times. These items sold at low prices to stimulate other profitable sales are
usually called “loss leader”. It is unclear what kind of approximation guarantees are achievable when some of
the items can be priced below cost. Understanding this question is posed as an open problem in [BB06].
In this paper, we give a strong negative result for the problem of pricing loss leaders . We prove that assuming
the Unique Games Conjecture (UGC) [Kho02], there is no constant approximation algorithm for item pricing
with prices below cost allowed even when each customer is interested in at most 3 items.
Conceptually, our result indicates that although it is possible to make more money by selling some items below
their margin cost, it can be computationally intractable to do so.

Keywords: complexity theory, game theory, approximation algorithm, unique games conjecture.

1 Introduction

We study the following item pricing problem. A
seller has an infinite supply of n different items. There
are m buyers, each of which are interested in a subset
of the items with certain budget limit. These buyers
are all single minded ; i.e., they either buy all the items
they are interested in if the overall cost is within their
budget or they will buy none of them. The algorithmic
task is to price each item i with a profit margin pi to
maximize the overall profit of the seller.

Serval results were known when the profit mar-
gin pi on each item is required to be positive. A
O(log n + log m) approximation for the general prob-
lems is given by Guruswami et al. [5]. If we assume
that each customer is only interested in a constant
number k of the items, a O(k2)-approximation algo-
rithm was given in [3] by Briest and Krysta. Later
in [1], Balcan and Blum improved the approximation
ratio to O(k). In particular, when k = 2 (such a
problem is also called graph vertex pricing), their al-
gorithm gave an 4-approximation. On the hardness
side, an APX-hardness result was obtained for the
general problem in [5]. Later, Demaine, Feige, Haji-
aghayi, and Salavatipour obtained a poly-logarithmic

hardness [4]. As for the case that each customer is
only interested in at most 2 of the items, a 2-hardness
result was obtained in [6] assuming the Unique Games
Conjecture (UGC).

Much less is known when the seller is allowed to as-
sign negative profit margin pi for some of the items.
The motivation behind selling some items below the
margin cost is to increase the overall profit by stim-
ulating the sales of other products. These items sold
below the cost are usually referred as the “loss lead-
ers”. One example of the loss leaders is that in the
market of digital book reader (such as the Kindle and
IPad), the seller may price the reading device at a low
price so as to make more money on the sales of the
digital books.

Studying the problem of pricing loss leaders is for-
mulated as an open problem in [1]; the authors asked:
“what kind of approximation guarantees are achiev-
able if one allows the seller to price some items below
their margin cost?” Interestingly, the authors found
that by optimally pricing some of the items below cost,
one could possibly achieve a profit that is Ω(log n)
times of the maximum profit under the positive price
model. The problem of pricing loss leaders is further
studied by Balcan et al. in [2]. They introduced two
new models: the coupon and discount model. Roughly
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speaking, the discount model is the item pricing prob-
lem with negative profit margin allowed; the coupon
model adds an additional assumption that a seller’s
profit is at least 0 for the entire transactions with each
customer. The same Ω(log n) “profitability gap” was
shown under these models.

In this paper, we give a negative result for pricing
loss leaders. In particular, we show that obtain a con-
stant approximation for item pricing, under either the
coupon or discount model, is NP-hard assuming the
Unique Games Conjectures; our hardness result holds
even for the very simple case that each customer is
only interested at most k = 3 items. Our result should
be compared with the case when only positive prices
is assigned, there is an 1

3e -approximation for such a
problem. In addition, given a item pricing instances,
we show that it is hard to distinguish whether it has a
big profitability gap. Formally assuming the UGC and
for k = 3, we show that finding out whether the prof-
itability gap (either under the coupon or the discount
model) is above α for any α > 6 is NP-hard. There-
fore, our result also indicates the hardness of finding
a loss-leader pricing strategy, not necessary optimal,
that is substantially larger than the maximum profit
using positive prices only.

Conceptually, our results convey the following mes-
sage: although it is possible to make more money by
selling items below their cost, it can be computation-
ally intractable to do so.

1.1 Problem definitions

The item pricing problem is also called the vertex-
pricing problem; it can be defined on a graph where
each customer is corresponding to a hyperedge and
each item to price is corresponding to a vertex. Let
us start by formally define the following vertex-
pricing problem.

Definition 1.1. (vertex-pricing) A vertex pricing
problem is specified by the tuple

(G(V, E), {be | e ∈ E}))

Here G(V, E) is a multigraph where each vertex vi ∈ V
represents an item. Each hyperedge e ∈ E represents
a set of items (vertices) that a particular customer is
interested with the budget be (be > 0).

For the purpose of normalization, let us also assume
that the minimum budget is 1.

When the corresponding graph is k-hypergraph
(i.e., each customer is interested in at most k items),
we call the problem vertex-pricingk.

Definition 1.2. Given a vertex-pricing instance I,
and a price function p : V → R, the profit is defined
as follows:

profitI(p) =
∑

be≥price(e)

price(e)

where price(e) =
∑

v∈e p(v).

When we restrict the range of the price function p,
we get the positive price model, as well as the discount
model, coupon model and B-bounded model that is
introduced in [2]

Definition 1.3. Given a instance I of vertex-
pricing:

For the positive price model, the objective function
is

Optpos = max
p:V→R+

profitI(p)

For the discount model, the objective function is

Optdisc = max
p:V→R

profitI(p)

For the B-bounded coupon model, the objective func-
tion is

OptB = max
p:V→[−B,∞)

profitI(p)

The B-bounded model applies to the case that each
item has the same margin cost B and the seller could
not price the profit margin below −B. The authors
in [2] also defined the coupon model which assumes
that the profit is at least 0 for each sale with the
customer.

Definition 1.4. Given a instance I of vertex-
pricing, the profit under coupon model is defined as

profit+
I (p) =

∑

be≥price(e)

max(price(e), 0)

and the objective function is the following:

Optcoup = max
p:V→R

profit+(p)

It is easy to see the following relationship among
these models.
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Fact 1.5. For any B > 0 and a vertex-pricing
instance I,

Optpos ≤ OptB ≤ Optdisc ≤ Optcoup.

We also define the profitability gap as the ratio be-
tween the optimum profit under these negative profit
models and positive profit model.

Definition 1.6. We define the profitability gaps as
follows:

• GapB = OptB

Optpos
.

• Gapdisc = Optdisc

Optpos
.

• Gapcoup = Optdisc

Optpos
.

1.2 Main result

Our main result is the following theorem:

Theorem 1.7. Assuming the UGC, given a vertex-
pricing3 instance. Then for any positive integer B,
it is NP-hard to distinguish the following two cases:

• OptB ≥ Ω(log B);
• Optcoup ≤ 6 + o(1).

Above decision problem is is hard even under the ad-
ditional assumption that 3 ≥ Optpos ≥ 1.

Using fact (1.5) and taking B = 2Ω(α), we get the
following corollaries:

Corollary 1.8. (Hardness for coupon model) Assum-
ing the Unique Games Conjecture, for any constant
α > 0, vertex-pricing3 under the coupon model is
NP-hard to α-approximate.

Corollary 1.9. (Hardness for discount model) As-
suming the Unique Games Conjecture, for any con-
stant α > 0, vertex-pricing3 under the discount
model is NP-hard to α-approximate.

Corollary 1.10. (Hardness for B-bounded model)
Assuming the Unique Games Conjecture, vertex-
pricing3 under the B-bounded model is NP-hard to
Ω(log B)-approximate.

Corollary 1.11. (Hardness for deciding profitability
gap) Assuming the Unique Games Conjecture and for
any α > 0, it is NP-hard to tell whether the prof-
itability gap (under either the coupon or the discount
modes) is above α or below 6 + o(1).

2 Preliminaries

2.1 Mathematical tools

Notations: For m ∈ R+, we use [m] to denote
the set {1, 2, . . . , bmc} (This is slightly non-standard
as we usually use [m] to denote{0, 1, . . . , m − 1} for
m ∈ Z+). For q being an integer, we use the notation
⊕q to denote the addition of two numbers (or vec-
tors) modulo q. We use 1(·) to denote the indicator
function.

Our proof relies on tools from Harmonic analysis of
Discrete functions. Here we make a quick review. For
a complete introduction, one can check [7, 12]. We
will be considering functions of the form f : [q]n → Rt

where q, n, t ∈ N. We denote f = (f1, f2, . . . , f t)
where f i is the i-th coordinate of f . The set of all
functions f : [q]n → Rt forms an inner product space
with inner product

〈f, g〉 = E
x∼[q]n

[f(x) · g(x)];

Here x is uniformly random over [q]n and f(x) ·g(x)
is the usual vector inner product. We also write ‖f‖ =√
〈f, f〉.

For a given x, we say y is ρ-correlated with x if y is
generated by setting each yi = xi with probability ρ
and a random number from [q] with probability 1−ρ.

For 0 ≤ ρ ≤ 1, we define Tρ to be the linear operator
on this inner product space given by

Tρf(x) = E
y
[f(y)],

where y is a random string in [q]n which is ρ-correlated
to x.

For i ∈ [n], we define the influence of i on f : [q]n →
R to be

Infi[f ] = E
x1,...,xi−1,xi+1,...,xn∼[q]

ˆ
Varxi∼[q][f(x)]

˜
,

where Var[f ] is defined to be E[‖f‖2]−‖E[f ]‖2. More
generally, for 0 ≤ η ≤ 1 we define the η-noisy-
influence of i on f to be

Inf(1−η)
i [f ] = Infi[T1−ηf ].

One may observe that
∑n

j=1 Inf1−η
i f j = Inf1−η

i f .

Following facts are well known:

Fact 2.1. For any η,
n∑

i=1

Inf1−η
i (f) ≤ Var(f)

2eη
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We also need the following “convexity of noisy-
influences” fact:

Fact 2.2. Let f1, . . . , f t be a collection of functions
[q]n → Rk. Then

Inf
(1−η)
i

"
avg

m∈[t]

n
f (m)

o#
≤ avg

m∈[t]

n
Inf

(1−η)
i [f (m)]

o
.

Here for any c1, c2, ...cm ∈ R (or Rk), we use the
notation avg(c1, . . . , cm) to denote their average:

t∑
m=1

ct

t
.

One major advanced tool we need in our analysis is
the following theorem that is essentially from [9]. Here
we use one of its variants appeared in [12].

Theorem 2.3. Let (Ω = [q]t, µ) be a finite probability
spaces with the following properties:

• a = (a1, a2, . . . , at) ∼ µ are pairwise indepen-
dent.

• α = mina∈Ω µ(a) > 0.

For η > 0 and f = (f1, ...f t) : Ωn → [0, 1]t be func-
tion satisfying that for any i ∈ [n], j ∈ [k] and some
constant τ > 0,

Inf1−η
i f j ≤ τ

Then

E[
t∏

i=1

T1−ηf (i)]−
t∏

i=1

E[f (i)] ≤ τC0η/ log(1/α))

Here C0 is a constant that only dependent on t. The
expectation is taken with respect to the product distri-
bution (Ω, µ)n.

Roughly speaking, above theorem states that for
calculating the product of t different functions, if these
functions do not have big noisy influence on each co-
ordinate, then the product of them is the essentially
the same under any pairwise independent distribution
or the fully independent distribution.

2.2 Relationship betweenDictatorTest
and hardness of approximation

Let us start by thinking of the vertex-pricing as
defined on a weighted multigraph graph; i.e. each edge
e in the hypergraph has a certain positive weight and
the objective function is the weighted sum of the profit

obtained on each edge. As we shall show later in sec-
tion 4.3, the hardness result we obtain for the weighted
vertex pricing problem also hold for the unweighted
version vertex-pricing.

The weighted vertex-pricing3 problem can be
viewed as a 3-CSP over a set of variables p1, p2, ...pn

and a set of constraints specified by the budget bijk

with weight wijk
1. For example for the vertex-

pricing3 problem under the discount model, the pay-
off function on bijk is

revenue(pi, pj , pk, wijk)
= 1(pi + pj + pk ≤ bijk)(pi + pj + pk).

The goal is to find p1, p2, . . . pn to maximize the
overall profit:

∑

i,j,k

wijk · revenue(pi, pj , pk, bijk)

The work of Khot, Kindler, Mossel, and O’Donnell
[7] introduced a now-standard methodology for prov-
ing hardness results for weighted CSPs based on the
Unique Games Conjecture: namely, the construction
of Dictator vs. Small Noisy-Influences Tests.

Formally speaking, a test for functions f with do-
main [q]n is an explicit instance T of a vertex-
pricing3 with variable set [q]n. It is given in the
form of a probability distribution over (x, y, z, w) ∼
[q]n× [q]n× [q]n×R+ ,where the probability here can
be thought of the weight put on the constraint as-
sociated with (x, y, z, w). For a given price function
f : [q]n → R , we define its profit to be

profitT (f)

= Ex,y,z,w[revenue(f(x), f(y), f(z), w)].

We may now informally state what a Dictator vs.
Small Noisy-Influences Test is. It is a test for func-
tions f : [q]n → R with the following two properties:
(i) Dictator functions — i.e., functions of the form
h(xi) for a particular function h : [q] → R and each
i ∈ [n] — pass the test with high profitT (f) = c;2

(ii) Functions f that is of “low noisy influence” on
each coordinate pass the test with low profitT (f) = s.
Then roughly speaking, by the technique of [7], we can
show that assuming the UGC, it is NP-hard to dis-
tinguish whether a vertex-pricing3 instance with
profit above c or below s (which directly implies a
hardness of approximation ratio s/c).

1strictly speaking, for each (i, j, k), there can be different
bijk with different weights wijk.

2usually h(t) = t for most of the previous work.
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Above is the description of the Dictator Test for
the discount model. As for the coupon model, the
Dictator Test is essentially of the same except the pay
off function is defined as

revenue+(pi, pj , pk, wijk)
= 1(pi + pj + pk ≤ wijk) ·max(pi + pj + pk, 0).

and the profit of a function f is defined as

profit+
T (f)

= Ex,y,z,w[revenue+(f(x) + f(y) + f(z), w)].

In the rest of the paper, we first design and analyze
a proper Dictator Test for vertex-pricing3. With
such a test, we then apply the reduction of [7]. We
want to emphasize here that we can not directly use
results from [7] as the variables in vertex-pricing is
unbounded. The same problem also occurs in [11] on
proving a hardness result for Unique Games over inte-
ger domain; the authors handle it through a improved
analysis with the “hyper-contractive inequality”. In
comparison, the proof in this paper can be viewed im-
proved as an analysis with the “invariance principle”
[10] over unbounded functions.

3 Dictator Test for VERTEX-PRICING

3.1 Description of the Dictator Test

To introduce our Dictator Test as well as analyz-
ing it, first let us define the following distributions
D0,D1,D2 on (x, y, z) ∈ [q]n × [q]n × [q]n. We also
assume here that

√
q is an integer.

Definition 3.1. (Distribution D0) Choose x, y uni-
form randomly and independently from [q]n; for each
i, we have that

• zi = q − (xi + yi) if xi + yi < q.
• zi = 2q − (xi + yi) if q ≤ xi + yi ≤ 2q.

By definition, we know that xi + yi + zi = 0 mod q
for each i. One important property of above distribu-
tion is that (xi, yi, zi) for each i are pairwise indepen-
dent.

Definition 3.2. (Distribution D1) For x, y, z ∼ D0,,
Let x′, y′, z′ be 1 − ε correlated with x, y, z. We call
the corresponding distribution on x′, y′, z′ as D1

Definition 3.3. (Distribution D2) Choose x, y, z uni-
form randomly and independently from [q]n.

Following is the Dictator Test for vertex pric-
ing. Here, we use ~1 to indicate the all “1” vector:
(1, 1, . . . , 1) ∈ Rn.

Definition 3.4. (Dictator Test T ) For x′, y′, z′

generated from D1 with ε set to be 1/q and
an integer k randomly chosen from [

√
q], we

generate a vertex-pricing constraint among
f(x′), f(y′), f(z′ ⊕q

⌊√
q/k

⌋ · ~1) with budget
⌊√

q/k
⌋
.

We define

profitT (f) = E
[
revenue((f(x′), f(y′),

f(z′ ⊕q

⌊√
q/k

⌋ ·~1),
⌊√

q/k
⌋
)
]
.

and

profit+
T (f) = E

[
revenue+((f(x′), f(y′),

f(z′ ⊕q

⌊√
q/k

⌋ ·~1),
⌊√

q/k
⌋
)
]
.

For the purpose of analyzing T , we also define the
following Test T ′.

Definition 3.5. (Test T ′) For x, y, z generated from
D2 and randomly choose k ∈ [

√
q], we generate

a vertex-pricing constraint among f(x), f(y), f(z)
with budget

⌊√
q/k

⌋
).

We define

profitT ′(f)

= E[revenue
(
(f(x), f(y), f(z),

⌊√
q/k

⌋)
].

and

profit+
T ′(f)

= E[revenue+
(
(f(x), f(y), f(z),

⌊√
q/k

⌋)
].

We claim that for T ′, it has the following property:

Proposition 3.6. For any function f : [q]n → R,
profit+

T ′(f) ≤ 1.

Proof. Notice that for each triple (x, y, z) , if there
exists k′ such that

√
q/(k′ + 1) < f(x)+f(y)+f(z) ≤⌊√

q/k′
⌋
. Then the profit on edges associated with

(x, y, z) is nonzero only when k is set to be 1, 2, ...k′.
Therefore, the profits on edges associated with (x, y, z)
are bounded by:

k′(f(x) + f(y) + f(z))√
q

≤
¨√

q/k′
˝
k′√

q
≤
√

q√
q

= 1
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The last step here uses the fact that
√

q is an integer.

If f(x) + f(y) + f(z) ≤ 0 or f(x) + f(y) + f(z) ≥√
q, then the profit on edges associated with x, y, z is

below 0.

Condition on every triple (x′, y′, z′), the expect
profit associated with f(x′), f(y′), f(z′) is at most 1,
therefore the overall profit is also at most 1. ¤

3.2 Analysis of the Dictator Test T
We prove the completeness (Theorem 3.7) and

soundness (Theorem 3.8) for T in this section.

Theorem 3.7. (Completeness of T ) For function
f(x) = xi − q/3 for x ∈ [q]n, profitT (f) ≥ Ω(log q).

Proof. Suppose x′, y′, z′ ∼ D1 is 1 − 1/q correlated of
x, y, z ∼ D0.

Since xi, yi are randomly generated from [q], we
know that

√
q ≤ xi + yi ≤ q with probability at least

1/3. When this happens, xi + yi + zi = q and zi ≤
q −√q. Also as each of the xi, yi, zi is reset to a ran-
dom number with probability ε = 1/q, we know that
with probability 1/3 − 3/q, x′i = xi, y

′
i = yi, z

′
i = zi

and we have that x′i + y′i + z′i = q and z′i ≤ q − √q.
We call these (x′, y′, z′) “good”.

Then for “good” (x′, y′, z′), if we choose f(t) = ti−
q/3, we know that f(x′) + f(y′) + f(z′ ⊕q

⌊√
q/k

⌋
) =

xi + yi + zi ⊕q

⌊√
q/k

⌋
]− q =

⌊√
q/k

⌋
. Therefore,

revenue
(
(f(x′), f(y′), f(z′ ⊕q

⌊√
q/k

⌋ ·~1),
⌊√

q/k
⌋)

=⌊√
q/k

⌋
]

Therefore for “good” (x′, y′, z′), the associate profit is
at least

(1/3− 3/q) ·
∑√

q

k=1

⌊√
q/k

⌋
√

q

≥ (1/3− 3/q) ·
∑√

q

k=1

(⌊√
q/k

⌋− 1
)

√
q

≥ (1/3− 3/q) · (log
√

q − 1) ≥ 1/8 log q

for large enough q.

Since the profit could be negative; we also need to
show bound the profit loss on those ”bad” x′, y′, z′

such that for some k

f(x′) + f(y′) + f(z′ ⊕q b√q/kc ·~1) < 0.

This could happen for x′, y′, z′ generated from the fol-
lowing two cases:

1. At least one of the x′i, y
′
i, z

′
i is reset, this happens

with probability at most 3/q.

2. None of the x′i, y
′
i, z

′
i is reset. Since xi+yi+zi = q or

2q, to make f(x′)+f(y′)+f(z′⊕q

⌊√
q/k

⌋ ·~1) < 0,
we know that we must have xi + yi + zi = q and
zi > q − ⌊√

q/k
⌋
. We must then have xi + yi ≤⌊√

q/k
⌋
. We know that Pr(xi + yi ≤

⌊√
q/k

⌋ ≤
Pr(xi, yi ≤

⌊√
q/k

⌋
) = 1

qk2 .

Therefore, we can have negative profit on (x′, y′, z′)
occur with probability at most 4/q. As we know that
f(x) = xi − q/3 ≥ −q/3,therefore, f(x′) + f(y′) +
f(z′ ⊕q

⌊√
q/k

⌋ · ~1)) ≥ −q, overall, we lose at most
4/q · q = −4 on those “bad” (x′, y′, z′).

Overall, for f(x) = xi − q/3, we must have that
profitT (f) ≥ 1/8 · log q − 4 = Ω(log q) for sufficient
large q. ¤

Now we state the soundness statement. The high-
level idea is to show that for low influence function,
the profit is about the same under either T or T ′ (of
which the profit is bounded by 1). As f : [q]n → R is
not bounded, we define its influence on a transforma-
tion of f as follows. We define f̃ be the integral part of
f , being bfc. We then define f ′ ∈ [q] and is uniquely
determined by f ′ = f̃ mod q. By abuse of the nota-
tion, we also write f ′ : [q]n → {0, 1}q with f ′(i) being
the indicator function 1(f̃ = i mod q). The influence
of f ′ is defined with respect to its vector form.

Theorem 3.8. (Soundness of T ) For τC01/q log(p) ≤
1/q5 and any function f : [q]n → R such that

max
i

Inf1−ε
i f ′ ≤ τ,

we have that profit+
T (f) < 6 + O(1/q).

Proof. Notice that the soundness statement is proved
for the coupon model which automatically gives an
upper bound for profitT (f).

First let us prove a stronger bound under the as-
sumption that the output value of f is an integer in
[q].
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Lemma 3.9. When f ∈ [q], profit+
T (f) ≤ 1+O(1/q).

Proof. We know that by definition f ′(i) = 1(f = i). We
also use µa to denote Ex∈[q]n [f ′a(x)]. We can arith-
metize and bound the objective function profit+

T (f)
in terms of f ′(i) as follows:

profit+
T (f) =

X

0≤a+b+c≤b√q/kc,a,b,c∈[q]

E
x′,y′,z′∼D1,k

ˆ
f ′a(x′)f ′b(y′)f ′c(z′ ⊕q b√q/kc ·~1)(a + b + c)

˜

= E
x,y,z∼D0,k

ˆ X

0≤a+b+c≤b√q/kc,a,b,c∈[q]

T1−εf
′a(x)

·T1−εf
′b(y) · T1−εf

′c(z ⊕q b√q/kc ·~1)(a + b + c)
˜

= E
k
[

X

0≤a+b+c≤b√q/kc,a,b,c∈[q]

E
x,y,z∼D0

T1−εf
′a(x)T1−ε

·f ′b(y)T1−εf
′c(z ⊕q b√q/kc ·~1)(a + b + c)].

Notice that Inf1−ε
i f ′a ≤ Inf1−ε

i f ′ ≤ τ for i ∈ [n], a ∈
[q]. Also x, y, z ∼ D0 are pairwise independent, by
Theorem 2.3 (with minimum probability α = 1/q),
we can plug in independent x, y, z ∼ D2 with additive
error bounded by τC01/(q log q) ≤ 1/q5. That is

profit+
T (f) < E

k
[

X

0≤a+b+c≤b√q/kc,a,b,c∈[q]

E
x,y,z∼D2

(f ′a(x)

·f ′b(y) · f ′c(z ⊕q b√q/kc ·~1) + 1/q5)(a + b + c)]

≤ Ek[
X

0≤a+b+c≤b√q/kc,a,b,c∈[q]

µaµbf
′c(z ⊕q b√q/kc ·~1)

·(a + b + c)] + O(1/q).

The last inequality uses the fact that a+b+c ≤ √
q

and there are at most q3 terms in the summation.

A important observation is that for any fixed k, the
random vector variable z⊕q

⌊√
q/k

⌋ ·~1 always follows
the same uniform distribution over [q]n and therefore
is independent of the choice of k. Therefore, we can
further bound profit+

T (f) by

Ek[
X

0≤a+b+c≤b√q/kc,a,b,c∈[q]

µaµbµc(a + b + c)] + O(1/q).

As for the term

Ek[
∑

0≤a+b+c≤b√q/kc,a,b,c∈[q]

µaµbµc(a + b + c)].

It is equal to profit+
T ′(f) and by proposition 3.6,

we know that profit+
T ′(f) ≤ 1. Overall, we bound

profit+
T (f) by 1 + O(1/q) when f ∈ [q].

Following two observations are useful in our analysis
of the more general case of f .

Observation 3.10. Above proof also works even for
random function f(x) ∈ [q] specified by f i in the fol-
lowing way: for each x, with probability f i(x), f out-
puts i. Here

∑
f i(x) = 1 for any x ∈ [q]n.

Observation 3.11. For any θ ∈ R+, f ∈ [q] , we can
also obtain the same bound on the profit of function
f − θ; i.e., profit+

T (f − θ) ≤ 1 + O(1/q).

To see this, simply notice that

profit+
T (f − θ)

=
X

3θ≤a+b+c≤3θ+b√q/kc,a,b,c∈[q]

E
x′,y′,z′∼D1,k

[fa(x′)

· fb(y′)fc(z′ ⊕q b√q/kc ·~1)(a + b + c− 3θ)]

and then we use the same proof and show that
profit+

T (f − θ) ≤ profit+
T ′(f − θ) + O(1/q) ≤ 1 +

O(1/q). ¤

Now we are ready to analyze real-valued function f .
Recall that f̃ = bfc. First use the fact that f ≤ f̃ +1,
we have

revenue+((f(x′), f(y′), f(z′ ⊕q

⌊√
q/k

⌋ ·~1),
⌊√

q/k
⌋
) ≤ revenue+((f̃(x′), f̃(y′),

f̃(z′ ⊕q

⌊√
q/k

⌋ ·~1),
⌊√

q/k
⌋
) + 3.

(1)

Therefore,

profit+
T (f) = Ex′,y′,z′,k[revenue+((f(x′), f(y′),

f(z′ ⊕q b√q/kc ·~1), b√q/kc)]
< Ex′,y′,z′,k[revenue+((f̃(x′), f̃(y′),

f̃(z′ ⊕q b√q/kc ·~1), b√q/kc) + 3]

≤ profit+
T (f̃) + 3.

Recall that f ′ = f̃ mod q. In the next step we
show that

profit+
T (f̃) ≤ profit+

T (f ′) + profit+
T (f ′ − q/3)

+profit+
T (f ′ − 2q/3)

(2)

By definition of f ′, we know that

f̃(x) + f̃(y) + f̃(z) = f ′(x) + f ′(y) + f ′(z) mod q.

Therefore, if f̃(x)+ f̃(y)+ f̃(z) ≤ ⌊√
q/k

⌋
for some k,

it must be the case that

f ′(x) + f ′(y) + f ′(z) ∈ [
0,

⌊√
q/k

⌋]
,
[
q, q +

⌊√
q/k

⌋]

or
[
2q, 2q +

⌊√
q/k

⌋]
.
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Then we have that,

revenue+(f̃(x), f̃(y), f̃(z), b√q/kc)
≤ revenue+(f ′(x), f ′(y), f ′(z), b√q/kc))

+revenue+(f ′(x)− q/3, f ′(y)− q/3,

f ′(z)− q/3, b√q/kc)) + revenue+(f ′(x)− 2q/3,

f ′(y)− 2q/3, f ′(z)− 2q/3, b√q/kc)).

This proves (2). And by Observation 3.11, we have
that

profit+
T (f) < profit+

T (f̃)+3 ≤ 3 · 1+3 ≤ 6+O(1/q).

¤

4 The reduction from the UNIQUE-
GAMES

In this section we show how to use our Dictator Test
T to obtain our main result, Theorem 1.7. First let
us recall the definition of the Unique-Games.

Definition 4.1. For L ∈ N, a Unique-GamesL

(U, V,E, (πu,v)(u,v)∈E) instance consists of a bipartite
graph having vertex sets U , V and edge set E, together
with a bijective constraint πv,u : [L] → [L] for each
(u, v) ∈ E. .

The following equivalent version of the UGC is due
to Khot and Regev [8, Lemma 3.6]:

Theorem 4.2. Assume the UGC. For all small ζ, γ >
0, there exists L ∈ N such given an Unique-GamesL

instance G = (U, V,E, (πu,v)(u,v)∈E) which is U -
regular, it is NP-hard to distinguish the following two
cases:

1. There is an assignment A : (U ∪ V ) → [L] and a
subset U ′ ⊆ U with |U ′|/|U | ≥ 1 − ζ such that A
satisfies all constraints incident on U ′.

2. There is no assignment A that satisfies more than
γ fraction of the constraints.

We make the reduction from a Unique-Games
instance G to a vertex-pricing3 instance I. Given
the Unique-GamesL instance G = (U, V,E, {πuv}),
the reduction produces a weighted vertex-pricing
instance I with variable set V × [q]L. We think of
a price assignment F to these variables as a collec-
tion of functions F = {fv : [q]L → R}, one for each
v ∈ V .

For x ∈ [q]L and mapping π : [L] → [L], we also de-
note π(x) ∈ [q]L as the permutation of x’s coordinate

according to i; i.e., π(x)i = xπ(i). The specific steps
of the reduction is described in Figure 1.

Figure 1: Reduction to unique games.

We claim that such a reduction have the following
properties.

Theorem 4.3. For ζ = 1/q, τ satisfies that
τC0q log q ≤ 1/q5 and γ = τ2/q5, above reduction sat-
isfies that

• (Completeness.) If statement 1 in Theorem 4.2
holds for G, then there is a price assignment F
such that profitI(F ) = Ω(log p). In addition, the
price assigned on each variable is q-bounded, i.e.,
with value ≥ −q.

• (Soundness.) If there is non assignment for G
that satisfies more than γ fraction of the edges,
then for every price assignment F such that
profit+

I (F ) ≤ 6 + 1/
√

q

• 1 ≤ Optpos ≤ 3.

By combining Theorem 4.3 with Theorem 4.2, and
setting q = B, we immediately prove Theorem 1.7.

We prove the completeness and soundness proper-
ties in Section 4.1 and bound the value of Optpos in
Section 4.2.

4.1 Completeness and soundness proof

Proof. (Completeness) To prove the completeness part
of Theorem 4.3, suppose that assignment A : V → [L]
and subset U ′ ⊆ U are as in statement 1 of Theorem
4.2. Define an price assignment F for I by taking
fv(x) = xA(v)−q/3. Then by definition and the prop-
erty of A, for u′ ∈ U ′, fvi

(πvi,u
′
(x)) = xA(u′) − q/3

for i = 1, 2, 3. Thus by the completeness of the Dicta-
tor Test (Theorem 3.7), assignment F will have profit
at least Ω(log p) conditioned on u′ ∈ U is picked. As
for the case that u /∈ U ′ is picked, we lose a nega-
tive profit bounded by −q . Overall, we have that
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profitI(F ) ≥ (1 − ζ)Ω(log q) + ζq. Notice that we
choose ζ = 1/q, therefore, profitI(F ) ≥ Ω(log p). In
addition, we know that the assignment on each fv is
above −q/3.

(Soundness) We prove the soundness statement by
contradiction. Suppose that some assignment F have
profit+

I (F ) ≥ 6 + 1/
√

q, we will exhibit a assign-
ment to the Unique Games instance G that satisfies at
least a γ fraction of the edges. Notice that the maxi-
mum profit on each constraint is at most

√
q, then by

an average argument, we must have for at least 1/q
fraction of the vertices u ∈ U picked in the first
step, such that the expected profit on these u is above
6 + 1

2
√

q .

Let us call these u “good”. Write N(u) as the
neighbor of u. By definition, for a fixed “good” u,
let us denote the expected cost given u is picked as
profit+

I,u(F ) =

Ev1,v2,v3∈N(u),x,y,z,k[
revenue+(fv1(π

u,v1x), fv2(π
u,v2(y)),

fv3(π
u,v3(z)⊕q

⌊√
q/k

⌋ ·~1)),
⌊√

q/k
⌋
)].

(3)

Then we know that for good u,

profit+
I,u(F ) ≥ 6 +

1
2
√

q
.

Similar to the analysis of Theorem 3.8, we define
f̃v = bfvc and introduce f ′v ∈ [q] such that f ′v = f̃v

mod q, although we also write f ′v as [q]n → {0, 1}q

with its i-th coordinate indicate whether f ′v is i. We
call the assignment corresponding to {f̃v}v∈V as F̃
and the assignment corresponding to {f ′v}v∈V as F ′.

By the proof of (2), we know that

profit+
I,u(F̃ ) ≥ profit+

I,u(F )− 3 ≥ 3 +
1

2
√

q

and by the proof of (2), we have that

profit+
I,u(F ′) + profit+

I,u(F ′ − q/3)

+ profit+
I,u(F ′ − 2q/3) ≥ profit+

I (F̃ ).

Therefore, one of profit+
I,u(F ′),profit+

I,u(F ′ −
q/3),profit+

I,u(F ′ − 2q/3) should be above 1 + 1
6
√

q .

Let us assume that profit+
I,u(F ′ − q/3) ≥ 1 + 1

6
√

q

and we will show that we can decode fu into a few

influential coordinates. (The other 2 cases are very
similar).

We know then

profit+
I,u(F ′ − q/3) =

Ex,y,z,k,v1,v2,v3 [
∑

q<a+b+c≤q+b√q/kc
[fa

v1
(πv1,u(x))

· f b
v2

(πv2,u(y))fc
v3

(πv3,u(z)⊕q b√q/kc ·~1))
· (a + b + c− q)]

= Ex,y,z,k[
∑

q<a+b+c≤q+b√q/kc
Ev1∈N(u)[fa

v1
(πv1,u(x))] ·Ev2∈N(u)[f b

v2
(πv2,u(y))]

·Ev3∈N(u)[fc
v3

(πv3,u(z⊕q b√q/kc·~1)))](a+b+c−q)]

If we define f i
u = Ev∈N(u)[f i

v(πv,u(x))] for i ∈ [q],
then we have that

profit+
I (F ′ − q/3) = Ex,y,z,k[

∑

q<a+b+c≤q⊕qb√q/kc
f i

u(x)f i
u(y)f i

u((z)⊕q

⌊√
q/k

⌋ ·~1))(a + b + c− q)]

≥ 1 + 1
6
√

q .

(4)

Denote fu(x) = (f1
u(x), f2

u(x), . . . , fq
u(x)). It is easy

to check that
∑

f i
u(x) = 1 for every x. Then fu can

be viewed as a random function that on a particular x
such that it outputs i with probability f i

u(x). Then (4)
is equal to the profit of the Dictator Test T on fu−q/3
and we have that profit+

T (fu − q/3) ≥ 1 + 1
6
√

q .

We know then by a contrapositive statement
of Lemma 3.9 along with Observation 3.11 and
Observation 3.10, there must be some i such that
Inf1−ε

i fu ≥ τ .

Then by Fact 2.2, we know that

τ ≤ Inf1−ε
i fu ≤ Ev∈N(u)[Inf1−ε

i fv(πv,u(x))]

By an averaging argument, since Infifv(πv,u(x)) =∑
j∈[q] infi f j

v ≤ q, for τ
2q fraction of the v ∈ N(u),

we have that Inf1−ε
i fv(πv,u(x)) = Inf1−ε

j=(πv,u)−1(i)fv ≥
τ/2.

Now consider choosing the following randomized as-
signment to the Unique Games instance. Let Su be
{i | Inf1−ε

i fu ≥ τ} and Sv be {i | Inf1−ε
i fu ≥ τ/2}.

By fact 2.1, we know that |Sv| ≤ q2/τ.

The assignment would be randomly set a label in
Su for u and a label in Sv for v. Then it is easy to
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see for good vertex u and any of its coordinate i ∈
Su, τ/2q fraction of its neighbor will have a matching
coordinate j = (πv,u)−1(i) in Sv. Therefore above
assignment satisfies at least 1/|Sv| · τ/2q fraction of
the edges for “good” u. We know that there is at least
a 1/

√
q fraction of the u is good. By the regularity of

the graph at the U side, we know that such a labeling
strategy satisfies at least 1/

√
q ·(τ/q2)τ/2q ≥ τ2/q5 =

γ fraction of the edges. ¤

4.2 Bounding Opt(I)

Proof. It is easy to verify that opt(I) ≥ 1 by assigning
a constant function fv = 1/3 for every v ∈ V .

Notice that the reduction add an edge among
fv1(π

v1,u(x)), fv2(π
v2,u(y)) and fv3(π

v3,u(z) ⊕q⌊√
q/k

⌋ ·~1)) with budget
√

q/k.

To upper bound Optpos(I), for the purpose of anal-
ysis,we can imagine that along with the generation
process of I, we also construct the following three
instance I1, I2, I3. The instance Ik for k = 1, 2 is
constructed according to Figure 1 except in the last
step we add an edge only on fvk

(πv1,u(x)) with bud-
get

⌊√
q/k

⌋
. And for I3 is constructed that in the last

step a constraint is added to fv3(π
v3,u(z)⊕q

⌊√
q/k

⌋·~1)
with budget

⌊√
q/k

⌋
. First we claim that

Opt(Ik) = 1 for k = 1, 2, 3.

Let us just first look at the most complicated case
when k = 3. Notice that for any u and fixed k,
πv3,u(z) ⊕q

⌊√
q/k

⌋ · ~1 follows the uniform distribu-
tion over [q]L. Therefore, we can view the constraint
as added on fv3(x) with budget

⌊√
q/k

⌋
for x ran-

domly chosen from [q]n. Similar analysis can be made
to I1, I2 and essentially I1, I2, I3 can all be viewed as
generated by the following process:

1. pick a random vertex u in U .

2. pick a random neighbour v in N(u)

3. generate x randomly from [q]L.

4. pick k from [
√

q]

5. add a budget over
⌊√

q/k
⌋

over fv(x).

By the analysis of Proposition 3.6, we know that
Optpos is 1 for above instance.

For the remaining proof, we show that Opt(I) ≤
Opt(I1) + Opt(I2) + Opt(I3) = 3.

This can be obtained from the observation that for
any constraint on variables (p1, p2, p3) with budget b,
it is easy to verify that

revenue(p1, p2, p3, b) ≤
3∑

i=1

pi · (pi < b)

when p1, p2, p3 > 0.

Therefore, for any positive pricing function f for I,
if use the same price function on I1, I2, I3, the sum of
the profit of f over these three instance is more than
the profit of f over I. ¤

4.3 The hardness of unweighted vertex
pricing problem

Since the unweighted vertex pricing problem is also
defined over graph with parallel edges (as many cus-
tomers may be interested in the same set of items).
These parallel edges can be viewed as assigning an
integer weight to each edge in the graph. Therefore,
the only difference between weighted and unweighted
vertex pricing instance is that weighted instance may
take non-integer weights. However, if we look at the
reduction, all the weights assigned to each edge is a
constant that only depends on L, which is the label
size of the Unique-Games; therefore, we can prop-
erly scale them up to get an instance with integer
weights.3

5 Conclusion and open problems

We believe the Dictator Test as well as the tech-
niques developed in this paper is also useful in prov-
ing hardness results for the vertex-pricing problem
under other settings. For example, for the problem of
vertex-pricingkwith positive price, one should be
able to obtain an improved hardness results by de-
signing a proper Dictator Test.

One of the obvious open problem is to prove the
same hardness result under the assumption that P 6=
NP. This is feasible as our Dictator test is similar
to Hastad’s 3Lin Test which is used to prove the NP-
hardness results of Max 3Linq.

Technically, it would be challenging to generalize
the above hardness results to vertex-pricing2 (i.e.,

3In fact, it is possible to obtain the same hardness results
even assuming that the graph is unweighted and without paral-
lel edges by following by following essentially the same reduction
as in [6], Lemma 2.2.
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the graph vertex pricing problem), although we feel
that vertex-pricing3 is already simple enough to
demonstrate the inherent intractability of the problem
of pricing loss leaders.

Acknowledgement

The author would like to thank Nina Balcan for
suggesting me to work this problem and anonymous
reviewer for suggesting me to understand the approx-
imability of the profitable gap.

References

[1] N. Balcan and A. Blum. Approximation algo-
rithms and online mechanisms for item pricing.
In Proc. 7th ACM Conference on Electronic com-
merce, pages 29-35, New York, NY, USA, 2006.
ACM.

[2] N. Balcan, A. Blum, H. Chan, and M. Hajiaghayi.
Hajiaghayi: A theory of loss-leaders: Making
money by pricing below cost. In Proc. 3rd Intern.
Workshop on Internet and Network Economics,
Lecture Notes in Computer Science. Springer,
2007.

[3] P. Briest and P. Krysta. Single-minded unlim-
ited supply pricing on sparse instances. In Proc.
17th ACM-SIAM Symp. on Discrete Algorithms,
pages 1093-1102, New York, NY, USA, 2006.
ACM.

[4] E. D. Demaine, U. Feige, M. Hajiaghayi, and M.
R. Salavatipour. Combination can be hard: Ap-
proximability of the unique coverage problem. In
Proc. 17th ACM-SIAM Symp. on Discrete Algo-
rithms, pages 162-171, 2006.

[5] V. Guruswami, J. D. Hartline, A. R. Karlin,
D. Kempe, C. Kenyon, and F. McSherry. On
profit-maximizing envy-free pricing. In Proc.
15th ACM-SIAM Symp. on Discrete Algorithms,
pages 1164-1173, Philadelphia, PA, USA, 2005.
Society for Industrial and Applied Mathematics.

[6] R. Khandekar, T. Kimbrel, K. Makarychev, and
M. Sviridenko. On hardness of pricing items for
single-minded bidders. In APPROX-RANDOM,
pages 202-216, 2009.

[7] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell.
Optimal inapproximability results for MAX-CUT
and other 2-variable CSPs? SIAM Journal on
Computing, 37(1): 319-357, 2007.

[8] S. Khot and O. Regev. Vertex Cover might be
hard to approximate to within 2-ε. In Proc. 18th
IEEE Conference on Computational Complexity,
pages 379-386, 2003.

[9] E. Mossel. Gaussian bounds for noise correla-
tion of functions and tight analysis of long codes.
In Proc. 49th IEEE Symp. on Foundations of
Comp. Sci., pages 156-165, 2008.

[10] E. Mossel, R. O’Donnell, and K. Oleszkiewicz.
Noise stability of functions with low influences:
invariance and optimality. In Proc. 46th IEEE
Symp. on Foundations of Comp. Sci., pages 21-
30, 2005. To appear, Annals of Mathematics.

[11] R. O’Donnell, Y. Wu, and Y. Zhou. Unique
Games over Integers. Manuscript, 2010.

[12] P. Raghavendra. Approximating NP-hard prob-
lems: efficient algorithms and their limits. PhD
thesis, University of Washington, 2009.

111


