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Abstract:
Nash equilibrium analysis has become the de facto standard for judging the solution quality achieved in systems
composed of selfish users. This mindset is so pervasive in computer science that even the few papers devoted to
directly analyzing outcomes of dynamic processes in repeated games (e.g., best-response or no-regret learning
dynamics) have focused on showing that the performance of these dynamics is comparable to that of Nash
equilibria. By assuming that equilibria are representative of the outcomes of selfish behavior, do we ever reach
qualitatively wrong conclusions about those outcomes? In this paper, we argue that there exist games whose
equilibria represent unnatural outcomes that are hard to coordinate on, and that the solution quality achieved
by selfish users in such games is more accurately reflected in the disequilibrium represented by dynamics such as
those produced by natural families of on-line learning algorithms. We substantiate this viewpoint by studying
a game with a unique Nash equilibrium, but where natural learning dynamics exhibit non-convergent cycling
behavior rather than converging to this equilibrium. We show that the outcome of this learning process is
optimal and has much better social welfare than the unique Nash equilibrium, dramatically illustrating that
natural learning processes have the potential to significantly outperform equilibrium-based analysis.
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1 Introduction

For the last fifty years, Nash equilibrium has been
the de facto solution standard in game theory. From
early on it was well understood that Nash equilibria,
depending on the nature of the game at hand, can be
rather inefficient from the perspective of social welfare.
Analyzing the inefficiency of games has been a subject
of extensive study in computer science, typically from
the standpoint of analyzing the price of anarchy or sta-
bility: the ratio of solution quality achieved by Nash
equilibria to that of the optimal solution. (See [21] for
a general survey).

Nash equilibrium and its analysis, despite their
prominent role, have been the subject of much crit-
icism over the years within both economics and com-
puter science. Nash equilibria are unlikely in general
to be a realistic prediction of game outcomes: natural
game play need not converge to Nash equilibria [7], it
is unclear how players are expected to coordinate on
a Nash equilibrium outcome in games with multiple
equilibria, and even in games with unique equilibria

finding a Nash equilibrium may require computation
using global information about the game play, that
users may not have access to. Finding Nash equilibria
may also be computationally too hard in some games
[6, 8].

Nevertheless, reasoning about Nash equilibria is so
pervasive in algorithmic game theory that even the few
papers that explicitly analyze the outcomes of natu-
ral dynamic processes in repeated games—e.g. best-
response dynamics [11] or no-regret learning [3, 4, 16,
17, 20] or even specialized dynamics [2] —have focused
on showing that the performance of these dynamics
is comparable to that of Nash equilibria. Thus, the
possibility that natural dynamic processes can lead to
outcomes that are much better than any equilibrium
of the game has gone unexplored.

In this paper we will show that ignoring this possi-
bility can lead to qualitatively incorrect conclusions
about the outcome of repeated selfish play in cer-
tain games. Specifically, we introduce a game whose
unique Nash equilibrium requires rather unnatural co-
ordination by the players, and thus equilibrium anal-
ysis may be of limited utility in understanding selfish
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play. In this setting, we show that various dynamic
processes—including best-response dynamics and a
natural on-line learning algorithm—predict a vastly
better outcome than the unique Nash. Our results
give the most dramatic evidence to date that the out-
comes of natural learning dynamics can be superior to
equilibrium outcomes, and they illustrate the poten-
tial of such approaches in providing us with insights
that would be unattainable by standard Nash equilib-
rium analysis.

1) Game definition and results summary

We will consider an uneven variant of matching pen-
nies played along the edges of a cycle on the play-
ers, which we call Asymmetric Cyclic Matching Pen-
nies. There are three players numbered 1, 2, 3, with
two strategies each, H and T . The utility of player
i depends only on his action and the action of player
i− 1, as shown in Figure 1 (here, and throughout the
paper, player numbers are considered to be cyclical,
so 0 ≡ 3). If player i’s strategy matches the strategy
of player i − 1, then i receives 0 payoff. If player i
plays strategy H whereas player i − 1 plays strategy
T , then i receives a payoff of 1. Lastly, if player i plays
strategy T whereas player i−1 plays strategy H, then
i receives a payoff of M ≥ 1. The unique Nash equi-
librium of this game (when played on any odd cycle)
is for all players to mix between H and T . The payoff
for this Nash equilibrium is M

M+1 < 1 for each player.

Figure 1: The payoff matrix for player i, i ∈ {1, 2, 3}.

In contrast, we will consider the outcome when all
three players employ a simple learning dynamics. The
learning dynamic we consider is the replicator dynam-
ics, the continuum limit of the multiplicative-weights
update process as the multiplicative factor approaches
1 and time is renormalized accordingly (see [16]). An-
alyzing the limit of the replicator dynamics for Asym-
metric Cyclic Matching Pennies is especially interest-
ing, as the flow lines of the differential equation do
not converge to a set of fixed points. In this con-
text, we show that the social welfare of the players
approaches M + 1 (the optimum of the game), which
is significantly higher than the total welfare of < 3
at the unique Nash equilibrium. This provides com-
pelling evidence of the limitations of worst-case and

equilibrium-based analysis, and shows the potential
of directly analysing the outcome of natural adaptive
play.

At a technical level, our analysis departs from prior
work on the analysis of learning in games by deriv-
ing strong conclusions about the set of limit points of
the learning process, without making use of a global
potential function as in [7, 10, 16]. Our game lacks
such a potential function, hence we must instead pur-
sue a much more delicate line of attack that requires
using different potential functions on different subsets
of the interior of the phase space along with special-
ized arguments to control the system behavior near
points where these potential functions become con-
stant, namely, the Nash equilibrium and the boundary
of the phase space.

2) Related work: best-response dynamics.

Best-response dynamics is perhaps the simplest dy-
namic strategic update process: one at a time, play-
ers myopically shift from their current strategy to
one that is a best response to the profile of oppo-
nents’ strategies at that time. Goemans, Mirrokni,
and Vetta, in the first computer science paper to di-
rectly analyze the outcome of natural dynamics in re-
peated games, introduced a randomized best-response
dynamic whose stationary distributions are termed
sink equilibria. The ratio of solution quality between
the social optimum and the worst-case sink equilib-
rium is the price of sinking, and it was shown in [11]
that this parameter can be vastly greater than the
price of anarchy (even in games whose price of an-
archy is 1) but that it is comparable to the price of
anarchy in certain classes of games, including atomic
weighted congestion games.

The question of whether sink equilibria can be dra-
matically better than all Nash equilibria was not con-
sidered in [11] or in subsequent papers on sink equi-
libria. Our work resolves this question in the affir-
mative using Asymmetric Cyclic Matching Pennies as
a simple example. Analyzing the price of sinking in
this game is trivial: it has a unique sink equilibrium
consisting of strategy profiles at which the social wel-
fare reaches its optimum value of M + 1, whereas the
unique Nash equilibrium has a social welfare less than
3. However, the example of best-response dynamics
in the Asymmetric Cyclic Matching Pennies prompts
an immediate follow-up question: “Is this good out-
come the result of the extreme myopia implied by best-
response dynamics, or do non-myopic dynamics also
lead to the same good outcome?” The bulk of our pa-
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per is devoted to resolving that question. In so doing,
we show that the good outcome predicted by best-
response dynamics is a robust prediction and not a
pathology of that model of selfish behavior.

3) Related work: dynamics of no-regret
learning.

In the context of worst-case outcomes, there has
been significant progress in incorporating models of
user behavior in evaluating the quality of outcomes
in games. Blum et al. [4] introduced the price of to-
tal anarchy, the ratio of optimal solution quality to
that achieved in the worst-case when all players use
no-regret learning processes (also known as Hannan-
consistent algorithms [12]). The regret of a player in
a game after n repeated plays is the average differ-
ence between the payoff of the player and the payoff
of the best single strategy in hindsight; game play
has the no-regret property if the player’s regret tends
to 0 as n tends to infinity.1 Modeling user behavior
via no-regret learning in a repeated interaction has
a long history in game theory, and has many advan-
tages. The no-regret property is analogous to the no-
tion of equilibrium (see, for example, the survey of
Blum and Mansour [5]). The no-regret property can
be achieved via simple and efficient strategies: ex-
amples include the weighted majority algorithm [1,
18], also known as Hedge [9], and regret matching
[10]. If all players use no-regret algorithms, this re-
sults in an empirical distribution of play that con-
verges to the coarse (weak) correlated equilibria, also
known as the Hannan set [12]. The solution quality
of worst-case outcomes in the Hannan set has been
studied by a number of authors. Blum, Even-Dar,
and Ligett [3] observed that in nonatomic congestion
games, no-regret learning converges to Nash equilib-
ria, and Blum et al. [4] and Roughgarden [20] have
shown that in broad classes of games, the outcomes
of any no-regret learning match the price of anarchy
bound. These results focus on evaluating the worst-
case no-regret dynamics, and hence can lead to overly
pessimistic predictions when the worst case occurs on
unnatural outcomes that are hard to coordinate on.
Balcan, Blum and Mansour [2] consider learning mod-
els in which players adaptively decide between greedy
behavior and following a proposed good but untrusted
strategy, and show that in two classes of games, such
a mixed strategy (when helped with good advice) can

1In other words, a player achieving the no-regret property
may switch his or her strategy in each round, but is required to
do at least as well as the best single strategy would have done
in hindsight.

efficiently reach low-cost solutions.

Our interest is in understanding the quality of out-
comes reached by players using natural learning algo-
rithms without any outside coordination. We focus
on the replicator dynamic as it is perhaps the sim-
plest and most-studied no-regret dynamic, and is the
continuum limit of one of the simplest no-regret al-
gorithms (see for example, [15] for a simple and di-
rect proof of the no-regret property of the replicator
dynamic). Dynamical systems such as the replicator
dynamic arise as the continuum limit of a discrete no-
regret procedure. Such dynamical systems have been
most closely studied in the context of evolutionary
game theory (see the book of Hofbauer and Sigmund
[14] for a summary). Restricting attention to a nat-
ural learning algorithm is consistent with our goal of
modeling natural player behavior, and it is also neces-
sary because within the class of all no-regret learning
algorithms, one can find contrived algorithms whose
distribution of play converges to an arbitrary (e.g.,
worst-case) correlated equilibrium of any game [19].

Piliouras, Kleinberg and Tardos [16] consider the
quality of solutions reached by the multiplicative
weight algorithm and its continuum limit, the repli-
cator dynamic, in repeated atomic congestion games.
They show that if players use this learning algorithm
to adjust their strategies, then in almost all such
games (when congestion costs are selected at random
independently on each edge), game play converges to
a pure Nash equilibrium. This demonstrates that such
dynamics can surpass the Price of Total Anarchy and
also the Price of Anarchy for mixed Nash equilib-
ria. The analysis of [16] used the fact that congestion
games have a natural potential function that serves
as a Lyapunov function of the dynamic system, and
hence the dynamics converge to stable fixed points
(which are a subset of Nash equilibria). However, this
type of analysis is rather limited, as in many games,
natural learning algorithms do not converge to a stable
point. Daskalakis et al. [7] show that in some settings,
the cumulative distributions of players produced by
multiplicative weights algorithms with different learn-
ing rates actually drift away from the equilibrium. To
analyze the quality of such outcomes, it is not useful
to analyze stable points; one needs to work directly
with the limit set of the process.

Gaunersdorfer and Hofbauer [10] analyze the limit
behavior of the replicator dynamics for a few sim-
ple games, including an even matching pennies game
played on a 3-cycle (the variant of our game with
M = 1), and show convergence to the 6-cycle of best
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responses. The uneven version of this game that we
consider here allows for a more interesting distinction
between the welfare of the unique Nash equilibrium
and the limit behavior of the replicator dynamic, but
is much harder to analyze. For example, it is not
hard to see that the replicator dynamic is monotone
increasing in the social welfare for the Cyclic Match-
ing Pennies game studied in [10], while this is not
true in our game. The convergence proof of [10] is
based on a potential function showing that the repli-
cator dynamic converges to the boundary of the fea-
sible region, while our analysis for Asymmetric Cyclic
Matching Pennies is not based on a single potential
function.

2 Preliminaries

In Asymmetric Cyclic Matching Pennies, in order
to express a player i’s mixed strategy, it suffices to
express the probability with which player i chooses
strategy H; we denote that probability as xi. Conse-
quently, a mixed strategy profile is represented by the
vector ~x = (x1, x2, x3), or equivalently, as a point in
the unit cube. We will write ui(~x) for the utility of
player i when all players play according to ~x. Also,
let ui(H,~x−i) (or ui(T, ~x−i), respectively) denote the
expected utility of player i when he deviates from xi

to pure strategy H (T , respectively), but the other
two players play mixed strategies according to ~x.

We are interested in outcomes of repeated play of
this game. In particular, we will consider the out-
come when all three players employ a simple learning
dynamics, the replicator dynamics. The replicator dy-
namics is defined as

ẋi = xi(ui(H,~x−i)− ui(~x)).

Lemma 2.1. The replicator dynamics in Asymmetric
Cyclic Matching Pennies corresponds to the following
system of differential equations:

ẋ1 = x1(1− x1)
(
1− (M + 1)x3

)
(1)

ẋ2 = x2(1− x2)
(
1− (M + 1)x1

)
(2)

ẋ3 = x3(1− x3)
(
1− (M + 1)x2

)
(3)

Proof. We will prove the statement for player 1; the
other proofs proceed analogously.

The replicator equation for player 1 corresponds to
ẋ1 = x1(u1(H,~x−1) − û1(~x)). Since u1(H,~x−1) =

1 − x3 and u1(~x) = x1(1 − x3) + M(1 − x1)x3, this
gives us

ẋ1 = x1(u1(H,~x−1)− û1(~x))

= x1

(
1− x3 − x1(1− x3)−M(1− x1)x3

)

= x1

(
1− x3)(1− x1)−M(1− x1)x3

)

= x1(1− x1)
(
1− (M + 1)x3

)
.

¤

We will write xi(t) for the strategy of player i at
time t. We are interested in the social welfare, defined
as the sum of utilities for all players, as one measure
of the quality of a mixed strategy profile.

Observation 2.2. In Asymmetric Cyclic Matching
Pennies, the social welfare for a mixed strategy profile
(~x) is equal to

SW (~x) = x1(1− x3) + M(1− x1)x3+

+ x2(1− x1) + M(1− x2)x1+

+ x3(1− x2) + M(1− x3)x2

= (M + 1)
(
x1 + x2 + x3 − x1x2−

− x1x3 − x2x3

)

= (M + 1)
(
1− x1x2x3−

− (1− x1)(1− x2)(1− x3)
)
.

The standard benchmark in equilibrium analysis is
the social welfare of Nash equilibria. Here, we see
that the unique Nash equilibrium has social welfare
substantially lower than the optimum social welfare.

Lemma 2.3. The unique Nash equilibrium of
the Asymmetric Cyclic Matching Pennies game is
( 1

M+1 , 1
M+1 , 1

M+1 ) and has social welfare SW =
3 M

M+1 . The optimum social welfare is M + 1, approx-
imately M/3 times larger, and can be achieved via a
correlated equilibrium.

Proof. Note that if any player plays a pure strategy,
the unique best response of the next player is to play
the opposite pure strategy. Since the cycle is of odd
length and hence has no pure Nash equilibria, this
implies that in any equilibrium each player i must play
the mixed strategy that makes the next player i + 1
indifferent between his two strategies: play H with
probability 1

M+1 and T with the remaining probability
M

M+1 . The utility of player i + 1 is then M
M+1 for any

strategy, and hence the social welfare of the unique
mixed Nash equilibrium is 3 M

M+1 , as claimed.

The social welfare of any play is at most M + 1,
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which we get by two players matching and the third
one using the opposite strategy. There are a number of
correlated equilibria with this high social welfare. For
example, two players playing T and the third one H
(where the H player is selected uniformly at random)
is a correlated equilibrium. ¤

3 Analysis

The analysis proceeds in two steps. First, in Sub-
section 3.1, we show that the trajectory of the replica-
tor dynamic converges to the faces of the cube, unless
started on the diagonal x1(0) = x2(0) = x3(0). Then,
in Subsection 3.2, we show that in fact the dynamics
converges to the 6-cycle of best responses, connecting
the points (0, 1, 0), (1, 1, 0), (1, 0, 0), (1, 0, 1), (0, 0, 1),
(0, 1, 1), which are the 6 pure strategies with the max-
imum social welfare of M + 1.

First note that this will establish our claim for the
high social welfare of the outcome of the replicator dy-
namic. More formally, let xi(t) denote the value of xi

at time t, and SW (t) denote the social welfare at time
t. We will show in Theorem 3.10 that maxi xi(t) → 1
and mini xi(t) → 0 as t →∞.

Lemma 3.1. If maxi xi(t) → 1 and mini xi(t) → 0
as t → ∞ then we also have that the social welfare
SW (t) → M + 1 as t →∞.

Proof. First observe that when mini xi(t) = 0 and
maxi xi(t) = 1 then any choice of the third player
results in payoffs M, 1, 0 to the three players in some
order, which is the maximum social welfare of M + 1.
Now the lemma follows as social welfare is a continu-
ous function of the vector x. ¤

To prove that the trajectory converges to the
boundary of the cube, we use a type of potential func-
tion argument in Subsection 3.1, but need to use dif-
ferent arguments in different parts of the cube (the
outcome space). In Theorem 3.2 we show that when
the social welfare is lower than the unique Nash equi-
librium, i.e., SW (~x) ≤ 3M

(M+1) , then social welfare
is increasing. However, social welfare is not mono-
tone increasing throughout the whole trajectory, so
we need to switch to a different potential function.
Theorem 3.4 shows that when social welfare is above
the Nash welfare (i.e., SW (~x) > 3M

M+1 ), then the value∏
i xM

i (1− xi) is decreasing. This latter function is 0
at all faces of the cube (and non-negative inside the
cube). We use this two-step analysis to show that the
trajectory converges to the boundary of the cube.

Next, in Subsection 3.2, we show that maxi xi(t) →
1 and mini xi(t) → 0 as t →∞, establishing the claim
that the trajectory converges to the 6-cycle. To do
this we consider the signs of the values xi(t) − 1

M+1 ,
that is, we consider which values are below or above
the unique Nash equilibrium value. We define σ as
follows: When σi−1(t) is 0, player i is indifferent be-
tween his two strategies; when σi−1(t) = 1, player i
prefers his strategy T (and hence the replicator dy-
namic decreases xi); when σi−1(t) = −1, player i
prefers his strategy H (and hence the replicator dy-
namic increases xi). So the sign vector at time t, which
we call σ(t), indicates the direction of change, i.e, the
sign of ẋi(t). To show the claimed convergence, we
first we argue in Lemma A.8 that there exists a time
t ≥ 0 such that σ(t) contains at least one occurrence
of +1 and at least one occurrence of -1. Then we
consider the sequence of times tn when one of the co-
ordinates of σ(t) is 0, and show that the minimum
mini xi(tn) is monotone decreasing and converges to
0 as n →∞. Finally, in Theorem 3.10 we extend the
analysis to the times between tn values and also show
also that the maximum maxj{xj(t)} → 1 as t →∞.

3.1 Convergence to the boundary

As we have seen, we can denote any mixed strategy
profile as a point in a unit cube (x1, x2, x3). We will
prove that as long as the initial point ~x is not on the
main diagonal (x1 = x2 = x3), then repeated applica-
tion of the replicator dynamics in Asymmetric Cyclic
Matching Pennies will converge to the boundary of the
unit cube.

We wish to show that given any fully mixed starting
point of the replicator dynamics off the diagonal, for
any M ≥ 7, there is a time T such that for all t >
T , SW (~x) > 3M

(M+1) . We split the analysis in two
steps. First, we show that if the initial point is off the
diagonal then the dynamics will escape the region with
SW (~x) ≤ 3M

(M+1) and will never return to it. In the
second step, we show that any trajectory that stays in
the region with SW (~x) > 3M

(M+1) will converge to the
boundary.

Region with social welfare less than or equal to
Nash

We start by showing that if SW (~x) ≤ 3M
(M+1) and

~x is not the Nash equilibrium, then the social welfare
increases. The proof of this theorem and the accom-
panying lemmas are deferred to the appendix, for lack
of space.
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Theorem 3.2. For any fully mixed strategy profile ~x

such that SW (~x) ≤ 3M
(M+1) , we have that dSW (~x)

dt ≥ 0.

In fact, dSW (~x)
dt = 0 if and only if ~x is the Nash

equilibrium ( 1
M+1 , 1

M+1 , 1
M+1 ).

We then complete the argument that there is a time
T , such that for all t > T , SW (~x) > 3M

(M+1) .

Theorem 3.3. For any starting point of the replicator
dynamics off the diagonal, for any M > 5, there is a
time T , such that for all t > T , SW (~x) > 3M

(M+1)

Proof. Theorem 3.2 states that the social welfare is
strictly increasing as long as the social welfare is less
than or equal to 3M

(M+1) (unless we are at the NE). We
will examine the following cases:

A) The social welfare to converges to 3M
(M+1) : This

implies that the replicator dynamics converges to the
Nash equilibrium, since by Theorem 3.2 all other pos-
sible asymptotes have SW > 3M

(M+1) . It is easy to
check that the main diagonal x = y = z is a invariant
for the replicator dynamics. So, starting from a point
off the diagonal the only way to converge to Nash is
via a sequence of points all of which lie off the diag-
onal. However, this is impossible since the NE is a
saddle point whose single attracting direction is the
diagonal (1,1,1).

B) The social welfare does not converge to 3M
(M+1) :

In conjunction with Theorem 3.2 this implies that in
finite time T , we reach a point (other than Nash)
with social welfare equal to 3M

(M+1) . At this point the
derivative of the social welfare is strictly positive, so
there exists a δ > 0 such that for all t ∈ (T, T + δ),
SW > 3M

(M+1) . Now, let’s assume that there exists
t′ ≥ T + δ such that SW ≤ 3M

(M+1) . Since, by Theo-
rem 3.2 the replicator dynamics is now ”trapped” in
the region with SW ≥ 3M

(M+1) , any such point has to
be a local minimum of the social welfare. The only
such candidate is the Nash equilibrium, but this vio-
lates our assumption. ¤

Region with social welfare greater than Nash

In the region of the strategy space where SW (~x) >
3M

M+1 , we will prove that
∏

i xM
i (1−xi) is a Lyapunov

function of the dynamics. Furthermore, we will show
that it actually converges to 0. This, in conjunction
to Theorem 3.3, implies that starting from any fully
mixed strategy profile off the main diagonal, the repli-
cator dynamics will converge to the boundary on the

unit cube. For lack of space, the proof is deferred to
the appendix.

Theorem 3.4. If SW (~x) > 3M
M+1 and ~x is not on

a face of the unit cube, then
∏

i xM
i (1 − xi) is de-

creasing, that is,
(∏

i xM
i (1− xi)

)′
< 0. Furthermore,(∏

i xM
i (1− xi)

)
converges to 0.

Corollary 3.5. For any starting point of the repli-
cator dynamics off the diagonal, for any M > 5, the
dynamics converge to the boundary of the unit cube.

3.2 Convergence to the 6-cycle

The analysis in this section also consists of a two-
step argument. Having already proved convergence
of the dynamics to the boundary, next we will estab-
lish that the trajectories of the dynamic indeed cy-
cle indefinitely around (a restricted neighborhood of)
the boundary. In the second step, we will utilize new
potential functions to establish convergence to the 6-
cycle of best responses, connecting the points (0, 1, 0),
(1, 1, 0), (1, 0, 0), (1, 0, 1), (0, 0, 1), (0, 1, 1), which are
the 6 pure strategies with the maximum social welfare
of M + 1.

Cycling behavior

Let us consider a partition of the cube into regions
based on the sign pattern of the derivatives ẋi(t): one
region of the cube consisting of strategies from which
all three players decrease their values, another region
where player 1 increases his value but the other players
decrease theirs, and so on. To do so, we define at each
time t a sign vector σ(t) ∈ {−1, 0,+1}Z by specifying
that

σi(t) = sgn
(
xi(t)− 1

M+1

)
= − sgn (ẋi+1(t)) . (4)

Each region of interest is then identified with its sign
vector σ(t); notice that this partition into regions oc-
curs along axis-parallel planes at the Nash equilibrium
value ( 1

M+1 ). Our goal now is to examine the succes-
sive hitting points of the trajectory of the replicator
dynamics with these planes. Specifically, we will ar-
gue that after some time t0, these hitting points define
a discrete set that partitions the trajectory into inter-
vals of finite length. Obviously any such hitting point
will have at least one coordinate xi(t) = 1

M+1 . Fur-
ther, the signs of the values xi(t)− 1

M+1 will be central
to our proof, since they will help us characterize the
nature of the cycling behavior and therefore apply the
final potential argument in the second step.
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We say that σ(t) is mixed if it contains at least one
occurrence of +1 and at least one occurrence of -1.
We say that a zero-crossing occurs at time t if σ(t)
contains at least one occurrence of 0 and at least one
occurrence of a nonzero sign (i.e., if it is a hitting point
other than the fully mixed Nash).

Keeping in mind our goal of proving convergence
to the 6-cycle, notice that each zero-crossing on the 6-
cycle has exactly one coordinate equal to 1

M+1 and the
other two equal to 0 and 1 respectively. These points
are mixed zero-crossings. So, intuitively, a minimal
condition that our proof must imply is that any tra-
jectory of the replicator dynamics is partitioned into
intervals of finite length by a countable set of points
which are mixed zero-crossings. We in fact prove this
statement and use it as a stepping stone for our po-
tential function arguments.

The formal analysis consists of a long sequence of
technical lemmas characterizing the evolution of σ(t)
as a function of t, and can be found in the appendix.
Here, we encapsulate the main essence of these lemmas
in two arguments and provide the intuition behind the
proofs.

Lemma 3.6. Unless x1(0) = x2(0) = x3(0), there ex-
ists a finite time t ≥ 0 such that a mixed zero-crossing
occurs at time t0.

Sketch. Subsection 3.1 implies that the trajectory will
reach a zero-crossing (but not necessarily a mixed one)
in finite time. Starting from such a point, we will
argue that the replicator dynamics will indeed reach
a mixed zero-crossing in finite time. Suppose that we
reach a zero-crossing, that is, a point where some but
not all players play their Nash strategy. There must
be some player i playing a Nash strategy such that
player i − 1 is not playing a Nash strategy. If we
take an infinitesimal step forward, then player i− 1 is
essentially pushing player i to move to a strategy even
further away from his own. So, we will reach a mixed
σ(t).

If σ(t) is a zero-crossing, the proof is complete. If
not, we show that there exists t0 > t such that we
reach a mixed zero-crossing at time t0. This time t0
is merely

t0 = sup{t′′ > t |σ(u) is constant on [t, t′′)},
and by continuity it can be shown to correspond to a
mixed zero-crossing. The trickier part is to establish
that we reach it in finite time. This is shown by bound-
ing the derivative of a specific measure of the distance

from the set of zero-crossings, away from zero. Thus,
we reach a mixed zero-crossing in finite time. ¤

Lemma 3.6 is proven formally in the appendix as a
combination of Lemmas A.6, A.7, A.8, and A.9.

We are a little less than halfway there. We have
proven that we will reach one mixed zero-crossing,
but now we need to argue that the trajectory vis-
its infinitely many isolated mixed zero-crossings. The
following lemma and corollary help us establish that
by characterizing the set T of all t > t0 such that a
(mixed) zero-crossing occurs at time t. The full proof
appears in the appendix.

Lemma 3.7. If σ(t0) is mixed, then σ(t) is mixed for
all t > t0. Furthermore, the set T is unbounded and
has no accumulation point.

Sketch. First, we argue by contradiction that the set
T has no accumulation points. Indeed, if the set T
has an accumulation point t∗ then applying the Mean
Value Theorem and continuity, we can show this im-
plies that this point is the Nash equilibrium. But an
application of the uniqueness theorem for first order
ODE’s implies that in order to reach the Nash in fi-
nite time, we need to start from the Nash equilibrium,
implying a contradiction.

Next, we argue that σ(t) is mixed for all t > t0.
We suppose by way of contradiction that there exists
a finite t′ such that

t′ = inf{t > t0 |σ(u) is not mixed}.
We then perform a case analysis on σ(t′), to see it
cannot exist.

Finally, it is straightforward to show that T is un-
bounded: for any t > t0, the set T contains a point
t′ ≥ t because either t itself is in T , or else, as we
have argued in Lemma 3.6, t implies the existence of
a t′ > t belonging to T . ¤

Via standard analytic arguments, we can then derive
the following corollary (proof in the appendix):

Corollary 3.8. There is an order-preserving one-to-
one correspondence between the positive integers and
the set T of zero-crossings occurring after t0.

Let us number the elements of T as t1, t2, t3, . . . us-
ing the one-to-one correspondence defined in Corollary
3.8, and let σn denote σ(tn) for all n > 0. Rep-
resenting a sign vector σ by its three components
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(σ1, σ2, σ3), we see that each of the sign vectors σn

is mixed, and is therefore represented by one of the
ordered triples

(0,−1,+1), (−1, 0,+1), (−1,+1, 0),

(0,+1,−1), (+1, 0,−1), (+1,−1, 0).
(5)

In fact, inspection of the proofs of Lemmas ?? and ??
reveals that the sequence (σn) cycles through these
six sign patterns in the order specified above. We may
assume without loss of generality (by replacing t0 with
a later time if necessary) that σ1 has the sign pattern
represented by (0,−1,+1). In light of Theorem 3.2
we may also assume without loss of generality that
SW (t) > 3M

M+1 and
∏

i xM
i (1 − xi) is decreasing for

all t > t0. We are now in a position to argue about
convergence of the dynamics to the 6-cycle.

Potential arguments for convergence to the 6-
cycle

We define for each i ∈ Z the function

yi(t) = ln
(

xi(t)
1− xi(t)

)
= ln(xi(t))−ln(1−xi(t)). (6)

From the equation ẋi = xi(1 − xi)(1 − (M + 1)xi−1)
we easily obtain

ẏi =
ẋi

xi
+

ẋi

1− xi
=

ẋi

xi(1− xi)
= 1− (M + 1)xi−1.

(7)

We first prove monotonic behavior of a simple
function of the player strategies (namely, wn =
min{x1(tn), x2(tn), x3(tn)}), which we then use as a
key step to showing convergence to the six-cycle. The
proof of this lemma is deferred to the appendix for
lack of space. The key insight is to break down the
analysis of the cyclic behavior into odd (1,3,5,7,. . . )
and even (2,4,6,8,. . . ) steps. The even steps are easy
because wn is decreasing continually throughout those
time intervals. In the odd steps, however, wn increases
initially but then a different player’s variable becomes
the minimum and wn decreases again; despite this,
we need to show that at the time of the next zero-
crossing, the new wn is smaller than the old one. This
is done using a carefully constructed linear combina-
tion of yi’s that serves as a Lyapunov function during
the odd-numbered interval.

Lemma 3.9. Assuming M ≥ 7, the sequence wn =
min{x1(tn), x2(tn), x3(tn)} is monotonically decreas-
ing in n, and it converges to zero as n →∞.

Finally, we arrive at our main theorem, which,
in conjunction with Lemma 3.1, demonstrates that
SW (t) → M + 1.

Theorem 3.10. Unless x1(0) = x2(0) = x3(0), for
Asymmetric Cyclic Matching Pennieswith M ≥ 7,
the vector ~x(t) converges to the 6-cycle spanned by
the off-diagonal vertices of the cube. In other words,
minj{xj(t)} → 0 and maxj{xj(t)} → 1 as t →∞.

Sketch. Lemma 3.9 establishes that wn =
minj{xj(tn)} converges to zero as n →∞. As a part
of that proof, we also show that minj{xj(t)} decreases
monotonically from time tn to tn+1 when n is even.
So, to prove that minj{xj(t)} → 0 we only need to
show that minj{xj(t)} does not grow too large in the
middle of an interval (tn, tn+1), when n is odd. Note
that for n odd, the functions xn(t), xn+1(t), xn+2(t)
have the following behavior on the interval (tn, tn+1):
xn starts at 1

M+1
and decreases, xn+1 starts below

1
M+1

and increases to 1
M+1

, xn+2 starts above 1
M+1

and increases. Thus, the quantity minj{xj(t)} is max-
imized on the interval tn ≤ t ≤ tn+1 at the unique time
rn in that interval satisfying xn(rn) = xn+1(rn). Our
objective is thus to show that xn(rn) → 0 as n →∞,
which again requires a detailed case analysis.

The proof that maxj{xj(t)} → 1 is similar in spirit
to the one demonstrating minj{xj(t)} → 0. Once
again, we break down the steps into odd and even
cases and we show that linear combinations of the yi(t)
can be employed as Lyapunov functions. ¤

Corollary 3.11. In Asymmetric Cyclic Matching
Pennieswith M ≥ 7, so long as the initial player
strategies are off-diagonal, the replicator dynamics
achieves SW (t) → M + 1 as t →∞.

4 Conclusions

Despite our community’s many successes in analyz-
ing equilibria and their properties, it is important to
be aware of the limitations of equilibria, particularly
the limitations of their predictive power. In this pa-
per, we have shown that in some games, natural dy-
namic processes can lead to outcomes that are much
better than any equilibrium. These results underscore
significant drawbacks of equilibrium-based analysis as
a tool for understanding the outcomes of selfish be-
havior in games—limiting ourselves to equilibria as a
reference point could lead us to qualitatively incorrect
conclusions about system behavior.

The time has come to shift our field’s perspective on
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games from one that attempts to cast dynamic behav-
ior in terms of static limit points to one with more so-
phisticated, nuanced views and techniques. Our work,
both at a conceptual and at a technical level, high-
lights the importance of this shift.
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A Omitted proofs
A.1 Convergence to the boundary

We begin with the following helpful lemmas:

Lemma A.1. For any probabilities x1, x2, x3 we have
that x1x2 +x1x3 +x2x3 ≤ (x1+x2+x3)

2

3 , where equality
holds if and only if x1 = x2 = x3.

Proof. Note that (x1−x2)2+(x1−x3)2+(x2−x3)3 ≥ 0,
with equality if and only if x1 = x2 = x3. Multiplying
out, dividing by two, and rearranging, this gives us

x1x2 + x1x3 + x2x3 ≤ x2
1 + x2

2 + x2
3

= (x1 + x2 + x3)2 − 2x1x2 − 2x1x3 − 2x2x3.

Combining terms and dividing through by three
gives the desired result. ¤

Lemma A.2. If x1 + x2 + x3− x1x2− x1x3− x2x3 ≤
3M

(M+1)2 , then either x1 + x2 + x3 ≤ 3
M+1 or x1 + x2 +

x3 ≥ 3M
M+1 .

Proof. Given the assumption and an application of
Lemma A.1, we get

3M

(M + 1)2
≥ x1 + x2 + x3 − x1x2 − x1x3 − x2x3

≥ x1 + x2 + x3 − (x1 + x2 + x3)2

3
.

Denoting x1 + x2 + x3 by a, this may be rewritten as
a − a2

3 ≤ 3M
(M+1)2 . Solving this equation, we see that

either a ≤ 3
M+1 or a ≥ 3M

M+1 , as desired. ¤

Lemma A.3. If x1 + x2 + x3 ≤ 3
M+1 , then x1 +

x2 + x3 ≥ (M + 1)(x1x2 + x1x3 + x2x3), where the
equality holds if and only if x1 = x2 = x3 = 1

M+1 or
x1 = x2 = x3 = 0.

Proof. By application of Lemma A.1 and the assump-
tion, we get

3(x1x2 + x1x3 + x2x3) ≤ (x1 + x2 + x3)2

≤ 3
M+1 (x1 + x2 + x3).

For the first inequality to holds as equality, it must
be the case the x1 = x2 = x3 (Lemma A.1). For
the second, it must be the case that either x1 + x2 +
x3 = 0 or x1 + x2 + x3 = 3

M+1 . Combining these
two requirements, implies that either x1 = x2 = x3 =

1
M+1 or x1 = x2 = x3 = 0, as desired. ¤

Theorem A.4. (Theorem 3.2) For any fully mixed
strategy profile ~x such that SW (~x) ≤ 3M

(M+1) , we have

that dSW (~x)
dt ≥ 0. In fact, dSW (~x)

dt = 0 if and only if ~x
is the Nash equilibrium ( 1

M+1 , 1
M+1 , 1

M+1 ).

Proof. By Lemma A.2 and the hypothesis that
SW (~x) ≤ 3M

(M+1) , we have that either x1 + x2 + x3 ≤
3

M+1 or x1 + x2 + x3 ≥ 3M
M+1 .

We begin with the case when x1 + x2 + x3 ≥ 3M
M+1 .

For M > 5, we have that x1 + x2 + x3 > 5/2, which
implies that x1, x2, x3 > 1/2. We have that

SW (~x)
=

(M + 1) (x1(1− x3) + x2(1− x1) + x3(1− x2))

Hence, we can derive that

dSW (~x)
dt
= (M + 1)[ẋ1(1− x3)− ẋ3x1 + ẋ2(1− x1)−

− ẋ1x2 + ẋ3(1− x2)− ẋ2x3]
= (M + 1)(ẋ1(1− x2 − x3) + ẋ2(1− x1 − x3)+

+ ẋ3(1− x1 − x2))

= (M + 1)
[
x1(1− x1) (1− (M + 1)x3) (1− x2 − x3)

+ x2(1− x2) (1− (M + 1)x1) (1− x1 − x3)

+ x3(1− x3) (1− (M + 1)x2) (1− x1 − x2)
]
.

The last summation is strictly greater than zero,
since if 1/2 < x1, x2, x3 < 1 and M > 5, it is straight-
forward to show that all summands are strictly posi-
tive.

Next we will consider the second case, where
x1 + x2 + x3 ≤ 3

M+1 . Here, we will con-
sider the equivalent definition of social welfare de-
rived in Observation 2.2, that SW (~x) = (M +
1) (1− x1x2x3 − (1− x1)(1− x2)(1− x3)). Specifi-
cally, it suffices to show that under the theorem hy-
pothesis, the function x1x2x3+(1−x1)(1−x2)(1−x3)
decreases. We have that

(
x1x2x3 + (1− x1)(1− x2)(1− x3)

)′

= x1x2x3·(
(1− x1)(1− (M + 1)x3)+

+(1− x2)(1− (M + 1)x1)+

+(1− x3)(1− (M + 1)x2)
)

+(1− x1)(1− x2)(1− x3)·(
− x1(1− (M + 1)x3)−
−x2(1− (M + 1)x1)−
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−x3(1− (M + 1)x2)
)

= x1x2x3·(
3− (M + 2)(x1 + x2 + x3)+

+(M + 1)(x1x2 + x1x3 + x2x3)
)

+(1− x1)(1− x2)(1− x3)·(
− (x1 + x2 + x3)+

+(M + 1)(x1x2 + x1x3 + x2x3)
)

≤ x1x2x3

(
3− (M + 1)(x1 + x2 + x3)

)

+(1− x1)(1− x2)(1− x3)·(
− (x1 + x2 + x3)+

+(M + 1)(x1x2 + x1x3 + x2x3)
)

by Lemma A.3. Distributing terms, we see this is
equal to

3x1x2x3

x1 + x2 + x3
·

(
(x1 + x2 + x3)− M + 1

3
(x1 + x2 + x3)2

)

− (1− x1)(1− x2)(1− x3)·(
(x1 + x2 + x3)− (M + 1)(x1x2 + x1x3 + x2x3)

)

The last line by Lemma A.1 is at most
(

3x1x2x3

x1 + x2 + x3
− (1− x1)(1− x2)(1− x3)

)
·

((x1 + x2 + x3)− (M + 1)(x1x2 + x1x3 + x2x3)) .

In Lemma A.3 we argued that (x1 + x2 + x3)− (M +
1)(x1x2 + x1x3 + x2x3) ≥ 0. Here, we will show that
for M > 5, 3x1x2x3

x1+x2+x3
< (1 − x1)(1 − x2)(1 − x3).

By hypothesis, we have that x1 + x2 + x3 ≤ 3
M+1 .

Without loss of generality let us assume that x1 ≥
x2 ≥ x3. This implies that x1 ≤ 3

M+1 , x2 ≤ 3
2(M+1)

and x3 ≤ 1
M+1 . As a result,

3x1x2x3

x1 + x2 + x3
≤ 3x2x3

≤ 9
2(M + 1)2

<
(M − 2)3

(M + 1)
· 1
(M + 1)2

,

by our assumption that M > 5. Finally, since (1 −
x1) ≥ M−2

M+1 , (1 − x2) ≥ 2M−1
2(M+1) ,, and x3 ≥ M

M+1 , we
know that

(1−x1)(1−x2)(1−x3) ≥ M − 2
M + 1

· 2M − 1
2(M + 1)

· M

M + 1
,

and each of these terms is at least M−2
M+1 .

In order to have
(
x1x2x3+(1−x1)(1−x2)(1−x3)

)′ =
0, it must be the case that the inequalities in Lemmas
A.1 and A.3 holds as equalities, but this happens only
if ~x is the Nash equilibrium ( 1

M+1 , 1
M+1 , 1

M+1 ). ¤

Theorem A.5 (Theorem 3.4). If SW (~x) > 3M
M+1 and

~x is not on a face of the unit cube, then
∏

i xM
i (1−xi)

is decreasing, that is,
(∏

i xM
i (1− xi)

)′
< 0. Further-

more,
(∏

i xM
i (1− xi)

)
converges to 0.

Proof. Consider d
dt

(∏
i xM

i (1− xi)
)
.

 Y

i

xM
i (1− xi)

!′

=
X

i

“
xM

i (1− xi)
”′Y

j 6=i

xM
j (1− xj)

=
X

i

“
ẋi(MxM−1

i (1− xi)− xM
i )
”Y

j 6=i

xM
j (1− xj)

=
X

i

“
ẋix

M−1
i (M − (M + 1)xi)

”Y

j 6=i

xM
j (1− xj)

=
X

i

“
xi(1− xi)(1− (M + 1)xi−1)xM−1

i (M − (M + 1)xi)
”

·
Y

j 6=i

xM
j (1− xj),

where the last line is by the definition of ẋi. Then,
rearranging, we get Y

i

xM
i (1− xi)

!′
=

=
X

i

`
xM

i (1− xi)(1− (M + 1)xi−1)·

(M − (M + 1)xi)
´Y

j 6=i

xM
j (1− xj)

=

 X

i

(1− (M + 1)xi−1)(M − (M + 1)xi))

!
·

 Y

i

xM
i (1− xi)

!

= (M + 1)2

 Y

i

xM
i (1− xi)

!
·

 X

i

„
1

M + 1
− xi−1

«„
M

M + 1
− xi

«!

= (M + 1)

 Y

i

xM
i (1− xi)

!„
3M

(M + 1)
− SW (~x)

«
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where the last equality follows from the formulation
of social welfare we derived in Observation 2.2. By
assumption, (M + 1) is strictly positive and the final
term is strictly negative; the middle term is strictly
positive so long as no component of ~x is 0 or 1.

Since Πix
M
i (1 − xi) ≥ 0, the process will con-

verge to an asymptote with the property that(∏
i xM

i (1− xi)
)′ = 0. However, this implies that ei-

ther SW = 3M
M+1 or that Πix

M
i (1− xi) = 0. The first

one is impossible by our assumption about social wel-
fare, whereas the second one implies that the process
converges to the boundary. ¤

A.2 Convergence to the 6-cycle

In this section, for notational convenience, we ex-
tend the sequence of functions x1(t), x2(t), x3(t)
to a doubly infinite sequence of functions
. . . , x−1(t), x0(t), x1(t), . . . with period 3; in other
words, xi+3(t) = xi(t) for all i, t.

The first lemma proves that if the dynamics reaches
the unique Nash equilibrium, it will never leave it.

Lemma A.6. If there exists a time t0 such that σ(t0)
is the zero vector, then for all t, σ(t) is the zero vector.

Proof. The hypothesis of the lemma is equivalent to
the assertion that x1(t0) = x2(t0) = x3(t0) = 1

M+1
.

The uniqueness theorem for first-order ODE’s implies
that the differential equation (1)-(3) has a unique so-
lution satisfying x1(t0) = x2(t0) = x3(t0) = 1

M+1
,

namely the constant solution in which xj(t) = 1
M+1

for all j, t. This implies σ(t) is the zero vector for
all t. ¤

The second lemma gives us a handle on situations
where some, but not all, of the players play their equi-
librium strategies, and the situations where this can
happen.

Lemma A.7. If a zero-crossing occurs at time t, then
there exists an open interval I = (t−δ, t+δ) containing
t such that t is the only zero-crossing in I, and σ(u)
is mixed for every u ∈ (t, t + δ).

Proof. Let j be an index such that σj(t) = 0 and
σj−1(t) 6= 0. By the continuity of xj−1 it follows
that there is an open interval I = (t − δ, t + δ) con-
taining t such that xj−1(u) − 1

M+1
has constant sign

throughout I; if σj+1(t) 6= 0 then we may likewise
assume xj+1(u) − 1

M+1
has constant sign through-

out I. To prove that t is the only zero-crossing in
I, — i.e. that σj(u), σj+1(u) are nonzero on I \ {t}
— we argue by contradiction. If there were to exist
u ∈ I \ {t} such that σj(u) = σj(t) = 0, it would
imply that xj(u) = xj(t). By the Mean Value The-
orem, that would imply ẋj(t′) = 0 for some t′ lying
strictly between t and u. This is impossible, since
sgn(ẋj(t′)) = −σj−1(t′), which is nonzero by con-
struction. As for the possibility that σj+1(u) = 0
for u ∈ I \ {t}, this can be excluded by a two-case
argument. If σj+1(t) 6= 0 then by construction we
have chosen I such that σj+1(u) = σj+1(t) for all
u ∈ I. If σj+1(t) = 0 = σj+1(u), then another applica-
tion of the Mean Value Theorem implies the existence
of a time t′ lying strictly between t and u such that
σj(t′) = 0, contradicting the fact that σj is nonzero
on I \ {t}.

Finally, the fact that xj(t)− 1
M+1

= 0 and sgn(ẋj) =
−σj−1(t) implies that sgn

(
xj(u)− 1

M+1

)
= −σj−1(t)

for all u ∈ (t, t + δ). As σj−1(u) = σj−1(t) for all such
u, we may conclude that σ(u) is mixed for all such u,
as claimed. ¤

The third lemma asserts that as long as the initial
point is off the diagonal, the dynamics will at some
point reach a point where some player biases more
towards H and another more towards T than at the
unique equilibrium.

Lemma A.8. Unless x1(0) = x2(0) = x3(0), there
exists a time t ≥ 0 such that σ(t) is mixed.

Proof. If σ(0) is mixed, there is nothing to prove. If
there is a zero-crossing at any time t ≥ 0 then Lemma
A.7 implies that σ(u) is mixed for all u such that u−t
is a sufficiently small positive number. If there exists
t ≥ 0 such that σ(t) is the zero vector, then Lemma
A.6 implies that σ(0) = ~0, violating the hypothesis of
the lemma.

It remains for us to exclude the cases that σj(t) =
−1 for all j, t ≥ 0 or that σj(t) = +1 for all j, t ≥ 0.
Let a = minj{xj(0)} and b = maxj{xj(0)}. When
σj(t) = −1 for all j, t ≥ 0, it means that xj(t) is less
than 1

M+1
and increasing — hence remains in the inter-

val
[
a, 1

M+1

]
— for all j. Similarly, when σj(t) = +1

for all j, it means that xj(t) is greater than 1
M+1

and
decreasing — hence remains in the interval

[
1

M+1
, b

]
for all j. In both cases, this contradicts the fact that
~x(t) converges to the boundary of the cube when ~x(0)
lies off the diagonal. ¤

We then see that such a situation will cause one of
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the players to pass through a point where he employs
the equilibrium strategy.

Lemma A.9. If σ(t) is mixed and there is no zero-
crossing at t, then there is a zero-crossing at some
time t′ > t such that σ(t′) is mixed and the function
σ(u) is constant on the half-open interval [t, t′).

Proof. Since there is no zero-crossing at t, the conti-
nuity of the functions xi implies that there is an open
interval containing t on which the function σ(u) is
constant. Hence, if we define t′ by

t′ = sup{t′′ > t |σ(u) is constant on [t, t′′)},

then t′ > t and σ(u) is constant on [t, t′). Further-
more, if t′ is finite, then it follows that at least one
component of σ(t′) is zero because the other two pos-
sibilities (that σ(t′) = σ(t) or that the two sign vec-
tors differ by reversing a nonzero sign) both violate
continuity. Lemma A.6 and our hypothesis that σ(t)
is mixed preclude the possibility that σ(t′) = ~0. Hence
there is a zero-crossing at t′.

To prove that t′ is finite, we will show that on
the interval (t, t′), the distance from xi(u) to 1

M+1
is

monotonically increasing in u for exactly two indices
i ∈ {1, 2, 3}, and for the remaining value of i the dis-
tance from xi(u) to 1

M+1
is monotonically decreasing

at a rate bounded away from zero. Recall that the
derivative ẋi(u) has sign −σi−1(u). Hence the dis-
tance from xi to 1

M+1
is increasing at time u if and

only σi(u) = −σi−1(u). The equation

(σ0σ1)(σ1σ2)(σ2σ3) = σ2
1σ2

2σ2
3 = 1

implies that the relation σi(u) = −σi−1(u) is satis-
fied by an even number of indices i ∈ {1, 2, 3}, and
this number must be exactly 2 since σ(t) is mixed.
Letting i denote the unique index in {1, 2, 3} such
that σi(u) = σi−1(u) for all u ∈ (t, t′), we know
that |ẋi(u)| = xi(u)(1 − xi(u))|1 − (M + 1)xi−1(u)|.
Having already established that the function |1 −
(M + 1)xi−1(u)| = (M + 1)

∣∣xi−1(u)− 1
M+1

∣∣ is mono-
tonically increasing on (t, t′), we see that

|ẋi(u)| = xi(u)(1− xi(u))|1− (M + 1)xi−1(t)|
≥ min

{
xi(t)(1− xi(t)), M

(M+1)2

}
·

|1− (M + 1)xi−1(t)|,
(8)

where the second inequality is justified by the fact
that xi(u) lies strictly between xi(t) and 1

M+1
for all

u ∈ (t, t′), and the function x(1 − x), being concave,

assumes its minimum value on this interval at one of
the endpoints. Equation (8) establishes that the rate
of decrease of |xi(u)− 1

M+1
| is bounded away from zero

on the interval (t, t′), and consequently t′ is finite.

Finally, we must show that σ(t′) is mixed. Since
|xi−1 − 1

M+1
| and |xi+1 − 1

M+1
| are monotonically in-

creasing on (t, t′), it follows that σi−1(t′) = σi−1(t)
and σi+1(t′) = σi+1(t). Our choice of i ensures that
σi−1(t)σi+1(t) = −1, so σi−1(t′)σi+1(t′) = −1 as well,
establishing that σ(t′) is mixed. ¤

Lemma A.10 (Lemma 3.7) If σ(t0) is mixed, then
σ(t) is mixed for all t > t0. Furthermore, the set T is
unbounded and has no accumulation point.

Proof. If the set T has an accumulation point t∗, then
there is some i such that for all δ > 0, the relation
xi(t) − 1

M+1
= 0 holds infinitely often in the interval

(t∗−δ, t∗+δ). The Mean Value Theorem implies that
ẋi(t) = 0 infinitely often in the interval (t∗− δ, t∗+ δ),
hence xi−1(t)− 1

M+1
= 0 infinitely often in that inter-

val. Applying the Mean Value Theorem once more
we see that xi−2(t) − 1

M+1
= 0 infinitely often in

(t∗−δ, t∗+δ) as well. By continuity, we may conclude
that (xi−2(t∗), xi−1(t∗), xi(t∗)) =

(
1

M+1
, 1

M+1
, 1

M+1

)
.

Lemma A.6 now implies that σ(t) = ~0 for all t, vio-
lating our assumption that σ(t0) is mixed.

Consequently, T has no accumulation point. Our
next objective is to prove that σ(t) is mixed for all
t > t0. Assume, by way of contradiction, that {t >
t0 |σ(t) is not mixed} is nonempty, and let t′ denote
the infimum of this set. If there is no zero-crossing
at t′ then continuity implies that σ(u) is constant for
u in an open interval containing t′, but this violates
our definition of t′. Consequently, we may assume
t′ ∈ T . As T has no accumulation point, there is a
positive ε such that the interval (t′− ε, t′) contains no
zero-crossings. By our definition of t′, we know that
σ(t′−ε/2) is mixed, and Lemma A.9 now implies that
σ(t′) is mixed. Then Lemma A.7 implies that σ(u)
is mixed for all u in an open interval (t′ − δ, t′ + δ),
contradicting our definition of t′.

Finally, it is easy to show that T is unbounded: for
any t > t0, the set T contains a point t′ ≥ t because
either t itself is in T , or else Lemma A.9 implies the
existence of a t′ > t belonging to T . ¤

Corollary A.11 (Corollary A.8). There is an order-
preserving one-to-one correspondence between the pos-
itive integers and the set T of zero-crossings occurring
after t0.
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Proof. For each t ∈ T , let n(t) denote the cardinal-
ity of the set T ∩ [t0, t]. We know that T ∩ [t0, t] is
finite because any infinite subset of [t0, t] has an accu-
mulation point whereas T does not. Thus, t 7→ n(t)
defines a function from T to the positive integers. It
is clearly one-to-one and order-preserving because if
s < t are elements of T then T ∩ [t0, t] has at least
one more element than T ∩ [t0, s], namely the element
t. Finally, to show that every positive integer is equal
to n(t) for some t ∈ T , we argue as follows. If t is
any element of T then {s ∈ T | s > t} is nonempty
since T is unbounded. Letting t′ denote the infimum
of this set, we have t′ ∈ T (as otherwise t′ would be
an accumulation point of T ) and t′ is, by construc-
tion, the unique element of T ∩ [t0, t′] that does not
belong to [t0, t]. It follows that n(t′) = n(t) + 1. A
similar argument establishes that inf(T ) is an element
of T and that n(inf(T )) = 1. Hence, the image of the
function t 7→ n(t) contains 1 and is closed under the
successor operation, implying that it contains every
positive integer. ¤

Lemma A.12 (Lemma 3.9). Assuming M ≥ 7, the
sequence wn = min{x1(tn), x2(tn), x3(tn)} is mono-
tonically decreasing in n, and it converges to zero as
n →∞.

Proof. We initially focus on proving monotonicity, de-
ferring convergence to zero until the final paragraph
of the proof.

If n is even, inspection of the sign patterns in (5)
reveals that wn = xn−1(tn) and wn+1 = xn−1(tn+1).
Furthermore, the sign of ẋn−1(t) for t ∈ (tn, tn+1) is
given by −σn−2(t) = −σn+1(t), which is seen to be
negative again by inspecting the sign patterns in (5).
It follows that wn+1 < wn when n is even.

If n is odd, assume without loss of generality that
n ≡ 1 (mod 6), so that σ1(tn) = 0 and x1(tn) = 1

M+1
;

the other two cases n ≡ 3, 5 (mod 6) are the same
up to cyclic symmetry. We have wn = x2(tn) and
wn+1 = x1(tn+1), so we must show that x1(tn+1) <
x2(tn). Recall the functions yi(t) defined in (6) and
their derivatives given by (7). We have

d

dt
(y1 + 2y2) = 3− (M + 1)(2x1 + x3)

< 3− (M + 1)x3.
(9)

We now divide the argument into three cases.

Case 1: x3(tn) ≥ 3
M+1 .

Since x3 is increasing on the interval (tn, tn+1), the

right side of (9) is negative for t ∈ (tn, tn+1), from
which we may conclude that y1(tn+1) + 2y2(tn+1) <
y1(tn) + 2y2(tn). We have y1(tn) = y2(tn+1) =
ln(1/M), and upon substituting these values we find
that

y1(tn+1) < 2y2(tn) + ln(M) < y2(tn) + ln
(

M
M+1

)

which implies x1(tn+1) < x2(tn) since x 7→ ln(x) −
ln(1− x) is a monotonically increasing function of x.

Case 2: x3(tn+1) ≤ M
M+1 .

During the time interval (tn, tn+1), x3 increases while
remaining bounded above by M

M+1 . The function
xM (1 − x) is monotonically increasing on the inter-
val

(
0, M

M+1

)
, hence

x3(tn+1)M (1− x3(tn+1)) > x3(tn)M (1− x3(tn)).

On the other hand, we have assumed that
∏

i xM
i (1−

xi) is monotonically decreasing for all t > t0, so we
may conclude that

x1(tn+1)M (1− x1(tn+1))x2(tn+1)M (1− x2(tn+1))

< x1(tn)M (1− x1(tn))x2(tn)M (1− x2(tn)).

Again using the fact that x1(tn) = x2(tn+1) =
ln(1/M) to cancel terms from both sides, we obtain
x1(tn+1)M (1−x1(tn+1)) < x2(tn)M (1−x2(tn)), which
implies x1(tn+1) < x2(tn) using the monotonicity of
xM (1− x) on the interval

(
0, M

M+1

)
.

Case 3: x3(tn) < 3
M+1 and x3(tn+1) > M

M+1 .

By continuity, we know there are times u, v ∈
(tn, tn+1) such that x3(u) = 3

M+1 , x3(v) = M−2
M+1 .

Now,

y3(u)− y3(tn) < ln
(

3
M − 2

)
− ln

(
1
M

)

= ln (M)− ln
(

M − 2
3

)

< y3(tn+1)− y3(v)

and
∫ u

tn

1− (M + 1)x2(t) dt

<

∫ tn+1

v

1− (M + 1)x2(t) dt,

(10)

where the final line follows from the fact that ẏ3 =
1 − (M + 1)x2. Now, x2 is increasing on the interval
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(tn, tn+1) so the integrand 1−(M + 1)x2 is decreasing.
Letting c = 1 − (M + 1)x2(u), this means that the
left side of (10) is greater than (u − tn)c while the
right side is less than (tn+1 − v)c, hence (10) implies
tn+1 − v > u− tn. Now, using (9),

y1(tn+1) + 2y2(tn+1)− y1(tn)− 2y2(tn)

<

∫ tn+1

tn

3− (M + 1)x3(t) dt

=
∫ u

tn

3− (M + 1)x3(t) dt

+
∫ v

u

3− (M + 1)x3(t) dt

+
∫ tn+1

v

3− (M + 1)x3(t) dt

<

∫ u

tn

2 dt +
∫ v

u

0 dt +
∫ tn+1

v

(−2) dt

= 2(u− tn − tn+1 + v)
< 0,

where we have used the fact that 3 − (M + 1)x3(t)
is bounded above by 2 on the interval [tn, u], by
0 on the interval [u, v], and by −2 on the inter-
val [v, tn+1]. (This last upper bound is the one
that requires M ≥ 7.) Having thus established
that y1(tn+1) + 2y2(tn+1) < y1(tn) + 2y2(tn) we fin-
ish the argument, as in Case 1, by using the fact
that y2(tn+1) = y1(tn) = ln(1/M) to conclude that
y1(tn+1) < 2y2(tn) + ln(M) < y2(tn) +

(
M

M+1

)
and

consequently x1(tn+1) < x2(tn).

Finally, we prove that wn → 0 as n →∞ or, equiv-
alently, that ln(wn) − ln(1 − wn) → −∞. Recalling
that the function x 7→ ln(x) − ln(1 − x) is mono-
tonically increasing in x, we see that the sequence
qn = ln(wn)− ln(1−wn) is monotonically decreasing.
Furthermore, the proofs given above in Cases 1 and 3
above have shown that qn+1 < qn − ln

(
M

M+1

)
for ev-

ery n satisfying the hypotheses of one of those cases.
If there are infinitely many such n, then qn → −∞
and we are done. Otherwise, there are infinitely many
n satisfying the hypotheses of Case 2; let S denote
the set of all such n. Considering that ~x(t) con-
verges to the boundary of the cube as t → ∞ and
that the sequence (tn)n∈S is unbounded, we see that
the sequence (~x(tn))n∈S converges to the boundary
of the cube. However, for every n ∈ S we have
maxj{xj(tn)} = x3(tn) ≤ x3(tn+1) ≤ M

M+1
. So the

only way (~x(tn))n∈S could converge to the boundary
of the cube is if wn = minj{xj(tn)} converges to 0, as
claimed. ¤

Theorem A.13 (Lemma 3.10). Unless x1(0) =
x2(0) = x3(0), the vector ~x(t) converges to the 6-cycle
spanned by the off-diagonal vertices of the cube. In
other words, minj{xj(t)} → 0 and maxj{xj(t)} → 1
as t →∞.

Proof. We have already seen that wn = minj{xj(tn)}
converges to zero as n → ∞, and that minj{xj(t)}
decreases monotonically from time tn to tn+1 when
n is even, so to prove that minj{xj(t)} → 0 we
only need to show that minj{xj(t)} does not grow
too large in the middle of an interval (tn, tn+1),
when n is odd. Note that for n odd, the func-
tions xn(t), xn+1(t), xn+2(t) have the following behav-
ior on the interval (tn, tn+1): xn starts at 1

M+1
and

decreases, xn+1 starts below 1
M+1

and increases to
1

M+1
, xn+2 starts above 1

M+1
and increases. Thus,

the quantity minj{xj(t)} is maximized on the interval
tn ≤ t ≤ tn+1 at the unique time rn in that interval
satisfying xn(rn) = xn+1(rn). Our objective is thus
to show that xn(rn) → 0 as n →∞.

As before, we assume that n ≡ 1 (mod 6), since
the other cases n ≡ 3, 5 (mod 6) are handled using
the same argument, up to cyclic symmetry. (Hence-
forth, when we write n → ∞, we are referring to
the subsequence defined by setting n = 6k + 1 as
k → ∞.) Let sn denote the earliest time in the
interval [tn, tn+1] when at least one of the relations
x1 = x2 or x3 ≥ 2

M+1
holds; note, in particular,

that sn ≤ rn. Let vn = x2(sn). We first argue that
vn → 0 as n → ∞. If sn = tn then vn = wn, which
converges to zero by Lemma 3.9. If sn > tn then
vn = x2(sn) ≤ x1(sn) ≤ x3(sn) ≤ 2

M+1
, and the con-

vergence of vn to zero now follows from the conver-
gence of ~x(t) to the boundary of the cube.

To complete the proof that x1(rn) → 0 as n → ∞,
we consider two cases. First, for those n such that
sn = rn, we have x1(rn) = x2(rn) = x2(sn) = vn,
which converges to zero. Second, for those n such
that sn < rn, we have x3(t) ≥ 2

M+1
for all t ∈

[sn, tn+1]. We may now use the relation ẏ1 + ẏ2 = 2−
(M + 1)(x1 + x3) to conclude that d

dt [y1(t) + y2(t)] <
2 − (M + 1)x3 ≤ 0 on the interval [sn, tn+1], which
includes rn. Consequently,

y1(rn) =
1
2

(y1(rn) + y2(rn))

≤ 1
2

(y1(sn) + y2(sn))

≤ 1
2

(− ln(M) + ln(vn)− ln(1− vn)) .

(11)

The fact that vn → 0 implies that the right side of
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(11) tends to −∞, implying that y1(rn) tends to −∞
and that x1(rn) tends to zero.

Now we turn to the proof that maxj{xj(t)} → 1
as t → ∞. We begin by considering the intervals
[tn, tn+1] such that n is odd. On any such inter-
val, xn starts at 1

M+1
and decreases, xn+1 starts at

wn < 1
M+1

and increases, xn+2 starts above 1
M+1

and increases. Hence when n is odd, maxj{xj(t)} =
xn+2(t) for all t ∈ [tn, tn+1]. Our first objective is
to prove that xn+2(tn+1) → 1 for odd n tending
to infinity. (Of course, this doesn’t establish that
inftn≤t≤tn+1{xn+2(t)} tends to 1 for odd n tending
to infinity, but we will return to this issue at the end
of the proof.) To prove that xn+2(tn+1) → 1, we first
introduce the parameter

zi = yi+1 − yi − (M + 1) ln(1− xi),

which satisfies

żi = [1− (M + 1)xi]− [1− (M + 1)xi−1]+

+
(M + 1)ẋi

1− xi

= (M + 1)(xi−1 − xi)+
+ (M + 1)xi[1− (M + 1)xi−1]

= (M + 1)xi−1[1− (M + 1)xi].

In particular, since xn+1(t) < 1
M+1

for all t ∈
(tn, tn+1) when n is odd, we have żn+1 > 0 and there-
fore,

zn+1(tn+1)− zn+1(tn) > 0
yn+2(tn+1)− yn+2(tn)
> yn+1(tn+1)− yn+1(tn)+

+ (M + 1)[ln(1− xn+1(tn+1))−
− ln(1− xn+1(tn))]

= − ln(M)− ln(wn) + ln(1− wn)+
+ (M + 1)

[
ln

(
1− 1

M+1

)− ln(1− wn)
]

> − ln(M)− ln(wn) + (M + 1) ln
(
1− 1

M+1

)
.

Combining this with the relation yn+2(tn) ≥ − ln(M),
we see that

yn+2(tn+1)

> −2 ln(M)− ln(wn) + (M + 1) ln
“
1− 1

M+1

”
,

and consequently yn+2(tn+1) tends to infinity for odd
n tending to infinity, implying that xn+2(tn+1) tends
to 1 as claimed.

To deal with intervals [tn, tn+1] where n is even, we
begin by observing that on any such interval, xn starts

at 1
M+1

and increases, xn+1 starts above 1
M+1

and de-
creases, xn−1 starts at wn and decreases. Hence, the
quantity maxj{xj(t)} is minimized at the unique time
rn satisfying xn(rn) = xn+1(rn). By taking n suffi-
ciently large, we may assume (M + 1)wn < 1/2. Now
we find that for t ∈ (tn, tn+1),

ẏn = 1− (M + 1)xn−1 > 1− (M + 1)wn > 1/2

ẏn+1 = 1− (M + 1)xn > 1− (M + 1) = −M

d

dt
(2Myn + yn+1) > 2M · (1/2)−M = 0.

Consequently,

yn(rn) =
1

2M + 1
(2Myn(rn) + yn+1(rn))

>

(
2M

2M + 1

)
yn(tn) +

(
1

2M + 1

)
yn+1(tn)

=
(

2M

2M + 1

)
ln(1/M) +

(
1

2M + 1

)
yn+1(tn).

Since n−1 is odd, the preceding paragraph established
that the quantity yn+1(tn) on the right side tends to
infinity for even n tending to infinity. Thus, we also
have that yn(rn) → ∞ and xn(rn) → 1 for even n
tending to infinity.

We have shown for even n that
inftn≤t≤tn+1{maxj xj(t)} → 1 as n →∞; to conclude
the proof we show the same for odd n. This is easily
done, since we know that maxj xj(t) = xn+2(t) and
that xn+2(t) is a monotonically increasing function of
t for n odd and t ∈ [tn, tn+1]. Thus,

inf
tn≤t≤tn+1

{max
j

xj(t)} = xn+2(tn)

= max
j

xj(tn)

≥ inftn−1≤t≤tn
{max

j
xj(t)}.

We have already seen that the right side tends to in-
finity for even n−1 tending to infinity, so the left side
tends to infinity as well. ¤

140


