
Innovations in Computer Science 2011

Secret Sharing Krohn-Rhodes:

Private and Perennial Distributed Computation∗

Shlomi Dolev1 Juan Garay2 Niv Gilboa3 Vladimir Kolesnikov4

1Dept. of Computer Science, Ben-Gurion University 2AT&T Labs – Research
3Dept. of Computer Science, Ben-Gurion University and Deutsche Telekom Laboratories 4Bell Laboratories

dolev@cs.bgu.ac.il garay@research.att.com niv.gilboa@gmail.com kolesnikov@research.bell-labs.com

Abstract: In this paper we consider the problem of n agents wishing to perform a given computation on
common inputs in a privacy preserving manner, in the sense that even if the entire memory contents of some
of them are exposed, no information is revealed about the state of the computation, and where there is no a
priori bound on the number of inputs. The problem has received ample attention recently in the context of
swarm computing and Unmanned Aerial Vehicles (UAV) that collaborate in a common mission, and schemes
have been proposed that achieve this notion of privacy for arbitrary computations, at the expense of one round
of communication per input among the n agents.
In this work we show how to avoid communication altogether during the course of the computation, with the trade-
off of computing a smaller class of functions, namely, those carried out by finite state automata. Our scheme,
which is based on a novel combination of secret-sharing techniques and the Krohn-Rhodes decomposition of
finite state automata, achieves the above goal in an information-theoretically secure manner, and, furthermore,
does not require randomness during its execution.

Keywords: private computation, information-theoretic security, finite state automata, Krohn-Rhodes decom-
position.

1 Introduction

There is great interest in pervasive ad hoc and
“swarm” computing [18], particularly in swarming Un-
manned Aerial Vehicles (UAV) that collaborate in a
common mission (e.g., [4, 10] and references therein).
Hiding the state of the swarm from (a subset of) the
swarm participants while keeping and updating the
global swarm state, due to a possibly unbounded se-
quence of inputs, is an important task (e.g., [4, 6]). In
this work we make progress in this area, by showing
the feasibility of non-interactive private distributed
computation on such unbounded input sequences.

Recently, Dolev et al. [4] presented schemes that
support infinite private computation by implementing
a distributed version of a so-called strongly obliv-
∗Work partially supported by DIMACS, FRONTS EU

Project, US Air Force European Office of Aerospace and Devel-

opment, grant #FA8655-09-1-3016, the Rita Altura trust chair

in computer sciences, Deutsche Telekom Laboratories at Ben-

Gurion University of the Negev, and Lynne and William Frankel

Center for Computer Sciences.

ious universal Turing machine (TM)1. However, this
is done at the expense of one round of communica-
tion per received input amongst the participants. In
contrast, in this work we show how to avoid commu-
nication altogether during the course of the computa-
tion, with the trade-off of computing a smaller class
of functions.

1.1 Our setting and goal

Specifically, we consider a distributed computation
setting in which a party, which we refer to as the
dealer, has a finite state automaton (FSA) A which
accepts an (a priori unbounded) stream of inputs
x1, x2, . . . received from an external source. We are
interested in situations in which the dealer cannot per-
form the required computation, but instead delegates
the responsibility to agents P1, . . . , Pn. Each of the

1An oblivious TM moves the tape heads through the same
sequence of cells; a strongly oblivious TM is a Turing machine
in which the movement of tape heads is a function only of the
cell indices that the heads point to. Not every oblivious TM is
strongly oblivious, since the movement of the tape heads may
be a function of time, not only of space.

32

SECRET SHARING KROHN-RHODES: PRIVATE AND PERENNIAL DISTRIBUTED COMPUTATION

agents receives all the inputs destined to A during its
execution. The agents execute their distributed im-
plementation of A (without communication!) and, at
a given signal from the dealer, terminate the execu-
tion, compute the current state of A, and return it as
output.

Furthermore, there is an additional entity, called the
adversary Adv, who is able to adaptively “corrupt” a
subset of the agents (i.e., inspect their internal state)
during the execution phase, up to a threshold2 t < n,
and our objective is to ensure that the agents’ com-
putation is as private as possible. We do not aim
to maintain the privacy of the automaton A; how-
ever, we wish to protect the secrecy of the state of A
and the inputs’ history. We note that Adv may have
external information about the computation, such as
partial inputs or length of the input sequence, state
information, etc. This auxiliary information, together
with the knowledge of A, may exclude the protection
of certain configurations, or even fully determine A’s
state. We stress that this cannot be avoided in any
implementation, and we do not consider this an in-
security. Thus, our goal is to prevent the leakage or
derivation by Adv of any knowledge from seeing the
execution traces which Adv did not already possess.

1.2 Our approach

We present a scheme that achieves the above goal
in an information-theoretically secure manner (i.e.,
there are no bounds imposed on Adv’s computational
power), and does not require randomness during the
execution of A. Our scheme is based on a novel
combination of secret-sharing techniques [17] and the
Krohn-Rhodes decomposition of finite automata [12,
13]. Informally, Krohn-Rhodes theory states that any
finite state automaton can be emulated by a combina-
tion (cascade product—see Section 2) of permutation
automata and flip-flop automata. (A permutation au-
tomaton is any automaton such that each of its pos-
sible input symbols induces a permutation of the au-
tomaton’s states.) The computation complexity per
each received input symbol, and the storage complex-
ity required by our scheme are a function only of (the
decomposition of) A, and not of the number of sym-
bols processed. A trade-off for this is that, depending
on A, the number of components of its Krohn-Rhodes
decomposition might be exponential in its number of
states.

2We note that more general access structures may be natu-
rally employed with our constructions; see Section 2.

We note, however, that for many interesting and
relevant automata, there is a small Krohn-Rhodes de-
composition. Section 4.4 presents an example of such
an automata family with a small Krohn-Rhodes rep-
resentation.

For ease of exposition, in this submission we con-
centrate on the case of passive corruptions—i.e., Adv
is considered “honest but curious.” However, since
our construction does not require communication
among parties at the time when corruptions are al-
lowed, it can be readily strengthened to handle ac-
tive corruptions by employing secret-sharing schemes
(e.g., unverified secret sharing [5, 16]) that are ro-
bust against disruptive behavior, and suitable for our
scenario.

As noted earlier, swarms and sensor networks (e.g.,
[4, 6] are areas that can potentially benefit from our
scheme. Another area of great current interest where
user privacy is critical is that of outsourcing computa-
tion and storage to the “cloud.” Yet, a big challenge
in making the shift in computing to the cloud infras-
tructure is finding a way to ensure the privacy of the
computation. One possible approach is for the users to
run the program distributively on several computing
clouds in such a way that even if some of them collude
and exchange information they still will not be able
to learn the program and/or the data they use for the
computation. Furthermore, the type of computation
may be of a “never-ending” nature, such as ongoing se-
quence of tasks performed by an operating system; the
output of a given task or state of an on-going system
can then be revealed by receiving information from all
or a sufficient number of cloud suppliers participating
in the computation—very much like a terminal client
is used to interface with remote computers. Our work
also addresses this scenario.

1.3 Related work

Reactive k-secret sharing with no communication
among agents participating in a swarm has been sug-
gested in [6]. Several solutions that are able to with-
stand limited memory corruptions were presented,
some of them based on the linearity of secret sharing,
supporting addition and multiplication by constants.
The last solution is based on maintenance of the vec-
tor of possible states by each agent, masking the ac-
tual state of the swarm (defined to be the one with
a majority of copies) by redundant states (with fewer
copies). In general, two states maintained by an agent
may yield the same next state when a certain input

33

S. DOLEV, J. GARAY, N. GILBOA, V. KOLESNIKOV

is received, thus redundancy of states may be elimi-
nated over time. Randomization is used in [6] in order
to cope with such a convergence, randomly choosing
a state for the extra copies in the vector when two or
more states become equal. In contrast, in this work
we show that it is possible to solve the problem of con-
vergence to the same state in a deterministic way us-
ing Krohn-Rhodes decomposition. Furthermore, the
scheme in this work is information-theoretically se-
cure.

As mentioned above, the authors recently presented
schemes that support the same type of perennial pri-
vate computation considered here by implementing a
universal Turing machine privately, with one round
of communication per transition [4]. In this work we
show how to avoid communication completely during
the course of the actual execution, at the expense of
computing a smaller class of functions.

The type of private computation we consider is
also related to the problem of (information-theoretic,
or unconditional) secure multi-party computation
(MPC) [1, 3]. We perform a detailed comparison be-
low.

1.4 Unbounded-input private compu-
tation vis-à-vis MPC

Recall that in secure multi-party computation, n
parties (“players”), some of which might be corrupted,
are to compute an n-ary (public) function on their in-
puts, in such a way that no information is revealed
about them beyond what is revealed by the func-
tion’s output. At a high level, we similarly aim in
our context to ensure the correctness and privacy of
the distributed computation. However, as we now ar-
gue, our setting is significantly different from that of
MPC, and MPC solutions cannot be directly applied
here.

Firstly, MPC aims to solve a different problem, that
of protecting the players’ individual inputs from Adv,
who can corrupt some of them, learn their input and
observe the communication they receive. In contrast,
in our problem the inputs are common to all the play-
ers (but not a priori known to Adv, or revealed in case
of corruption), and the goal is to protect the state of,
as well as the inputs to the computation. (Therefore,
we cannot in particular treat the common input as
public information, and the shares received from the
dealer as MPC input.)

Of course, an adequate representation (circuit-
based, for example) of the MPC computation would
be able to evaluate A, with respect to a subset of
corrupted players, and at least for the basic MPC
setting, where there is a single (tuple of secret) in-
put(s) out of which an output (tuple) is produced. But
then comes our main feature, of multiple, possibly un-
bounded number of input symbols. This is reminiscent
of secure reactive systems (e.g., [15]), where the com-
putation is not limited to “one shot” as above, but in-
stead processes inputs “in blocks” throughout several
rounds of interaction. However, because all MPC solu-
tions (and definitions) are explicitly tied to the length
of the input, being able to handle unbounded num-
ber of inputs without communication does not seem
immediate. This is what our Krohn-Rhodes-based ap-
proach achieves, at the expense of solving a narrower
problem.

Looking at the relationship with MPC from an-
other perspective, we note that it is the combination
of our requirements of non-interactivity during the
input-processing phase, information-theoretic secu-
rity, and computation on inputs of unbounded length,
that precludes the use of known MPC techniques.
That is, with any of the three requirements removed,
known techniques would allow stronger results to be
achieved.

Indeed, we have discussed above the possibility of
solutions in the setting where the inputs are bounded.
Alternatively, if we only required computational se-
crecy, then the players could use fully homomorphic
encryption [9] to maintain under encryption the cur-
rent state of the computation on unbounded inputs
(and carry shares of the scheme’s private key). Fur-
ther, if an a priori bound on the input length existed,
players could simply encrypt their inputs with any
public-key encryption scheme, again keeping shares of
the decryption key. Finally, allowing interaction dur-
ing the input processing phase can effectively bring
us to the bounded-input setting, since interaction—
and thus share updates using MPC—could occur
after a certain fixed number of inputs has been
processed.

1.5 Organization of the paper

Section 2 presents the necessary background for this
paper. Section 3 defines our notion of secure computa-
tion in a swarm and Section 4 describes our construc-
tion in detail. For the purpose of readability, proofs
are presented in an appendix.

34

SECRET SHARING KROHN-RHODES: PRIVATE AND PERENNIAL DISTRIBUTED COMPUTATION

2 Preliminaries, notation and
background

In this section we introduce the notation used
throughout the paper, and present the necessary back-
ground material and tools—secret sharing schemes, fi-
nite state automata, and Krohn-Rhodes theory. Let
P1, . . . , Pn be the n agents that distributively will ex-
ecute A.

2.1 Secret sharing

We start with an overview of our basic tool, secret
sharing [17], where essentially, a secret piece of infor-
mation is “split” into shares by a distinguished player
called the dealer, in such a way that up to a threshold
t < n of the players pulling together their shares are
not able to learn anything about it, while t+1 are able
to reconstruct the secret. In fact, we consider general
secret sharing for any monotone access structure [11],
a generalization of threshold secret sharing. More for-
mally, an access structure U is simply a set of subsets
of P1, . . . , Pn, that is, U ⊆ 2{P1,...,Pn}. We say that U
is monotone if for every I ∈ U , we have that I ′ ∈ U
for every I ′ such that I ⊆ I ′.

Definition 2.1 We say that a secret-sharing scheme
S has an access structure U , if any set of shares held
by players of any set I ∈ U allows the reconstruc-
tion of the secret, while shares held by players I ′ 6∈ U
yields no information on the secret. Additionally, we
say that S has a monotone access structure, if U is
monotone.

For simplicity, sometimes in our discussion we con-
centrate on (t, n) threshold secret sharing, where U is
the set of all subsets of the n players of size greater
than t. Further, the presentation above is only con-
cerned with the privacy of the secret. Correctness in
our scenario can also be guaranteed against actively
disruptive behavior by at most t parties by employ-
ing so-called unverified secret sharing schemes [5, 16]
(“unverified” relates to the fact that the dealer is hon-
est), and adjusting the threshold (resp., access struc-
ture) to t < n

3 .

2.2 Some automata theory notions

A finite-state automaton (FSA) A has a finite set of
states ST , a finite set of input symbols Γ, and a tran-
sition function µ : ST ×Γ −→ ST . We do not assume
an initial state or a terminal state; the automaton may

begin its execution from any state and does not nec-
essarily stop. A′ = (ST ′,Γ µ′) is a sub-automaton of
A if ST ′ ⊆ ST , Γ′ ⊆ Γ and µ′ is the reduction of
µ to ST ′ × Γ′ and µ′(s′, γ′) ∈ ST ′, for any s′ ∈ ST ′

and any γ′ ∈ Γ′. For every input symbol γ ∈ Γ and
every s ∈ ST , we denote by µγ : ST −→ ST the func-
tion µγ(s) = µ(s, γ). Further, we denote the state
of A when executed with initial state sinit and input
γ1 . . . , γk by A(sinit, γ1 . . . , γk).

Definition 2.2 A permutation automaton is a finite
automaton such that for every γ ∈ Γ, the function µγ

is a permutation on ST .

Definition 2.3 A flip-flop automaton is a finite au-
tomaton with two states ST = {s0, s1} and three in-
puts Γ = {γ0, γ1, γ2}, such that µγ0 is the identity
function, µγ1 is defined by µγ1(s0) = µγ1(s1) = s0,
and µγ2 is defined by µγ2(s0) = µγ1(s1) = s1.

The left side of Figure 1 is an example of a permu-
tation automaton. The right side of Figure 1 shows a
flip-flop automaton.

Figure 1: Examples of permutation and flip-flop automata.

A cascade product of automata is a sequence of au-
tomata such that the input to the i-th automaton is
a function of a global input and of the states of au-
tomata 1, 2, . . . , i− 1. As an example consider the au-
tomaton in Figure 2, that starting at state s0 reaches
state sa if and only if four γ1 symbols appear in its
input. This Four-γ1 checker can be emulated by a se-
quence of two automata: the permutation automaton
in Figure 1 and the flip flop of Figure 1.

35

S. DOLEV, J. GARAY, N. GILBOA, V. KOLESNIKOV

Figure 2: Four γ1 checker.

Let the permutation automaton and the flip flop be-
gin execution from s0. The input of the permutation
automaton is the same input as that of the four γ1

checker. The input of the flip-flop is determined by a
function Ψ that maps a state of the permutation au-
tomaton and an input symbol of the four γ1 checker to
an input symbol of the flip-flop. Ψ(s3, γ0) = γ2, and
for any other input pair 〈s, γ〉, we define Ψ(s, γ) = γ0.
This cascade product emulates the four γ1 checker be-
cause the flip flop is in state s1 if, and only if, the four
γ1 checker is in state sa while the flip flop is in state
s0; thus the permutation automaton is in the same
state as the four γ1 checker.

2.3 Krohn-Rhodes theories

At a high level, the hierarchical algebraic decom-
position of finite state automata, known as Krohn-
Rhodes theory [12, 13], shows how to emulate a finite
automaton by a combination (product—see below) of
permutation and flip-flop automata. We now present
the background on Krohn-Rhodes theory that is nec-
essary for the current work. Our presentation follows
the interpretation given in [7], which greatly expands
on the short summary we present, and by Margolis
in [14].

Definition 2.4 Let A = (ST, Γ, µ) and A′ =
(ST ′,Γ′, µ′) be two automata. A pair Ψ = (Ψ1,Ψ2)
of surjective mappings Ψ1 : ST −→ ST ′ and Ψ2 :
Γ −→ Γ′ is a homomorphism of A onto A′ if for ev-
ery s ∈ ST, γ ∈ Γ we have Ψ1(µ(s, γ)) = µ′(Ψ1(s),
Ψ2(γ)).

If A has a sub-automaton which can be mapped
homomorphically by Ψ onto A′, then we say that A
homomorphically represents A′. An important prop-

erty of such homomorphism is that A can be executed
instead of A′ in the following sense. Suppose A′ be-
gins execution at state s′, receives a stream of input
symbols γ′1, . . . , γ

′
k, and terminates in state t′. Then,

if A begins execution in state s, such that Ψ1(s) = s′

and receives a stream of input symbols γ1, . . . , γk such
that γi = Ψ2(γi) for every i then A terminates in state
t such that Ψ1(t) = t′.

There are several different ways to arrange a se-
quence of automata, A1 = (ST1,Γ1, µ1), . . ., Am =
(STm,Γm, µm), to define a single product automaton.
We are interested in the following type of product.

Definition 2.5 A finite automaton A = (ST, Γ, µ)
is called a cascade product of A1 = (ST1,Γ1, µ1),
. . ., Am = (STm,Γm, µm), denotedby A1, . . .,
Am(Γ, ϕ1, . . . , ϕm), if ST = ST1 × . . . × STm,
there exist functions ϕ1, . . . , ϕm such that ϕi :
ST1 × . . . × STi−1 × Γ −→ Γi, for every i =
1, . . . , m, and µ is defined by µ((s1, . . . , sm), γ) =
(µ1(s1, ϕ1(γ)),. . .,µm(sm, ϕm(s1, . . . , sm−1, γ)).

Thus, in a cascade product, the input to the ith
component automaton (“child” automaton) is a func-
tion of the global input (γ) and the i − 1 states
of the previous i − 1 cascade components (“parent”
automata).

Let A = (ST, Γ, µ) be an automaton and denote by
µw a function on the states defined by µw(s) = µ(s, w)
for every w ∈ Γ∗ (that is, words defined over Γ). The

characteristic semigroup of A is S(A)
4
= {µw : w ∈

Γ+} with composition of functions as the semigroup’s
binary operator. S(A) together with µλ (where λ is
the empty word) forms the characteristic monoid. If
this monoid is a group, then A is a permutation au-
tomaton. S(A) is a transformation semi-group, i.e., it
includes functions of ST into itself. We denote this
transformation semi-group by (ST, S(A)).

Definition 2.6 (ST, S(A)) divides (ST ′, S(A))′ if
for some subset Y ⊆ ST ′, and sub-semigroup T of
S(A))′ that maps Y into itself, there exists an onto
function θ2 : Y −→ ST and a surjective semigroup
homomorphism θ1 : T −→ S(A)) satisfying θ2(t(y)) =
θ1(t)(θ2(y)) for all y ∈ Y, t ∈ T .

Theorem 2.7 (Krohn-Rhodes) A finite automa-
ton A can be homomorphically represented by a cas-
cade product of components from {AF ,AG1 , . . . ,AG`

},
where AF is a flip-flop automaton and AG1 , . . . ,AG`

are permutation automata. Furthermore, if S(A) is
the characteristic semi-group of A and G1, . . . , G`

36

SECRET SHARING KROHN-RHODES: PRIVATE AND PERENNIAL DISTRIBUTED COMPUTATION

are the characteristic groups of AG1 , . . . ,AG`
, then

G1, . . . , G` can be chosen as all the simple groups that
divide S(A).

To be concrete, we will be interested in the most ef-
ficient method of constructing a Krohn-Rhodes-type
cascade product, namely, Eilenberg’s holonomy de-
composition [8, 19]. In holonomy decomposition, an
automaton is decomposed into component automata
that have two kinds of transitions: permutations and
resets; a reset transition is simply the constant func-
tion from all the states to one single state. Specifi-
cally, each componentH in a holonomy decomposition
includes a permutation automaton H and all resets
on H.

Theorem 2.8 (Holonomy decomposition [8]) A
finite automaton A with m states can be homomorphi-
cally represented by a cascade product of components
H1, . . . ,Hk, such that k ≤ m and the number of states
in Hi, i = 1, . . . , m, is at most m− i + 1.

In our scheme, we will require a decomposition into
permutation automata and flip-flops (which have re-
sets on two states). Transforming an i-state compo-
nent H into a cascade product of permutation au-
tomata and flip-flops is easy by using H and log2 i
flip-flops to represent all the resets on H.

3 Private distributed computation on
global inputs

In this section we define the exact notion of private
distributed computation in our context. Recall that
our goal is for agents P1, . . . , Pn to jointly compute a
state of a given finite automaton A on the (a priori
unbounded) global input stream X received by each
agent, in such a way no t of them reveal any infor-
mation about it. The agents’ computation is divided
into three phases: sharing phase, online (computa-
tion) phase, and reconstruction. In the sharing phase,
the dealer initializes the agents based on his random
tape, the automaton A, and its initial state sinit. In
the online phase, the agents process the inputs and
update their state accordingly; in this phase, no com-
munication takes place, and the agents may be cor-
rupted by Adv. Finally, in the reconstruction phase,
the agents collaborate to reconstruct the state of A.
We stress that it is assumed that Adv is not able to in-
terfere with or observe the sharing and reconstruction
phases.

As noted above, in the online phase, up to a thresh-

old t of the agents3 may be corrupted by the adversary
Adv, who then learns their internal states. We require
that the agents carry out the computation without
leaking any information, such as initial and current
states and inputs seen. For simplicity, we consider
semi-honest (also called “honest-but-curious”) adver-
saries; that is, each participant (even when corrupted)
continues to execute the protocol as required. Note,
however, that since the online phase does not involve
any communication, an actively malicious behavior
would be of no consequence and only amount to in-
spection of the states of corrupted players. During
the reconstruction, disruptive behavior and “cheat-
ing” can be overcome simply by using secret sharing
with stronger reconstruction (lower threshold) prop-
erties. Informally, we say that the distributed com-
putation performed by the agents as described above
is secure if it is correct, and the combined state of up
to the threshold of corrupted parties gives no infor-
mation about the state of the computation or on the
history of inputs.

We define two notions of security in this work. Se-
curity in a weaker setting, which we call the simulta-
neous corruption model, relates to the adversary who
is only allowed to corrupt up to t parties simultane-
ously. Although weaker than the next, this is perhaps
a more intuitive model, which is also practical and
interesting in its own right. We then consider the
stronger progressive corruption model, where the ad-
versary is allowed to corrupt players as the execution
of the protocol proceeds4. Our protocols are secure in
the stronger progressive corruption model.

As mentioned before, we allow the adversary to have
unbounded computational power, and are thus inter-
ested in protocols that are information-theoretically
secure. Our definitions follow the standard paradigm
in cryptography of indistinguishability/simulatability
of views of the adversary.

Let A = (ST, Γ, µ) be an FSA with initial state s ∈
ST . Let X = (γ1, γ2, . . .) ∈ Γ∗ be the (global) input
given to all agents. Let I = {Pi1 , . . . , Pi`

}, ` ≤ t,
be a subset of agents. We denote by ViewΠ

I (X, s) the
probability distribution of the view of Adv, which is

3Our protocols and definitions can be readily extended to
general access structures.

4We note that our two allowed corruption models resemble
the secure multi-party computation (MPC) notions of static and
adaptive security, respectively [2]. However, since in our setting
the adversary is not allowed to corrupt agents at the onset of
the computation, as well as to continue to monitor their state
after corruption, as is the case in MPC, we use different names
to avoid confusion.

37

S. DOLEV, J. GARAY, N. GILBOA, V. KOLESNIKOV

the aggregated memory contents of all parties in I as
they execute protocol Π on input X starting on A’s
initial state s.

Definition 3.1 (Correctness) We say that proto-
col Π evaluates automaton A with respect to thresh-
old t if for any natural number k and any input
stream γ1 . . . , γk as above, (only) the members of any
subset S ⊂ {P1, ..., Pn}, |S| > t, correctly output
A(sinit, γ1 . . . , γk) in its reconstruction phase.

Definition 3.2 (Privacy in the SCM) We say
that Π is private in the Simultaneous Corruption
Model (SCM) if for every two states s1, s2 ∈ ST , in-
put streams X1, X2 ∈ Γ∗, and sets of agents I1, I2,
|I1| = |I2| ≤ t, ViewΠ

I1
(X1, s1) = ViewΠ

I2
(X2, s2).

We now give some intuition behind Definition 3.2.
The simultaneous corruption model addresses the case
where Adv takes a “snapshot” of the states of cor-
rupted players at an arbitrary point during the online
phase. Our requirement of identical distribution of
views means that the combined memories of the cor-
rupted players are independent of the so-far processed
inputs, initial states, and even of the IDs of the cor-
rupted players (note that they are not included in the
view). As an instructive example, let us verify that the
definition guarantees that the current state ofA is hid-
den from Adv. Indeed, suppose otherwise, and that
Adv can recover some information about the state of
A if a certain input sequence is executed. Then, Adv
could distinguish this view from, for example, the view
resulting from the execution on an empty input on a
random initial state, which is prohibited by the defi-
nition.

Next, we introduce a stronger notion of security,
which allows Adv to corrupt the agents as the execu-
tion progresses. First, we define a corruption timeline
as the vector ρ = (〈n1, Pi1〉, 〈n2, Pi2〉, ..., 〈n`, Pi`

〉),
where nj ∈ N, 1 ≤ j ≤ `, is the number of symbols
that are received before Pij is corrupted, and ` ≤ t.
For clarity, we state that Pij

6= Pik
for i 6= k, i.e.,

a player cannot be corrupted twice. We denote by
ViewΠ

ρ (X, s) the probability distribution of the aggre-
gated internal states of corrupted agents at the time
of corruption, when executed on input X ∈ Γ∗ and
initial state s.

Definition 3.3 (Privacy in the PCM) We say
that Π is private in the Progressive Corruption Model
(PCM) if for every two states s1, s2 ∈ ST , input
streams X1, X2 ∈ Γ∗, and corruption timelines ρ1, ρ2,
|ρ1| = |ρ2|, ViewΠ

ρ1
(X1, s1) = ViewΠ

ρ2
(X2, s2).

This definition follows the spirit of Definition 3.2,
with the notable addition of the power of Adv to cor-
rupt agents at different stages of execution of the on-
line phase, perhaps more natural in some scenarios
than taking a simultaneous “snapshot” of the agents’
internal states. Yet, by not allowing the adversary in
this corruption model to see the subsequent inputs of
a corrupted agent, we are able to impose a stronger
security requirement, namely, the indistinguishabil-
ity of the views generated by two different input
streams.

Remark 3.4 In our definitions, we require that
the views of adversary based on any two executions
be distributed identically. Clearly, this implies that it
is possible to simulate the views without knowing the
dealer’s shares, inputs, and even the length of the in-
put stream. The simulation is simply performed by
executing the protocol on any (e.g., randomly chosen)
input. Further, the complexity of the simulator is ex-
actly equal to that of an honest player executing the
potocol.

4 Privately computing an automaton
state

In this section we present our automata-based con-
struction, which allows us to achieve the notion of dis-
tributed private computation formulated in Section 3;
the construction is based on the Krohn-Rhodes de-
composition. We first present a high-level intuition of
how it works.

4.1 The construction at a high level

Assume we are given a cascade product of per-
mutation and flip-flop automata. We show how to
secret-share the composed automaton and its current
state, and how to update the shares as a result of
the agents receiving (an unbounded number of) input
symbols.

At any time, a quorum of secret-sharing agents can
reconstruct the state of the automaton. Recall that
the automaton itself is public, and need not be pro-
tected.

An (independent) permutation automaton A is
shared simply by secret-sharing among the agents a
1 for the active state, and a 0 for each other state.
Thus, for an automaton with m states, each partic-
ipant will have m shares, one share associated with

38

SECRET SHARING KROHN-RHODES: PRIVATE AND PERENNIAL DISTRIBUTED COMPUTATION

each state of A. Upon input γ ∈ Γ, the player will
simply reassign each share according to γ. That is,
for each state si, the share associated with si will be
assigned to state µ(γ, si). It is easy to see, from the
properties of secret sharing, that such sharing and in-
put processing maintains the privacy of current states
and the correctness of state reconstruction.

An (independent) flip-flop automaton A is shared
and processed as follows. As A consists of only two
states, we simply create a “mirror” flip-flop A′, which,
on any sequence of inputs, always remains in the state
opposite to that of A. Then, the dealer sends each
player the two automata in a random order, and a
share of a pointer to the “correct” one. Upon input
γ ∈ Γ, the agents simply apply the input to each of
the two automata they have. Clearly, the secrecy of
the current state is preserved; further, correctness of
reconstruction is assured since the quorum of agents
can reconstruct the pointer to the correct automaton,
and obtain the current state.

However, recall that we are interested in the cas-
cade product representation, where the the input for
each component automaton depends on the states of
its “parent” automata in the cascade (see Definition
2.5 and the following paragraph). Clearly, the agents
must not know any of the automaton’s states. Our
solution is to maintain many instances of each child
automaton (one for each state configuration of parent
automata). Then we can apply the transition function
based on the state associated with each particular in-
stance. Of course, as inputs are processed and the
parent state configuration changes, we need to reas-
sign these configurations to the child instances.

One natural way to do the above is by represent-
ing the automaton composition as a tree, rooted with
the upper level automaton, A1. In the tree, each par-
ent permutation automaton Ai has mi children (one
for each of its states). A parent flip-flop automaton
Ai has two child automata. Each of the children is
labeled (via the tree edge) with the state of Ai it is
associated with. Thus, a labeling of the path to the
root represents the entire parent configuration, and
allows the players to apply the transition function to
each (share of the) automaton in the tree.

Finally, as the input is processed, we maintain the
correct associations between child instances and par-
ent states by reassigning the edge labeling according
to the parent state transition. That is, for each state
transition si → µ(γ, si) in the parent automaton, each
edge si is relabeled with µ(γ, si). This ensures that

the child, which has a state that depends on the state
of its immediate parent, continues to properly “fol-
low” the parent’s state. Because the parent’s labels
are also adjusted, each child automaton consistently
“follows” its parent configuration.

State reconstruction for this scheme is also natu-
ral. Given the quorum, we start by reconstructing the
parent state, and then proceed with the reconstruction
down the appropriate path.

4.2 The construction in detail

Initialization phase. The dealer begins this phase
by computing a cascade product of permutation au-
tomata and flip-flops, A1, . . ., Am(Γ, ϕ1, . . . , ϕm) that
homomorphically represents A. Krohn-Rhodes theory
(cf. Section 2) states that such a cascade exists, and
holonomy decomposition is a way to construct it.

The dealer constructs a rooted tree, T , based on this
cascade. The tree consists of m + 1 levels, level 1 for
the root and level m + 1 for the leaves. Each node in
levels 1, 2, . . . , m contains an automaton, while all the
nodes in level m+1 are empty. If Ai is a permutation
automaton, then all level i nodes contain Ai. If Ai

is a flip-flop automaton, then every node at level i
contains two flip-flops.

In each node that holds two flip-flops, there is one
flip-flop such that the initial state is s0, γ0 is the iden-
tity function, γ1 resets to s0 and γ2 resets to s1. In
the other flip-flop, the initial state is s1, and the reset
edges are switched: γ1 resets to s1 and γ2 resets to
s0. This arrangement ensures that if both flip-flops
receive the same input they will always be in opposite
states.

A node in level i, 1 ≤ i ≤ m, has several children
in level i + 1. If Ai = (STi,Γi, µi) is a permutation
automaton then the node has |STi| children, a child
for each state of Ai. If Ai is a flip-flop, then the node
has two children, one for each of the two flip-flops in
the node. Each edge between parent and child has a
value that marks, or labels it. If Ai is a permutation
automaton, then the label is the state with which the
edge is associated. This label may change after each
transition of the automaton. If Ai is a flip-flop, then
the label indicates which of the two flip-flops is associ-
ated with this edge. This label does not change during
execution of the automaton.

The dealer distributes to every player the func-

39

S. DOLEV, J. GARAY, N. GILBOA, V. KOLESNIKOV

tions ϕ1, . . . , ϕm to compute transitions based on in-
put symbols for each component of the cascade.

Since A1, . . ., Am(Γ, ϕ1, . . . , ϕm) homomorphically
represents A, there exists a homomorphism Ψ =
(Ψ1,Ψ2) that maps an m-tuple of states in A1, . . .,
Am to a state in A. Let the state set of Ai be STi

for every i = 1, . . . , m. Then, the dealer secretly
shares Ψ among the n players by sharing the value of
Ψ1(s1, . . . , sm) for every tuple of states (s1, . . . , sm),
si ∈ STi.

The dealer completes the initialization stage by
sharing secrets. Let s be the secret initial state of A.
Since the cascade A1, . . ., Am(Γ, ϕ1, . . . , ϕm) homo-
morphically represents A there is a sequence of states
(s1, . . . , sm) ∈ A1 × . . .Am, such that the homomor-
phism maps (s1, . . . , sm) to s. Thus, the dealer regards
si as the initial state of Ai. If Ai is a permutation au-
tomaton then the dealer shares value 1 for si and 0
for any other state in Ai. A player denotes its share
of the value for a state s by Share(s) and uses it to
label the edge marked by s. If Ai is a flip-flop then
the dealer shares value 1 for the correct flip-flop and
shares 0 for the opposite flip-flop. A player denotes
its share of the value for a flip-flop FF by Share(FF)
and uses it to label the edge marked by FF . Each
player attaches all the shares associated with Ai to
every node in level i of T .

Online phase. We now describe the online computa-
tion that each player performs. The basic idea is to
view each path from root to leaf in T as a cascade
product of automata. Given an input symbol for T ,
each such cascade executes a step. A step of a permu-
tation automaton is represented by moving the marks
on each edge according to the transition of automaton
states. A step of a flip-flop is represented by moving
the state of each of the two flip-flops in a node. Algo-
rithm 1 shows the processing performed by an agent
upon receiving an input symbol γ.

Reconstruction phase. After the online phase, ex-
ecuting Algorithm 1 on a (possibly unbounded) num-
ber of input symbols, a subset of agents in the access
structure run Algorithm 2 to reconstruct the current
state of A from T and their shares.

4.3 Analysis of the construction

We first show that our construction satisfies Def-
inition 3.1, i.e., using the initialization procedure of
Section 4.2 together with running Algorithms 1 and

2 ensures that the players P1, . . . , Pn correctly com-
pute a state of T . For simplicity, we state and prove
the result for passive (“honest-but-curious”) corrup-
tions; in the case of active corruptions, “all agents”
would be replaced by “all uncorrupted agents,” and
setting the threshold of allowed corruptions accord-
ingly. Next, in Proposition 4.2 we show the privacy
of the construction; we directly address the stronger
notion of security.

Proposition 4.1 Let A = (ST, Γ, µ) be the automa-
ton held by the dealer, and sinit an initial state. Fix
a natural number k, and a sequence of k input sym-
bols (γ1, . . . , γk), γj ∈ Γ, j = 1, . . . , k. Assume that
executing A on (γ1, . . . , γk) from state sinit termi-
nates in state sterm. Then performing the initializa-
tion procedure described in Section 4.2, and all agents
P1, . . . , Pn executing Algorithm 1 on every γj and
Algorithm 2 after γk is processed, returns the state
sterm.

Algorithm 1 Online Phase (γ)
1: Go over every node in T beginning at the root in

order of Depth First Search.
2: Let N be a node at level i of the tree and let N1,

. . . , Ni−1 be the sequence of nodes from the root
to N .

3: for j = 1 to i− 1 do
4: if Aj is a permutation automaton then
5: Set sj to be the state marking the edge from

Nj to Nj+1.
6: else
7: Set sj to be the current state of the flip-flop

marking the edge from Nj to Nj+1.
8: Compute γN ← ϕi(s1, . . . , si−1,Ψ−1

2 (γ)) and store
γN in N .

9: for all nodes N do
10: if N holds a permutation automaton, say,

Ai = (STi,Γi, µi) then
11: for all edges from N to its children do
12: Change the state marking this edge

from s to µi(s, γN), but do not change
the secret share.

13: else
14: Change the current state of the first flip-flop

from s to µi(s, γN).
15: Change the current state of the second flip-flop

from s′ to µi(s′, γN).

Proposition 4.2 The construction of Section 4.2—
initialization procedure, and Algorithms 1 and 2—
guarantees privacy in the progressive corruption
model, according to Definition 3.3.

40

SECRET SHARING KROHN-RHODES: PRIVATE AND PERENNIAL DISTRIBUTED COMPUTATION

Algorithm 2 Reconstruction of current state
1: Set N to be the root of T .
2: for i = 1 to m do
3: if N holds a permutation automaton

Ai = (STi,Γi, µi) then
4: for all edges from N to its children do
5: Let the subset of players reconstruct

the secrets marking those edges.
6: Set a variable si ← s, where s is the only

edge marked with the secret value 1.
7: else
8: Let the subset of players reconstruct the

secrets marking the two edges from N to
its children.

9: Set a variable si to be the current state of
FF , where FF is the flip-flop associated with
the only edge marked with a secret value 1.

10: The subset of players returns Ψ1(s1, . . . , sm) as
the current state of A.

Regarding the complexity of our construction, we
consider two measures: the space complexity, which is
dominated by the number of states in the tree T , and
the computational complexity, given by the number of
steps we perform in T for each transition of A; this
second measure is identical to the number of separate
automata in T .

Given a cascade productA1, . . .,Am(Γ, ϕ1, . . . , ϕm),
our scheme constructs a tree of depth m such that the
number of children for each node of depth i is |STi|.
Thus, the number of states in the leaves of our tree is
exactly the number of states in the cascade product,
that is,

∏m
i=1 |STi|. Since each inner node in the tree

has at least two children, the total number of states
is at most twice the number of leaves. The number of
different automata in the leaves is

∏m−1
i=1 |STi|.

The remaining question is relating the size of a cas-
cade product to the original A. As stated previously,
holonomy decomposition is the best general construc-
tion method known. If the number of states in A is
|ST | = m, then the total number of states resulting
from the decomposition is the product of the number
of states of each component, and is thus m!. The total
number of states in T is therefore at most 2m!, and
the total number of automata is at most 2(m− 1)!.

In some cases, holonomy decomposition gives expo-
nentially more states than the optimum. As an exam-
ple, consider an automaton A that enters a sink state
s if and only if it is given a sequence of n consecu-
tive symbols γ. Decomposing that automaton is possi-

ble with one permutation automaton and one flip-flop.
However, holonomy decomposition would decompose
it into m flip-flops. In the first case, T is of size O(m),
while in the latter it is of size O(2m). Not to despair,
in the next section we present a natural automata fam-
ily admitting a small Krohn-Rhodes decomposition.

4.4 KR decomposition example

Consider a decision tree of depth d and fan-out at
most k. Each edge in the tree is marked with a char-
acter in a finite alphabet that denotes some external
input. The edges connecting a node N to its children
are all marked by different characters. In such a tree,
one reaches a decision by beginning at the root and
traversing a path to a leaf which stores some decision.
At each node the choice of which child to choose next
depends on an input which defines the next edge, and
thus the “right” child. Such trees are commonly used
in various branches of artificial intelligence, natural
language processing and other disciplines.

Consider a generalization of such a decision tree,
given by adding to each node N a loop edge back to
N . In every internal node, such a loop determines
the action to take when the input is not one of the
characters marking an edge to a child of N . In every
leaf, this loop is marked by every character in the in-
put alphabet. This construction yields an automaton
that emulates a decision tree that can wait as long as
required for the right input to reach decisions. Figure
3 shows an example of such a generalized tree, that
has depth d = 3, fan-out k = 2, accepts as input the
set {1, 2, 3, 4} and is currently in the right node of the
second level.

Figure 3: Generalized decision tree.

We next prove that such a generalized decision tree
has a Krohn-Rhodes decomposition with (d − 1)(1 +
log k) flip-flops. As a first step we transform the gen-
eralized decision tree into a cascade product of d − 1
automata, where each automaton represents one in-

41

S. DOLEV, J. GARAY, N. GILBOA, V. KOLESNIKOV

ternal level of the decision tree. Each such automaton
has k + 1 nodes. The first k nodes represent the (at
most) k children of a node at the current level, while
the last node, number k + 1 represents the current
level.

Each node in the generalized decision tree is
mapped to a product of d − 1 nodes in the cascade
product. A node in the decision tree that is reached
from the root by a path s1, . . . , sj , where j < d is rep-
resented by the tuple (s1, . . . , sj , k + 1, . . . , k + 1) in
the cascade product.

The automaton representing the root accepts every
input that the decision tree accepts. The first k nodes
of this automaton loop to the same node for every
input (in other words, once the state of the decision
tree moves from the root to one of its children, it will
never move to a different child). Node k + 1 has an
edge to node i, i = 1, . . . , k marked with any input
that sends the root to the i-th child in the decision
tree. For any other input node k + 1 loops back into
itself.

In the automaton representing level j, 1 < j < d,
there are k + 1 possible inputs γ1, . . . , γk+1. The first
k nodes loop to the same node for every input. Node
k + 1 has an edge marked γi to node i for every i =
1, . . . , k and loops back into node k + 1 with input
γk+1. Thus input γi for i = 1, . . . , k means that the
current state of the decision tree moves to the i-th
child, while input γk+1 means that the state does not
change.

Computing an input for an automaton in the j-th
level of the cascade product is done in the natural
way: given that the first j1 automata are in states
s1, . . . , sj−1 and that the input to the cascade product
is δ we emulate the decision tree when its state is
reached by a path (s1, . . . , sj−1 from the root and its
input is δ. If the decision tree moves to child i, the
input to the j-th automaton is γi and if the state of
the decision tree does not change on input δ then the
input to the j-th automaton is γk+1.

Each of the automata in the cascade product have
k+1 nodes and can be represented by a cascade prod-
uct of 1+log k flip-flops. The first flip-flop in the prod-
uct determines whether the automaton is in state k+1
or in one of the other k states. This flip-flop has the
identity transition and a reset to the state represent-
ing the k children. The other log k flip-flops represent
which child is chosen.

Figure 4 shows the flip-flops and the current states
of a decomposition for the decision tree in Figure 3.
For each of the first d− 1 = 2 levels of the tree there
are 1 + log k = 2 flip-flops, thus four automata in
this decomposition. The state of the first automaton
in each level shows whether the current state is in
that level or in one of the next levels. Since the first
automaton is in state s1, and the third automaton
is in state s4, we see that the state is in the second
level. The state of the second automaton in each level
represents the correct branch. The second automaton
is in state s3, which means that the current state is
in the right branch of the root. The input of the first
flip-flop is identical to the input of the decision tree,
but the input of all the other flip-flops is a function of
the original input and the previous states.

Figure 4: KR representation of the generalized decision

tree.

We have so far shown that a generalized deci-
sion tree has a Krohn-Rhodes decomposition with
(d − 1)(1 + log k) flip-flops. Our method to produce
a tree of automata that can be privately computed
requires 2d−12k nodes. For a balanced decision, with
d = log n, our solution requires O(nk) nodes

5 Conclusions

In this work we tackle a new problem, that of se-

42

SECRET SHARING KROHN-RHODES: PRIVATE AND PERENNIAL DISTRIBUTED COMPUTATION

curing a distributed computation on inputs of un-
bounded length. Combined with the requirement of
non-interactivity of the execution phase, this presents
a setting where the large body of work on secure multi-
party computation does not seem to be applicable. We
define security in this setting, and show how to achieve
it for a useful class of functions.

Our algorithms show the feasibility of a solution,
and lay the foundations for future research in swarm
computing, which may find applications in areas such
as design of UAVs—unmanned aerial vehicles that col-
laborate in a common mission—as well as in cloud
computing. Last but not least, our work puts forth
an interesting application of the fundamental Krohn-
Rhodes theory of automata decomposition.

Acknowledgments

It is a great pleasure to thank Azaria Paz and Stuart
Margolis for useful discussions. We also thank the
anonymous reviewers for ICS 2011 for their helpful
comments.

References

[1] M. Ben-OR, S. Goldwasser, and A. Wigderson.
Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In
STOC, pages 1–10, 1988.

[2] R. Canetti, U. Feige, O. Goldreich, and M. Naor.
Adaptively Secure Multi-Party Computation. In
STOC, pages 639–648, 1996.

[3] D. Chaum, C. Crépeau, and I. Damg̊ard. Multi-
party unconditionally secure protocols(extended
abstract). In STOC, pages 11–19, 1988.

[4] S. Dolev, J. Garay, N. Gilboa, and V. Kolesnikov.
Swarming secrets. In 47th Annual Allerton Con-
ference on Communication, Control, and Com-
puting, 2009.

[5] D. Dolev, C. Dwork, O. Waarts, and M. Yung.
Perfectly secure message transmission. J. ACM,
40:1, pages 17–47, 1993.

[6] S. Dolev, L. Lahiani, and M. Yung. Secret swarm
unit reactive k-secret sharing. In INDOCRYPT,
pages 123–137, 2007.

[7] P. Domosi and C.L. Nehaniv. Algebraic The-
ory of Automata Networks (SIAM Monographs
on Discrete Mathematics and Applications, 11).
Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2004.

[8] S. Eilenberg. Automata, Languages, and Ma-
chines, Vol. B. Academic Press, London, New
York, NY, USA, 1976.

[9] C. Gentry. Fully Homomorphic Encryption Using
Ideal Lattices. In 41st ACM Symposium on The-
ory of Computing (STOC), pages 169-178, 2009.

[10] F. Higgins, A. Tomlinson and K. Martin. Sur-
vey on Security Challenges for Swarm Robotics.
ICAS 2009, pages 307–312.

[11] M. Ito, A. Saito, and T. Nishizeki. Secret shar-
ing scheme realizing general access structure. In
IEEE Globecom, pages 99–102, 1987.

[12] K.R. Krohn and J. L. Rhodes. Algebraic theory
of machines, 1962.

[13] K.R. Krohn and J. L. Rhodes. Algebraic theory
of machines i: prime decomposition theorems for
finite semigroups and machines. Transactions of
the American Mathematical Society, 116:450–464,
1965.

[14] S. Margolis Complexity of holonomy decomposi-
tion. Private communication, February, 2010.

[15] B. Pfitzmann and M. Waidner. Composition and
integrity preservation of secure reactive systems.
In CCS ’00: Proceedings of the 7th ACM confer-
ence on Computer and Communications Security,
pages 245–254, 2000.

[16] T. Rabin and M. Ben-Or. Verifiable secret shar-
ing and multiparty protocols with honest major-
ity. In STOC, pages 73–85, 1989.

[17] A. Shamir. How to share a secret. Communica-
tions of the ACM, 22:612–613, 1979.

[18] M. Weiser. The Computer for the 21th Century.
Scientific American, September, 1991.

[19] H.P. Zeiger. Cascade synthesis of finite state ma-
chines. Information and Control, 10:419–433,
1967. Erratum: Information and Control 11(4):
471 (1967).

A Proofs

We repeat the statements here for convenience.

Proposition 4.1. Let A = (ST, Γ, µ) be the automa-
ton held by the dealer, and sinit an initial state. Fix
a natural number k, and a sequence of k input sym-
bols (γ1, . . . , γk), γj ∈ Γ, j = 1, . . . , k. Assume that
executing A on (γ1, . . . , γk) from state sinit termi-
nates in state sterm. Then performing the initializa-
tion procedure described in Section 4.2, and all agents

43

S. DOLEV, J. GARAY, N. GILBOA, V. KOLESNIKOV

P1, . . . , Pn executing Algorithm 1 on every γj and
Algorithm 2 after γk is processed, returns the state
sterm.

Proof: We prove the proposition by induction on
k. The base case, k = 0, requires proving that
immediately after initialization, executing Algorithm
2 returns sinit. By choice of the homomorphism
Ψ = (Ψ1,Ψ2), there exists a tuple (s1, . . . , sm) s.t.
Ψ1(s1, . . . , sm) = sinit. The construction of Section
4.2 ensures that lines 2–9 of Algorithm 2 correctly de-
termine (s1, . . . , sm). Since the dealer shares the se-
cret Ψ(s1, . . . , sm) during initialization, Algorithm 2
returns sinit.

For the inductive step, assume that after all players
receive the same input stream (γ1, . . . , γj), execute
Alg.1 on each input symbol, and run Alg.2 such that
the output is the current state ofA which we denote by
scurr. Assume that if the next input symbol is γj+1,
then the next state of A is snext = µ(scurr, γ

j+1).
We prove that running Alg.1 on input γj+1 and then
running Alg.2 returns snext.

By definition of the homomorphic representation we
have a tuple (sc

1, . . . , s
c
m) such that Ψ1(sc

1, . . . , s
c
m) =

scurr. For all γ ∈ Γ we have

Ψ1(µ1(sc
1, ϕ1(Ψ−1

2 (γj+1)), . . . , µm(sc
m, ϕm(sc

1,
. . . , sc

m,Ψ−1
2 (γj+1)))) = µ(scurr, γ

j+1) = snext.

Since by induction, executing reconstruction by Al-
gorithm 2 returns scurr, there is a path of nodes
N1, . . . , Nm beginning at the root such that the secret
value on the edge between Ni and Ni+1 is 1, and for
any other edge from Ni to level i + 1 the secret value
is 0. Furthermore, if Ni is a permutation automaton
then the edge from Ni to Ni+1 is marked with sc

i , and
otherwise (Ni is two flip-flops), the edge from Ni to
Ni+1 is marked with a flip-flop FF and the current
state of FF is sc

i .

In the online phase, Algorithm 1 goes over each
node in T , including N1,. . .,Nm. For every i = 1,
. . . , m, if Ai is a permutation automaton then in line
12 the state marking the edge between Ni and Ni+1

changes from sc
i to µi(s, ϕi(s1, . . . , si−1,Ψ−1

2 (γ))).
Since the share marking this edge does not
change, the reconstruction algorithm collects
µi(s, ϕi(s1, . . . , si−1,Ψ−1

2 (γ))) for i = 1, . . . , m
in lines 2–9 and, thus, its output in line 10 is exactly
snext. ¤

Proposition 4.2. The construction of Section 4.2—

initialization procedure, and Algorithms 1 and 2—
guarantees privacy in the progressive corruption
model, according to Definition 3.3.

Proof sketch: The privacy of our construction fol-
lows from the properties of secret sharing (cf. Defi-
nition 2.1) that we employ. It suffices to show that
the adversary’s view ViewΠ

ρ (X, s) is distributed inde-
pendently from ρ,X, and s, for a fixed length of ρ ,
say, ` ≤ t. In particular, the view of each execution is
identical to the execution ofA where agents Pi1 , ..., Pi`

are corrupted simultaneously at the beginning of the
execution. The latter claim is also easy to verify, as
follows.

Firstly, we assume that the shares generated by
different executions of secret-sharing are distributed
identically. This easily achieved property is necessary,
so that Adv would not be able to track the move-
ment of shares in the progressive corruption model.
Then the claim follows from the observation that each
share of each state of each automaton in the tree is
distributed identically at the time of the agent’s cor-
ruption (given t or fewer corruptions). Further, all the
labels of the children of each automaton node are a
random permutation on the set of states of that node,
and thus also do not carry any information about the
state. ¤

44

