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Abstract: We initiate the study of property testing of submodularity on the boolean hypercube. Submodular
functions come up in a variety of applications in combinatorial optimization. For a vast range of algorithms,
the existence of an oracle to a submodular function is assumed. But how does one check if this oracle indeed
represents a submodular function?
Consider a function f : {0, 1}n → R. The distance to submodularity is the minimum fraction of values of f that
need to be modified to make f submodular. If this distance is more than ε > 0, then we say that f is ε-far
from being submodular. The aim is to have an efficient procedure that, given input f that is ε-far from being
submodular, certifies that f is not submodular. We analyze a very natural tester for this problem, and prove
that it runs in subexponential time. This gives the first non-trivial tester for submodularity. On the other hand,
we prove an interesting lower bound (that is, unfortunately, quite far from the upper bound) suggesting that
this tester cannot be very efficient in terms of ε. This involves non-trivial examples of functions which are far
from being submodular and yet do not exhibit too many local violations.
We also provide some constructions indicating the difficulty in designing a tester for submodularity. We construct
a partial function defined on exponentially many points that cannot be extended to a submodular function, but
any strict subset of these values can be extended to a submodular function.

Keywords: submodularity, property testing, sublinear algorithms.

1 Introduction

Submodular functions have been studied in great
depth in combinatorial optimization [4,9,10,15-17,21].
A set function 2U → R is submodular if ∀S, T ⊆ U ,
f(S∪T )+f(S∩T ) 6 f(S)+f(T ). An alternative and
equivalent view of submodularity is the monotonicity
of marginal values. For all S ⊂ T and elements i /∈ T ,
a submodular function satisfies f(S ∪ {i}) − f(S) >
f(T ∪{i})− f(T ). We will think of f as a function in
{0, 1}n → R.

These functions are often used in many algorithmic
applications and very naturally show up when model-
ing utilities. It is quite common to assume that algo-
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rithms have oracle access to some submodular func-
tion: given a set S, we have access to f(S). Observe
that, in general, the description of the submodular
function f has size that is exponential in n, whereas
most algorithms that use f run in polynomial time.
This means that these algorithms look at a very tiny
fraction of f , yet their behavior depends on a very
global property of f . This leads to the very natural
question: what if the function f provided to the al-
gorithm was not submodular? Could the algorithm
detect this, or would it get fooled? Obviously, if f
is constructed by taking a submodular function and
making very few changes to the values, then there is no
need to think that algorithms should be affected. On
the other hand, if f is “significantly different” from a
submodular function, the behavior of these algorithms
could very different.

Let us formally explain the notion of being different
from a submodular function. Since polynomial time
algorithms are sublinear with respect to the size of f ,
it is natural to use some property testing terminology.
A function f is ε-far from being submodular if f needs
to be changed at an ε-fraction of values to make it
submodular. In polynomial time, can we detect that
such a function is not submodular? If this is not possi-
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ble, then this raises some very fundamental questions
about submodularity. If the plethora of algorithms
used cannot tell whether their input f is submodu-
lar or not, then in what sense are they actually using
the submodularity of f? This would suggest that the
algorithms exploit a property more general than sub-
modularity. It would be strange if we expect input
functions f to have a property (submodularity), but
we cannot even check if these functions deviate signif-
icantly from submodularity.

The main question here is whether submodularity
is testable, i.e, is there a polynomial time procedure
that distinguishes submodular functions from those
that are ε-far? (This question was first posed as
an open problem in [18], in the context of submod-
ularity testing over grids. Their results focused on
testing over large low-dimensional grids rather than
the high-dimensional hypercube {0, 1}n.) More con-
cretely, what are the kind of structural properties of
submodularity that we need to address? Property
testing algorithms, especially those for functions on
the hypercube, usually check for some local property.
These algorithms check if the desired property holds
in a small local neighborhood, for some randomly cho-
sen neighborhoods. If no deviation is detected, then
property testers conclude that the input function is
close to the property. Do similar statements hold for
submodularity? We show non-trivial upper and lower
bounds connecting local submodularity violations to
the distance.

Property testing proofs often show that a function is
close to a property by explicitly modifying the func-
tion to make it have the property. Usually, there is
some procedural method to perform this conversion.
This raises a very interesting question about partial
submodular functions: suppose one is given a par-
tial function over the hypercube. This means that
some set of values is defined, but the remaining are
left undefined. Under what circumstances can this be
completed into a submodular function? If this can-
not be completed, can we provide a small certificate of
this? For a vast majority of natural testable properties
(over functions on the hypercube, e.g. monotonicity)
such small certificates do exist. Unfortunately, this
is no longer true for submodularity. We present an
example showing that a minimal certificate of non-
extendability can be exponentially large.

1.1 Our results

Before we state our main theorems, we first set some

notation.

Definition 1.1 Denote by ei ∈ {0, 1}n the canonical
basis vector which has 1 in the i-th coordinate and 0
everywhere else.

For a function f : {0, 1}n → R, i ∈ [n] and x ∈
{0, 1}n such that xi = 0, we define the marginal value
of i (or discrete derivative) at x as ∂if(x) = f(x +
ei)− f(x).

A function f is submodular, if for any i ∈ [n] and
x, y ∈ {0, 1}n such that xi = yi = 0 and x 6 y
coordinate-wise, ∂if(x) > ∂if(y).

The distance d(f, g) between two functions f and g
is the fraction of points x where f(x) 6= g(x). Let S
be the set of all submodular functions. The distance
of f to submodularity is ming∈S d(f, g). We say f
is ε-far from being submodular if the distance of f to
submodularity is more than ε.

Definition 1.2 A property tester for submodularity
is an algorithm with the following properties.

• If f is submodular, then the algorithm answers
YES with probability 11.

• If f is ε-far from being submodular, then the al-
gorithm answers NO with probability at least 2/3.

• The number of queries made to f is sublinear
in the domain size, which is 2n. (Ideally, the
number of queries is polynomial in n and 1/ε.)

Submodularity vs. monotonicity. Our first obser-
vation is that testing submodularity is at least as hard
as testing monotonicity. More formally, the problem
of testing monotonicity for a function f : {0, 1}n → R
can be reduced to the problem of testing submodular-
ity for a function f ′ : {0, 1}n+1 → R. We present this
reduction in Section 5.

A consequence of this is that known lower bounds
for monotonicity testing apply also to submodularity
testing. For example, it is known that a non-adaptive
monotonicity tester requires at least Ω(

√
n) queries

[8]. We remark that the best known monotonicity
tester on {0, 1}n takes O(n2/ε) queries [3] and is non-
adaptive.

Submodularity can be naturally viewed as “second-
degree monotonicity”, i.e. monotonicity of the dis-

1We are actually dealing with one-sided testers here. If we
allowed a probability of error for this case, that would be a
two-sided tester.
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crete partial derivatives ∂if . So a very natural test for
submodularity is to simply run a monotonicity tester
on the functions ∂if . In one direction, it is clear that
for a submodular function, such a tester would always
accept. However, it is not clear whether this tester
would recognize functions that are far from being sub-
modular and label them as such.

Monotonicity testers search randomly for pairs
x, x + ei such that f(x) > f(x + ei). Such a pair
of points can be naturally called a “violated pair”.
It is known that if f is ε-far from being monotone,
then the fraction of violated pairs is at least ε/nO(1)

[3,13]. If we want to test submodularity by reduc-
ing to a monotonicity tester in each direction, this
means that we are looking for violations of the fol-
lowing type: x ∈ {0, 1}n such that xi = xj = 0 and
f(x + ei)− f(x) < f(x + ei + ej)− f(x + ej). We call
such violations violated squares.

Definition1.3 Let x ∈ {0, 1}n be such that xi = xj =
0. We call {x, x+ei, x+ej , x+ei +ej} a square. This
is called a violated square, if f(x) + f(x + ei + ej) >
f(x + ei) + f(x + ej). The density of violated squares
is the number of violated squares divided by

(
n
2

)
2n−2.

Our main combinatorial result consists of two
bounds on the relationship of the distance from sub-
modularity and the density of violated squares.

Theorem 1.4 Let n be a sufficiently large integer.

• Let ε ∈ (0, e−5). For any function f : {0, 1}n →
R that is ε-far from being submodular, the den-
sity of violated squares is at least εO(

√
n log n).

• For any ε > 2−n/10, there is a function f :
{0, 1}n → R which is ε-far from being submodu-
lar and its density of violated squares is less than
ε4.8.

The first part of the theorem is proven through rel-
atively basic observations. The second part is quite
technical and requires a much deeper understanding
of submodularity.

Theorem 1.4 provides evidence that testing sub-
modularity is very different from testing monotonicity.
An intuition one might get from monotonicity testing
is that if a natural extension to submodularity exists,
its dependence on ε should be relatively mild, perhaps
linear or quadratic. We show that this is not the case,
in particular if the dependence is a polynomial in 1/ε,
the degree of the polynomial would have to be at least
5. This holds even in the range of exponentially small

ε = 2−Θ(n), which means that poly(n)/ε4.8 queries for
any polynomial in n are not enough. This might be
interpreted as counterintuitive to the notion that the
dependence is polynomial at all. However, we cannot
currently push this construction any further.

The first part of Theorem 1.4 implies immedi-
ately that a submodularity tester that checks q =
1/εO(

√
n log n) random squares succeeds with high

probability2. Note that this is a non-adaptive tester,
because the queries do not depend on the function val-
ues. To our knowledge, this is the first testing result
asymptotically better than the trivial tester checking
2Θ(n) squares.

Corollary 1.5 There is a subexponential time non-
adaptive tester for submodularity. This procedure
samples 1/εO(

√
n log n) sqaures at random and checks

if any are violated. If the input f is ε-far from being
submodular, this procedure rejects with high probabil-
ity.

Extending partial functions. A partial function f
is one that is defined on only some subset of the hyper-
cube. Such a function is extendable, if the remaining
values can be filled in to get a submodular function.
Although the question of extending partial functions
is interesting in itself, it also has some relevance to
question of testing submodularity.

Any proof of a property tester must show that if
a function f passes the tester (with high probabil-
ity), then f must be ε-close to submodularity. This
is usually done by arguing that if f has a sufficiently
low density of local violations, one can modify an ε-
fraction of values and remove all “obstructions” to
submodularity. Since an f that passes the tester must
have a low density of local violations, f is ε-close. An
understanding of these obstructions to submodularity
is often helpful for designing testers. An obstruction
is just a subset of values that cannot exist in any sub-
modular function.

Given a partial function f that is not extendable,
we would ideally like to find a small certificate for this
property. Unfortunately, we will show that such cer-
tificates can be exponentially large. We give a partial
function with a surprising property. The partial func-
tion f is defined on an exponentially large set and is
not extendable. If any single value is removed, then
this new function is extendable.

2We use “high probability” to refer to probability > 2/3.
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Definition 1.6 For a partial function f , let dom(f)
be the set of domain points when f is defined. Let
A ⊆ {0, 1}n. The restriction of f to A, f |A, is
the partial function that agrees with f on A and is
undefined everywhere else. The partial function f is
minimally non-extendable if f |A is extendable for all
A ⊂ dom(f).

Theorem 1.7 There exists a minimally non-
extendable function f such that |dom(f)| = 2Ω(n).

1.2 The difficulty in testing
submodularity

The values of f can interact in non-trivial ways to
create obstructions to submodularity. Contrast this
to monotonicity. A partial function f (on the hyper-
cube) cannot be extended to a non-decreasing mono-
tone function iff there is a pair of sets S ⊂ T such that
f(S) > f(T ). There is always a certificate of size 2
that a partial function cannot be extended. So this
completely characterizes the obstructions to mono-
tonicity, and is indeed one of the reasons why mono-
tonicity testers work. Our work implies that such a
simple characterization does not exist for submodu-
larity. Indeed, as Theorem 1.7 claims, obstructions
to submodularity can have an extremely complicated
structure.

Functions that are far from being submodular can
“hide” their bad behavior. In Theorem 3.3, we show
the existence of a function f with exactly one violated
square, but making f submodular requires changing
2n/2 values. Somehow, even though the function is (in
a weak sense) “far” from submodular, the only local
violation that manifests itself is a single square. The
functions described by the second part of Theorem 1.4
are constructed through generalizations of this exam-
ple.

1.3 Previous work

Property testing, which was defined in [14,20], is a
well-studied field of theoretical computer science. Ef-
ficient testers have been given for a wide variety of
combinatorial, algebraic, and geometric problems (see
surveys [6,12,19]). The problem of property testing
for monotonicity over the hypercube has been stud-
ied in [2,3,5,7,8,13]. In particular, monotonicity of a
function over {0, 1}n can be tested using O(n2/ε) non-
adaptive queries [3] and Ω(

√
n) queries are necessary

[8].

As mentioned earlier, the problem of testing sub-
modularity was first raised by [18]. They considered
submodularity over general grid structures (of which
the hypercube is a special case). Their focus was
on testing submodularity over 2-dimensional grids.
Specifically, [18] gave strong results for testing Monge
matrices. Monge matrices are essentially submodular
functions over the n × m integer grid. Here, the di-
mension is 2, but the domain in each component is
large. In contrast, we are studying submodular func-
tions over high-dimensional domains, where each com-
ponent is binary. Hence, our problem is quite orthog-
onal to testing Mongeness, and we need a different set
of techniques.

Another related set of results is recent work on
learning and approximating submodular functions
[1,11]. Here, we want to examine a value oracle
through polynomially many queries (which is simi-
lar to our setting) and learn sufficient information so
that we are able to answer queries about the func-
tion. The difference is that in this model, we care
about multiplicative-factor approximation to the orig-
inal function. An even more essential difference is that
the input function is guaranteed to be submodular,
rather than possibly being corrupted. For example,
[11] shows that we can “learn” a monotone submodu-
lar function using polynomially many queries so that
afterwards we can answer value queries within a mul-
tiplicative Õ(

√
n) factor, and this is optimal up to

logarithmic factors. In contrast, the input function in
our model might be masquerading as a submodular
function but in truth be very far from being submod-
ular.

1.4 Organization

The rest of the paper is organized as follows. In Sec-
tion 2, we present our basic submodularity tester and
prove the first part of Theorem 1.4. In Section 1.3,
we present our construction of submodular functions
from lattices and prove the second part of Theorem
1.4. In Section 4, we discuss extendability of submod-
ular functions and prove Theorem 1.7. In Section 5,
we present the reduction from monotonicity testing to
submodularity testing. In Section 6, we discuss future
directions.
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2 A subexponential submodularity
tester

The violated-square tester.

• For a parameter q ∈ Z, repeat the following q
times.

• Sample uniformly at random x ∈ {0, 1}n and
i, j ∈ {` : x` = 0}. If

f(x) + f(x + ei + ej) > f(x + ei) + f(x + ej),

i.e. if {x, x + ei, x + ej , x + ei + ej} is a violated
square, then return NO.

• If none of the tested squares is violated, then
return YES.

Clearly, if the input function is submodular, the
tester answers YES. We would like to understand how
well this tester performs in case the input function is ε-
far from being submodular. The following observation
is standard and reduces this question to a combinato-
rial problem about violated squares.

Lemma 2.1 The following two statements are equiv-
alent:

• The violated-square tester using q(n, ε) queries
detects every function that is ε-far from being
submodular with constant probability.

• For every function which is ε-far from being
submodular, the density of violated squares is
Ω(1/q(n, ε)).

Therefore, to understand this tester we need to un-
derstand the relationship between the distance from
submodularity and the density of violated squares. In
the rest of this section, our main goal is to prove the
first part of Theorem 1.4, i.e. the claim that for a
function ε-far from being submodular, the density of
violated squares must be at least εO(

√
n log n). Using

Lemma 2.1, this implies Corollary 1.5. First, we prove
the following lemma.

Lemma 2.2 Assume {x, x+ei, x+ej , x+ei +ej} is a
violated square. Then it is possible to decrease all the
values either in {y : y 6 x} or in {y : y > x+ei+ej} by
a constant such that the square {x, x+ei, x+ej , x+ei+
ej} is no longer violated and no new violated square is
created.

Proof: Denote by d = f(x) + f(x + ei + ej)− f(x +
ei)−f(x+ej) the “deficit” of the violated square. One
way to fix this square is to decrease the value of f(x)

by d; however, this might create new violated squares.
Instead, we decrease the value of f(y) for every y 6 x;
i.e., we define a new function f̃(y) = f(y) − d for
y 6 x, and f̃(y) = f(y) otherwise. (Alternatively, we
can define f̃(y) = f(y) − d for y > x + ei + ej , and
f̃(y) = f(y) otherwise; the analysis is symmetric and
we omit this case.)

Consider any other square that was previously not
violated, i.e. f(x′) + f(x′ + ei′ + ej′) 6 f(x′ + ei′) +
f(x′+ej′). Note that x′i′ = x′j′ = 0. We consider four
cases:

• If x′` > x` for some coordinate `, then we do not
modify any value in the square {x′, x′ + ei′ , x

′ +
ej′ , x

′ + ei′ + ej′}.
• If x′ 6 x and both xi′ = 0 and xj′ = 0, then

the only value we modify in the square is f(x′),
which is decreased by d. This cannot create a
submodularity violation.

• If x′ 6 x and exactly one of the coordinates
xi′ , xj′ is 1, then we modify two values in the
square; for example f(x′) and f(x′ + ei′). Since
we decrease both by the same amount, this again
cannot create a submodularity violation.

• If x′ 6 x and xi′ = xj′ = 1, then we decrease all
four values in the square by the same amount.
Again, this cannot create a submodularity vio-
lation. ¤

This means we can fix violated squares one by one,
and the number of violated squares decreases by one
every time. The cost we pay for each fix is the num-
ber of points in the cube above or below the respective
square. Recall that we count the number of modified
values overall, and hence what counts is the union of
all the cubes modified in the process. Intuitively, it
is more frugal to choose up-closed cubes for violated
squares that are above the middle layer of the hy-
percube, and down-closed cubes for squares that are
below the middle. A counting argument gives the fol-
lowing.

Lemma 2.3 Let ε ∈ (0, e−5) and let f have at
most ε

√
n log n2n violated squares. Then these violated

squares can be fixed by modifying at most ε2n values.

Proof: Denote by B the set of bottom points for the
violated squares which are below the middle layer; i.e.
we have ||x||1 6 n/2 for each x ∈ B. (The squares
above the middle layer can be handled symmetrically.)
We choose to modify the down-closed cube, Cx = {y ∈
{0, 1}n : y 6 x}, for each x ∈ B. We can fix the
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violated squares one by one, by modifying values in
the cubes Cx. The total number of modified values is
|⋃x∈B Cx|. We estimate the cardinality of this union
by combining two simple bounds across levels of the
hypercube. Denote Lj = {x ∈ {0, 1}n : ||x||1 = j}.
We have

∣∣∣
⋃

x∈B

Cx

∣∣∣ =
n/2∑

j=0

∣∣∣
⋃

x∈B

(Cx ∩ Lj)
∣∣∣.

First, by the union bound, we have
∣∣∣

⋃

x∈B

(Cx ∩ Lj)
∣∣∣ 6

∑

x∈B

|Cx ∩ Lj |

=
∑

x∈B

(||x||1
j

)

6 |B|
(

n/2
j

)

Secondly, we have (trivially)

∣∣∣
⋃

x∈B

(Cx ∩ Lj)
∣∣∣ 6 |Lj | =

(
n

j

)
.

We choose the better of the two bounds depending
on j. In particular, for j 6 n/2 − a

√
n, we get∑n/2−a

√
n

j=0

(
n
j

)
= 2n Pr[X 6 n/2 − a

√
n] 6 2ne−a2

where X is a binomial Bi(n, 1/2) random variable
and the last inequality is a standard Chernoff bound.
For j > n/2 − a

√
n, we use

∑k
j=n/2−a

√
n |B|

(
k
j

)
=

|B|∑a
√

n
j=0

(
k
j

)
6 |B|ka

√
n 6 |B|na

√
n. We conclude

that

˛̨
˛
[

x∈B

Cx

˛̨
˛ =

n/2X
j=0

˛̨
˛
[

x∈B

(Cx ∩ Lj)
˛̨
˛ 6 2ne−a2

+ |B|na
√

n.

Let a = 1
2 ln(1/ε); we also assume that |B| 6

2nε
√

n ln n. For ε ∈ (0, e−5), this implies
˛̨
˛
[

x∈B

Cx

˛̨
˛ 6 2ne−( 1

2 ln(1/ε))2 + 2nε
√

n ln nn
1
2
√

n ln(1/ε)

= (ε
1
4 ln(1/ε) + ε

1
2
√

n ln n)2n 6 1

2
ε2n.

¤

This lemma immediately implies the first part of
Theorem 1.4. Assuming that f is ε-far from being sub-
modular, we get that the number of violated squares
is at least ε

√
n log n2n for ε ∈ (0, e−5), i.e. the density

of violated squares is at least ε
√

n log n.

3 Few violated squares, yet large
distance

We now give a construction of nonsubmodular func-
tions that have large distance but a relatively small
fraction of violated squares. As we mentioned earlier,
these bounds are nowhere near our positive results.
Nonetheless, we are able to show a significant differ-
ence from monotonicity.

Our first tool to construct these functions is an in-
teresting family of submodular functions. It is known
that the set of minimizers of a submodular function
always forms a lattice3 [4]. We prove that conversely,
for any lattice L ⊂ {0, 1}n there is a submodular
function whose set of minimizers is exactly L. We
will then piece together these submodular functions
to construct a non-submodular function with the de-
sired properties.

3.1 Submodular functions from

lattices

Lemma 3.1 Let L ⊂ {0, 1}n be a lattice, i.e a set
of points closed under coordinate-wise minimum and
maximum. Then the following Hamming distance
function is submodular:

dL(x) = min
y∈L

||x− y||1.

Proof:[Lemma 3.1] In this proof, we use the set-
function notation and identify {0, 1}n with subsets of
[n]. A lattice L ⊂ {0, 1}n is a family of sets closed
under taking unions and intersections. The distance
function d can be written as

d(S) = min
L∈L

|S∆L|

where |S∆L| denotes the symmetric difference. As-
sume that d(S) = |S∆U | and d(T ) = |T∆V | for some
U, V ∈ L. We want to prove d(S ∪ T ) + d(S ∩ T ) 6
d(S) + d(T ). We prove in fact that

|(S ∪ T )∆(U ∪ V )|+ |(S ∩ T )∆(U ∩ V )|
6

|S∆U |+ |T∆V |
3A lattice is any partial order with the operations of ”meet”

and ”join”. In our setting, this means a subset of {0, 1}n

closed under taking coordinate-wise minimum and maximum.
Or equivalently, a family of sets closed under taking intersec-
tions and unions.
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which is sufficient since U ∪ V,U ∩ V ∈ L by the lat-
tice property, and therefore d(S∪T ) 6 |(S∪T )∆(U ∪
V )|, d(S ∩ T ) 6 |(S ∩ T )∆(U ∩ V )|. These two sym-
metric differences can be bounded as follows:

|(S ∪ T )∆(U ∪ V )|
=

|(S ∪ T ) \ (U ∪ V )|+ |(U ∪ V ) \ (S ∪ T )|
=

|S ∩ Ū ∩ V̄ |+ |S̄ ∩ T ∩ Ū ∩ V̄ |
+|U ∩ S̄ ∩ T̄ |+ |Ū ∩ V ∩ S̄ ∩ T̄ |

6
|S ∩ Ū ∩ V̄ |+ |S̄ ∩ T ∩ V̄ |

+|U ∩ S̄ ∩ T̄ |+ |Ū ∩ V ∩ T̄ |

|(S ∩ T )∆(U ∩ V )|
=

|(S ∩ T ) \ (U ∩ V )|+ |(U ∩ V ) \ (S ∩ T )|
=

|S ∩ T ∩ V̄ |+ |S ∩ T ∩ Ū ∩ V |
+|U ∩ V ∩ T̄ |+ |U ∩ V ∩ S̄ ∩ T |

6
|S ∩ T ∩ V̄ |+ |S ∩ Ū ∩ V |

+|U ∩ V ∩ T̄ |+ |U ∩ S̄ ∩ T |

Adding up the two bounds and merging terms such as
|S ∩ Ū ∩ V̄ |+ |S ∩ Ū ∩ V | = |S ∩ Ū |, we obtain

|(S ∪ T )∆(U ∪ V )|+ |(S ∩ T )∆(U ∩ V )|
6

|S ∩ Ū |+ |T ∩ V̄ |+ |U ∩ S̄|+ |V ∩ T̄ |
=

|S∆U |+ |T∆V |

¤

Considering the known fact that the minimizers of
any submodular function form a lattice, we get the
following characterization.

Corollary 3.2 Let S ⊆ {0, 1}N . Then the following
statements are equivalent:

1. S is a lattice.
2. S is the set of minimizers of some submodular

function.
3. The Hamming distance function dS(x) =

miny∈S ||x− y||1 is submodular.

3.2 Functions with one violated square

We start with the following counter-intuitive result.

Theorem 3.3 For any n, there is a function f :
{0, 1}n → R which has exactly one violated square but
2n/2 values must be modified to make it submodular.

We remark that this statement is tight in the sense
that for any function with exactly one violated square,
it is sufficient to modify 2n/2 values (we leave the proof
as an exercise, using Lemma 2.2). To prove Theorem
3.3, we use Lemma 3.1 which says that any lattice
in {0, 1}n yields a natural submodular function. This
function does not have any violated squares. However,
we will add two additional dimensions and extend the
function in such a way that each point of the lattice
will produce exactly one violated square. Moreover,
due to the nature of the distance function, the func-
tion we construct will be a linear function in a large
neighborhood of each violated square. This will im-
ply that we cannot simply change one value in each
violated square if we want to make the function sub-
modular - such changes would propagate and force
many other values to be changed as well. We make
this argument precise later. The construction is as
follows.

Construction. Given: Lattice L ⊂ {0, 1}n. Output:
Function f : {0, 1}n+2 → R.

• We denote the arguments of f by (a, b, x) where
x ∈ {0, 1}n and a, b ∈ {0, 1}.

• Let f(0, 0, x) = ||x||1 =
∑n

i=1 xi.
• Let f(1, 1, x) = 1− ||x||1 = 1−∑n

i=1 xi.
• Let f(0, 1, x) = f(1, 0, x) = dL(x), the Ham-

ming distance function from L.

Lemma 3.4 The function f(a, b, x) constructed above
has exactly |L| violated squares, of the form {(0, 0, x),
(0, 1, x), (1, 0, x), (1, 1, x)} for each x ∈ L.

Proof: Observe that for any fixed a, b ∈ {0, 1},
f(a, b, x) is a submodular function of x. Therefore,
there is no violated square {z, z+ei, z+ej , z+ei +ej}
unless at least one of i, j is a special bit.

If exactly one of i, j is a special bit, we can as-
sume that it is the first special bit. First assume
the other special bit is 0, therefore we are looking
at a square with values f(0, 0, x), f(1, 0, x), f(0, 0, x +
ei, f(1, 0, x + ei). By construction, we know that
f(0, 0, x + ei) − f(0, 0, x) = 1 and f(1, 0, x + ei) −
f(1, 0, x) = dL(x + ei) − dL(x) 6 1, therefore the
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square cannot be violated. Similarly, if the other spe-
cial bit is 1, we are looking at a square with values
f(0, 1, x), f(1, 1, x), f(0, 1, x + ei, f(1, 1, x + ei). Here,
we always have f(1, 1, x + ei) − f(1, 1, x) = −1, and
f(0, 1, x + ei)− f(0, 1, x) = dL(x + ei)− dL(x) > −1.
So again, the square cannot be violated.

Finally, consider a square where i, j are ex-
actly the special bits. The square has values
f(0, 0, x), f(0, 1, x), f(1, 0, x), f(1, 1, x). Observe that
f(0, 0, x) + f(1, 1, x) = 1, and f(0, 1, x) + f(1, 0, x) =
2dL(x). The square is violated if and only if 2dL(x) <
1, i.e. when x ∈ L. This means that we have a one-to-
one correspondence between violated squares and the
points of the lattice. ¤

Thus we can generate functions with a prescribed
number of violated squares, depending on our ini-
tial lattice L. The simplest example is generated by
L = {x} being a 1-point lattice. In this case, it is easy
to verify directly that the function dL(x) is submodu-
lar, and hence our construction produces exactly one
violated square.

The second part of our argument, however, should
be that such a function is not very close to sub-
modular. In particular, consider L = {x} where
||x||1 = n/2. Suppose that we want to modify some
values so that the function f becomes submodular.
We certainly have to modify at least one value in the
violated square {(a, b, x) : a, b ∈ {0, 1}}. However, for
each fixed choice of a, b ∈ {0, 1}, the function f(a, b, x)
is linear. The last point in our argument is that it is
impossible to modify a small number of values “in the
middle” of a linear function (with many values both
above and below), so that the resulting function is
submodular. First, we prove the following.

Lemma 3.5. Suppose f : {0, 1}n → R is a submod-
ular function and f(0) > 0. Then there are at least
2n−1 points x ∈ {0, 1}n such that f(x) 6= 0.

Note that this is tight, for example by taking f(x) =
1− x1.

Proof: We prove the statement by induction on n.
Obviously it is true for n = 1. For n > 1, we partition
the cube {0, 1}n as follows: let

Qi = {x ∈ {0, 1}n : x1 = . . . = xi−1 = 0, xi = 1}
In other words, Qi is the set of points such that the

first nonzero coordinate is xi. We have {0, 1}n = {0}∪⋃n
i=1 Qi. Now consider a submodular function f :

{0, 1}n → R such that f(0) > 0. We consider two
cases.

If there is coordinate i such that f(ei) 6 0, then the
discrete derivative ∂if(0) is negative. By submodular-
ity, ∂if must be negative everywhere. Hence, for any
point x such that xi = 0, at least one of f(x), f(x+ei)
is nonzero.

The other case is that f(ei) > 0 for all i ∈ [n].
Then we apply the inductive hypothesis to Qi, which
implies that at least 1

2 |Qi| values in Qi are nonzero.
By adding up the contributions from Q1, . . . , Qn, we
conclude that at least half of all the values in {0, 1}n

are nonzero. ¤

To rephrase the lemma, we can start with a zero
function on {0, 1}n, increase the value of f(0) to a
positive value, and ask - how many other values do
we have to modify to make the function submodular?
The lemma says that at least 2n−1 values must be
modified. In fact, the condition of submodularity does
not change under the addition of a linear function,
so the zero function can be replaced by any linear
function. Thus the lemma says that it is impossible
to increase the value of a linear function at the lowest
point of a cube, without changing a lot of other values
in the cube.

Note that it is possible to decrease the value of a
linear function at the lowest point of a cube and this
does not create any violation of submodularity. What
is impossible is to decrease the value “in the middle”
of a linear function, without changing a lot of other
values. This is the content of the next lemma.

Lemma 3.6 Suppose n is even, f : {0, 1}n → R is a
submodular function and f(x) < 0 for some ||x||1 =
n/2. Then there are at least 2n/2 points x ∈ {0, 1}n

such that f(x) 6= 0.

This lemma is also tight, by taking f(y) = −1 when-
ever y 6 x and f(y) = 0 otherwise.

Proof: Consider Q = {y ∈ {0, 1}n : y 6 x}; this is a
cube of dimension n/2, hence |Q| = 2n/2. If f(y) 6= 0
for all y ∈ Q, we are done. Therefore, assume that
there is any point y ∈ Q such that f(y) = 0. Then
consider a monotone path from y to x; there must be
an edge (y′, y′ + ei) of negative marginal value. By
submodularity, all edges (z′, z′ + ei) for z′ > y′ must
have negative marginal value. There are at least 2n/2

such edges, since all the n/2 zero bits in x are also
zero in y′ and can be increased arbitrarily to obtain a
point z′ > y′. Each of these (disjoint) edges (z′, z′+ei)
contains a point of nonzero value, and hence there are
at least 2n/2 such points. ¤
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Now we can complete the proof of Theorem 3.3.

Proof:[Theorem 3.3] Consider the function f :
{0, 1}n+2 → R defined for a 1-point lattice L = {x},
||x||1 = n/2. By Lemma 3.4, f has exactly one vio-
lated square. Note that for each fixed a, b ∈ {0, 1},
the function f(a, b, x) is linear as a function of x.

Suppose f ′ : {0, 1}n+2 → R is submodular
(presumably close to f). Since f has a violated
square {(0, 0, x), (0, 1, x), (1, 0, x), (1, 1, x)}, f ′ must
differ from f on at least one of these values. Fix
a, b ∈ {0, 1} such that f ′(a, b, x) 6= f(a, b, x) and con-
sider the function f ′(a, b, x) − f(a, b, x) as a function
of x. Since f is linear, f ′ − f is again submodular
as a function of x. We have (f ′ − f)(x) 6= 0. If
(f ′ − f)(x) > 0, we apply Lemma 3.5 to the cube
{y : y > x}; if (f ′ − f)(x) < 0, we apply Lemma 3.6.
In both cases, we conclude that there are at least 2n/2

values x ∈ {0, 1}n such that f ′(x) 6= f(x). Therefore,
f is 2−n/2-far from being submodular. ¤

3.3 Boosting the example to increase
distance

Observe that in Theorem 3.3, the relationship be-
tween relative distance and density of violated squares
is quadratic: we have relative distance ε = 2−n/2 and
density of violated squares ' ε2 = 2−n. In order to
prove the second part of Theorem 1.4, we need to con-
sider a denser lattice. Since the regions of linearity
will be more complicated here, we need a more gen-
eral statement to argue about the number of values
that must be fixed to make a function submodular.

Lemma 3.7 Let f : {0, 1}n → R be submodular
(non-increasing marginals) on a down-monotone sub-
set D ⊂ {0, 1}n. If f(0) > 0 then there are at least

1
n+1 |D| points y ∈ D such that f(y) 6= 0.

This is also tight - consider for example D =
{0, e1, . . . , en} and f(x) = 1− ||x||1.

Proof: Suppose f(y) = 0 for some y ∈ D. Then
let x 6 y be minimal such that f(x) 6 0. Since x
is minimal (and cannot be 0 because f(0) > 0), for
every x such that xi = 1, we have f(x − ei) > 0.
Hence f(x) − f(x − ei) < 0 and by submodularity
f(y)− f(y− ei) < 0. Since f(y) = 0, this implies that
f(y − ei) > 0. In this case we call y − ei a witness for
y.

To summarize, for every y ∈ D we have either

f(y) 6= 0 or f(y− ei) 6= 0 for some witness of y. Since
every point can serve as a witness for at most n other
points, the number of nonzero values must be at least
|D|/(n + 1). ¤

∀e, ye +
∑

e′∈Γ+(e)

ye,e′ =
∑

e′∈Γ−(e)

ye′,e

∀S ∈ U ,
∑

e∈A+(S)

ye =
∑

e∈A−(S)

ye

∀e, e′ ∈ Γ+(e), ye,e′ > 0

∑

S∈D


 ∑

e∈A−(S)

ye −
∑

e∈A+(S)

ye


 f(S) < 0

Now we are ready to prove the second part of The-
orem 1.4.

Proof: We define L ⊂ {0, 1}n as follows:

• Consider n even and partition [n] into pairs {2i−
1, 2i}, 1 6 i 6 n/2.

• Let L = {x ∈ {0, 1}n : ∀i, x2i−1 = x2i}.

Obviously, this is a lattice, in fact it is isomorphic to a
cube of dimension n/2. The function f : {0, 1}n+2 →
R based on this lattice has exactly 2n/2 violated
squares, due to Lemma 3.4. It remains to estimate
the distance of f from being submodular.

To that end, focus on the “middle layer” of the lat-
tice, M = {x ∈ L : ||x||1 = n/2}. Such points have
exactly a half of the pairs equal to (0, 0) and a half
equal to (1, 1). For each such point x, consider points
y > x such that y still has the same number of pairs
equal to (1, 1) as x. Formally, let

Qx = {y > x : ∀i; y2i−1 = y2i = 1 ⇒ x2i−1 = x2i = 1}.

The reason for this definition is that for any point y ∈
Qx, it is possible to trace it back to x (by zeroing out
all the pairs which are not equal to (1, 1), we obtain
x). Hence the sets Qx are disjoint. The path from y
to x is also the shortest possible path to any point of
the lattice (because it is necessary to modify all pair
which are equal to (1, 0) or (0, 1)). In other words,
dL(y) = ||x − y|| for any y ∈ Qx. This implies that
the function f(a, b, y) for any fixed a, b is linear as a
function of y ∈ Qx.

Our final argument is that in order to make f sub-
modular, we would have to fix many values in each
set Qx. Let us assume that f ′ is submodular. Since
f has a violated square {(0, 0, x), (0, 1, x), (1, 0, x),
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(1, 1, x)} for each x ∈ L, f ′ must be different from f
in at least one point in each such square. More specif-
ically, f ′ must be larger than f for one of the points
(0, 1, x), (1, 0, x) or f ′ must be smaller than f for one
of the points (0, 0, x), (1, 1, x).

Fix a, b so that f ′(a, b, x) differs from f(a, b, x) as
above. Since f is linear on Qx, we have f ′ − f sub-
modular on Qx and (f ′ − f)(a, b, x) 6= 0. If a 6= b, we
must have (f ′−f)(a, b, x) > 0. Then applying Lemma
3.7 to the set Qx − x, we conclude that f ′ − f must
be nonzero on at least 1

n |Qx| points in Qx.

In the other case, a = b, we have (f ′−f)(a, b, x) < 0.
Note that in this case f is actually linear on all of
{0, 1}n and f ′ − f is submodular everywhere. Then
we use arguments similar to Lemma 3.6. Let Q−

x be
the set of points y 6 x such that the set of (0, 0) pairs
is the same in y and x. Again, y ∈ Q−x can be traced
back to x and so these sets are disjoint. From the
proof of Lemma 3.6, we obtain that either f(y) 6= 0
for all y ∈ Q−x , or else there is an edge (x − ei, x) of
negative marginal value. This implies that all edges
above this edge have negative marginal value. I.e., at
least half of the points in Qx ∪ (Qx − ei) must have
nonzero value.

Now let us count the size of Qx. We have n/4 pairs
of value (0, 0) which can be modified and we have 3
choices for each (we avoid (1, 1) for such pairs). There-
fore, |Qx| = 3n/4. The same holds for Q−x .

This holds for every lattice point in the middle layer
M. Therefore, each lattice point x ∈ M contributes
Ω(3n/4/n) nonzero points in f ′−f . There are

(
n/2
n/4

)
=

Ω(2n/2/n) points in M. We have to be careful about
the last case where the nonzero points are guaranteed
to be in Qx ∪ (Qx − ei) rather than Qx. Such points
could be potentially overcounted n times, but we had a
1/2-fraction of them nonzero, so we still get Ω(3n/4/n)
nonzero points from each point in M. Overall, we get
Ω(2n/23n/4) nonzero points in f ′ − f . This means
that the distance of f from being submodular is ε =
Ω(2−n/23n/4). A calculation reveals that this is ε '
Ω(2−0.104n), while the density of violated squares is
2−n/2 < ε4.8.

Finally, it is easy to boost this example to larger
value of ε. Supppose we want to construct an example
for a given n and ε = 2−0.104n′ , n′ < n (n′ can even
be a constant). Assume for simplicity that n = an′

and a is an integer. Then we start from an example
on n′ coordinates where the distance is ε = 2−0.104n′

and density of violated squares is 2−n′/2. We extend

f to dimension n′ = an so that it does not depend on
the new coordinates. There are no violated squares
involving the new coordinates and hence the density
of violated squares as well as relative distance remain
unchanged. ¤

4 Path certificates for submodular
extension

Given a partial function f , can we get a precise
characterization of when f is submodular-extendable?
Using LP duality, we can give a combinatorial con-
dition that captures this condition. In this subsec-
tion, f will be some fixed partial function. We will set
D = dom(f) and U = B \ D. Let us associate a vari-
able xS for every set S. If S ∈ D, then xS has value
f(S) (so this is not really a variable, but it will be
convenient to keep this notation). For set S, A+(S)
is the set {e = (S, S + i)| i /∈ S} and A−(S) is the
set {e = (S − i, S)| i ∈ S}. For edge e = (S, S + i),
Γ+(e) is the set {e′ = (S + j, S + i + j)| j /∈ S}. The
set Γ−(e) is {e′ = (S − j, S + i − j)| j ∈ S − i}. If
f is extendable, then the following LP has a feasible
solution.

∀e, e′ ∈ Γ+(e), xe − xe′ > 0
∀e = (S, S + i), xe − xS+i + xS > 0

x > 0

Using Farkas’ lemma, if this is infeasible, then we can
derive a contradiction from these equations. So, we
have dual variables ye,e′ , ye associated with each equa-
tion, and the LP at the top of the page is feasible.

Definition 4.1 Consider a set of directed paths P
consisting of cycles or paths with endpoints in D. An
edge is upward if it is directed from the smaller set to
the larger, and downward otherwise.

Let U be the multiset of upward edges of P and
D be the multiset of downward edges (so we keep as
many copies of edge e as occurrences in P). Let G be
a bipartite graph on U and D (with links, instead of
edges). An edge e ∈ U is linked to e′ ∈ D if e ¹ e′.
The set of paths P is matched if there is a perfect
matching in G.

The value of a directed path P, val(P), that starts
at S ∈ D and ends at S′ ∈ D is f(S′)− f(S). Cycles
have value 0. The value of P is the sum of values of
the paths in P. If P has negative value, then P is
referred to as a path certificate. ¤

Lemma 4.2 The partial function f is not submodular-
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extendable iff f contains a path certificate.

Proof: Suppose P is a path certificate, but f can
be extended to a submodular function f ′. Let U be
the multiset of upward edges in P and D the mul-
tiset of downward edges. We have a perfect match-
ing between U and D. Consider a matched pair
(e, e′). We have e ¹ e′. By the submodularity of
f ′, f ′(e) > f ′(e′). Considering e, e′ as directed edges,
we get f(e) + f ′(e) > 0. Summing over all matched
pairs,

∑
e∈P f ′(e) > 0. Consider a path P ∈ P. Note

that val(P) is the same in f and f ′, since f ′ extends
f . Considering P as a multiset of directed edges, we
have val(P) =

∑
e∈P f ′(e). We get

∑
P∈P val(P) > 0.

Contradiction.

Suppose f cannot be extended to a submodular
function. By Farkas’ lemma, the second LP is fea-
sible. Consider the directed hypercube (abusing nota-
tion, call this graph B). The second equality is a flow
conservation constraint for all vertices in U . Hence,
we can think of the ye’s as giving a flow in B, where
the terminals are D. Precisely, ye is the flow in e from
the lower end to the higher end. The first constraint
is a little stranger4. Consider the graph G, where the
vertices are edges of the hypercube, and there is a di-
rected link from e to every member of Γ+(e). This
actually gives n disconnected graphs, each of which is
a hypercube in n − 1 dimensions. Think of ye,e′ as a
flow in G. Note that this is always positive. We do
not really have a flow conservation condition, because
of the extra ye. Add a extra terminal for every e that
is attached to the vertex e ∈ G. This is called the
terminal e ∈ G. Think of ye amount of flow being
removed (if ye > 0) or injected (if ye < 0) into e from
this terminal. Then, we have a legitimate flow in G
represented by the ye,e′ ’s.

Since the y values are rational, we can assume that
they are integral. We will construct a path certificate
through a flow decomposition process. At an inter-
mediate stage, we will maintain a set P of directed
paths in B and a list of matched pairs in P. For each
matched pair, we have a directed path in G from the
smaller edge to the larger (call this set of paths Q).
All these paths start and end at terminals in their
respective graphs. We maintain the following invari-
ants. Through every path in P ∪Q, a single unit of
flow can be simultaneously routed, in the flow given
by the y values. Furthermore, a directed edge e in P
is upward iff ye > 0. Flow in any directed edge of Q is

4By that we mean, somewhat different, and not an unknown
dwarf.

always positive. Suppose the current set of paths P is
not completely matched. We will describe a procedure
that either increases the number of matched pairs, or
adds a new path to both P and Q. That means that
the total flow that is routed through P (and Q) in-
creases by one. Since the flow is finite, this process
must terminate and return a set of matched paths.

Suppose there is an unmatched edge e ∈ P (wlog,
we can take it to be upward). This means that ye

is positive. Note that because P can be considered
as a multiset of edges, there could be many copies of
the upward edge e in P. Suppose there are t copies,
which means that t paths in P pass through e. Since
we can route one unit of flow in each of these path
simultaneously, ye > t. Let us look at the situation
in G. At most t− 1 copies of e are matched, so there
are at most t− 1 paths in Q that end at the terminal
e ∈ G (since ye > 0, there is a net influx at terminal
e ∈ G). Let us route a single unit of flow through
all paths in Q (and remove this flow). This must still
leave at one unit of flow going into e. So, we can route
one unit of flow from some e′ to e along path Q. Note
that because the flow is always positive in G, e′ Â e.

Note that ye′ < 0, because in G, the terminal e′ has
a net outflow. Suppose there is an unmatched copy of
e′ in P (it must be downward). Then we can match e
to this copy of e′, and we are done. Suppose this is not
the case. Let s be the number of copies of the down-
ward edge e′ in P (all of these are matched). We argue
that s < |ye′ |. Suppose, for the sake of contradiction,
that |ye′ | = s. Them, there are s paths in Q that start
at the terminal e′ ∈ G. If we remove all the flow paths
corresponding to Q, then there is no flow going out of
e′. But, we were able to route one unit of flow from e′

to e along Q after removing flow corresponding to Q.
Contradiction. Hence |ye′ | > s. This means that after
removing all the flow corresponding to P (in B), there
is still at least one unit of (downward) flow left on e′.
So, after the removal, we can still route one unit of
flow through e′, giving us path or cycle P . We add
P to P and Q to Q, observing that the invariants are
maintained. This ends the procedure.

Finally, we end up with a set of matched paths P. If
this has negative value, we have found our certificate.
Suppose it has positive value. We argue that the we
can find a new (integral) solution for the dual which
has a smaller flow. This is done by just removing one
unit flow along all paths in the final P and Q. Con-
sider some upward edge in P. Since P is completely
matched, the number of copies of e in P is exactly
the number of paths in Q ending at terminal e in G.
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Hence, the y values, after the decrease, will maintain
the flow conservation conditions. The original value
of the solution is negative, and we removed a set of
matched paths of positive value. So, the value of the
remaining solution is still negative. This gives us the
new solution for the dual. ¤

A path in P is called a singleton if it consists of only
a single edge. We will prove some “clean-up” claims
that provide us with nice path certificates.

Claim 4.3 Let f be a partial function. Let f contain
a set of matched paths P and let e is an upward edge
in P that is matched to a downward copy of itself.
There is an operation that converts P to P′ such that
P′ contains the same multiset of edges P except for
an upward and downward copy of e. The matching of
P′ is identical to P (except for the matched pair of e)
and val(P) = val(P′).

Proof: Let e = (S, S + i). Suppose path Pu contains
edge e upwards, and Pd contains it downwards. We
can split Pu into portions P1,u and P2,u such that the
former is the part before e and the latter is after e.
Similarly, we can get P1,d and P2,d. Note that P1,u

ends at S and P2,d starts at S. Similarly, P2,u ends
at S + i and P1,d starts at S. We can combine P1,u

and P2,d to get a path P ′1. Similarly, we get P ′2. We
replace Pu and Pd by he P ′1 and P ′2. Note that the
sum of values does not change. Also, the only edges
removed are the upward and downward copies of e
and the matching on the remaining edges stays the
same. ¤

Claim 4.4 Let f be partial function such that for any
square of B, at most 2 points are present in dom(f).
Let f contain a path certificate P, such that no edge
occurs both upward and downward in P. There exists
a path certificate Q such that Q contains no singleton
edge. Furthermore, no edge in Q appears both upward
and downward.

Proof: We will show how to remove any singleton in
P and give an “equivalent” certificate Q. The value
will remain the same. Suppose there is a singleton
path consisting of upward edge e. Some downward
edge e′, e′ º e must occur in path P ∈ P. If e = e′,
then this edge occurs both upward and downward.
This cannot happen. So e′ Â e. Let e = (S, S + i)
and e′ = (T + i, T ), for some S ⊂ T . We will split P
into two paths. Let P1 be the portion of P before e′

and P2 be the portion after e. Note that P1 ends at
T + i and P2 starts at T . Consider a downward path
Q1 from T + i to S + i and a parallel upward path Q2

from S to T . Observe that there is a perfect matching
between the edges of Q1 to those of Q2.

Consider the path Q′1 formed by joining P1 to Q1,
and the similarly constructed Q′2. Note that Q′1 ends
at S + i and Q′2 starts at S. To get Q, we remove the
singleton e from P and replace P by P1 and P2. The
set Q is completely matched. The edges in Q1 and
Q2 (matched to each other) are disjoint. Hence, no
edge in Q appears both upward and downward. The
singleton edge e starts at S and ends at S + i. So
val(Q′1) + val(Q′2) = val(e) + val(P). and val(Q) =
val(P). Suppose |Q1| > 1. Then neither of Q′1 and
Q′2 are singletons. Suppose Q1 is a single edge. Then
e and e′ form a square, so neither endpoint of e can be
in dom(f). This means that the path P1 and P2 are at
least of length 1 and Q′1 and Q′2 are at least of length
2. The total number of singletons has decreased by 1.
We can repeatedly apply this procedure, and remove
all singletons. ¤

4.1 Large minimal certificates

This will require many steps. We will start by giving
a construction of a long cycle in B with some special
properties. This cycle will be a sort of “frame” on
which we can define f . For this f , we will find a set
of matched path of negative value, showing that f is
non-extendable.

The simple cycle will be obtained by performing
a series of moves in B. An upward (resp. down-
ward) step is one where some coordinates is incre-
mented (resp. decremented). We will assume that
n = 2m + 4. The cycle will only involve points in the
m + 1,m + 2, m + 3,m + 4 levels of B. We will call
these levels the 1, 2, 3, 4 levels. Any point is repre-
sented as (b1, b2, b3, b4, S, T ), where bi’s are bits, and
S and T are sets on m elements. We will denote the
starting (and hence, ending) point of the cycle to be
(0, 0, 1, 0, ∅, [m]), where [m] represents the complete
set on m elements. The cycle C has the following prop-
erties:

• The cycle is simple, i.e., does not intersect itself.
• The cycle can be divided into a sequence of con-

tiguous chunks of three steps. Every odd (resp.
even) chunk has three upward (resp. downard)
steps. There are an even number of chunks.

• The cycle has M > 2m chunks.
• Let the ith chunk is denoted by Ki. The second

edge e of Ki is parallel to the first edge e′ of
Ki+1(mod M). Suppose i is odd. Then Ki has

206



IS SUBMODULARITY TESTABLE?

upward steps, and hence e′ Â e. Similarly, if i is
even, e′ ≺ e.

A crucial combinatorial property of the hypercube
that we use is the existence of Hamiltonian circuits.
We setH to be a (directed) Hamiltonian circuit on the
m-dimensional hypercube. For any set R ∈ H, s(R)
denotes the successor of R in H. The complement path
H is the Hamiltonian circuit obtained by taking the
set-complement of every point in H.

Lemma 4.5 There exists a cycle C with the properties
above.

Proof: Starting from a point (0, 0, 1, 0, R, R), we
will give a sequence of 4 chunks that will end at
(0, 0, 1, 0, s(s(R)), s(s(R))). Since H is a Hamiltonian
circuit, we get a cycle. The reason we keep R and R is
that from (· · · , R, R), we can perform a single upward
and then downward step to reach (· · · , s(R), s(R)).
We will assume that the moves to both s(R) and
s(s(R)) are upward. Whenever this is not the case,
we can just reverse the roles of R (or s(R)) and R (or
s(R)).

We describe the sequence of chunks. In the arrows
below, the labels above them represents the coordinate
being changed. The numbers 1, 2, 3, 4 represent the
first four coordinates. If the label has a set, then that
set is being changed by moving along (appropriately)
either H or H. These labels help verify the matching
property. The first and third chunks only have upward
steps, and the remaining have only downward steps.
For convenience, S = s(R) and T = s(S).

1. (0, 0, 1, 0, R, R) 1→ (1, 0, 1, 0, R, R) 2→
(1, 1, 1, 0, R, R) R→ (1, 1, 1, 0, S, R).

2. (1, 1, 1, 0, S, R) 2→ (1, 0, 1, 0, S, R) 3→
(1, 0, 0, 0, S, R) R→ (1, 0, 0, 0, S, S).

3. (1, 0, 0, 0, S, S) 3→ (1, 0, 1, 0, S, S) 4→
(1, 0, 1, 1, S, S) S→ (1, 0, 1, 1, T, S).

4. (1, 0, 1, 1, T, S) 4→ (1, 0, 1, 0, T, S) 1→
(0, 0, 1, 0, T, S) S→ (0, 0, 1, 0, T, T ).

It is easy to see that no point can occur in two
different chunks, because the sets on H or H are dif-
ferent. So, the cycle is simple. The number of chunks
is at least the number of points in the m-dimensional
hypercube. The matching property should be clear.

¤

We now define the function f . Let the directed
path consisting of the first two edges of chunk Ki be
Pi. Note that P2i is downward and P2i+1 is upward.
We describe the function f and state many properties
of dom(f). It will be convenient to have define the
following sequences of 4 bits. We set B1 = (0, 0, 1, 0),
B2 = (1, 0, 0, 0), C1 = (1, 1, 1, 0), and C2 = (1, 0, 1, 1).
We use A to denote any one of these.

• The function f will be defined on all the end-
points of the Pi’s.

• For P1, the small endpoint has value v (the ex-
act choice for this is immaterial), and the larger
endpoint has value v + 1. For P2i+1 (i > 0), the
small end has value v and the large end has value
v +2. For P2i (∀i), the large end has value v +2
and the small end has value v.

• Fix any R. One and only one point of the
form (Bj , R, R) is present in dom(f). Simi-
larly, one and only one of (Cj , R, R) is present
in dom(f). We also have (Bj , R, R) ∈ dom(f) iff
(Cj , R, R) ∈ dom(f). No other point is present
in levels 1 and 3.

• Fix any R. Suppose s(R) ⊃ R. One and
only one of (Bj , s(R), R) is present in R. Simi-
larly, one and only one of (Cj , s(R), R) is present
in R. We also have (Bj , s(R), R) ∈ dom(f)
iff (Cj , s(R), R) ∈ dom(f). No other point is
present in levels 2 and 4.

Suppose s(R) ⊂ R. Then these points are of the
form (A,R, s(R)).

• Pairs of neighbors in dom(f) are either level
1-level 2 pairs, or level 3-level 4 pairs. They
are always of the following form: (A,R, R) →
(A, s(R), R) (if R ⊂ s(R)) or (A,R, R) →
(A, R, s(R)) (if R ⊃ s(R)).

• For any point of dom(f), there is at most one
neighbor present in dom(f). Hence, any square
of B contains at most 2 points of dom(f).

• Consider some point (Bj , R, R) in level 1. The
only point in level 3 at a Hamming distance 2
from this point is (Cj , R, R). A similar state-
ment holds for points in level 2.

Claim 4.6 The function f is not submodular-
extendable.

Proof: By Lemma 4.2, it suffices to show a path cer-
tificate. As the astute reader might have guessed, all
the Pi’s form such a set. A matching exists because
of the fourth property of the cycle C. The value of P1

is 1. The value of any other P2i+1 is 2. Every P2i has
value −2. Since the total number of chunks is even,
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the value of this set of paths is −1. ¤

We will now show that f |S for any S ⊂ dom(f) is
extendable. It will be easiest to show that by proving
that any path certificate for f must essentially be the
Pi’s.

Claim 4.7 Suppose f contains a set of matched paths
P with no singletons. This P must be the set of all
Pi’s.

Proof: Consider a point X in P that lies in the lowest
level (the number of 1s in the representation of the
point is minimized). We argue that this point only has
upward edges incident to it. If there is a downward
edge e incident to it, then P must contain an upward
edge e′ that is matched to e. Therefore, e′ ≺ e and the
lower end of e′ must lie in a lower level than S. This
contradicts the choice of S. Hence, X only has upward
edges incident to it. This means that it can never
be in the interior of a path, and must be a terminal.
Therefore, X ∈ dom(f). Similarly, points in P that lie
in the highest level only have downward edges incident
to them, and are also in dom(f).

The points of dom(f) lie in levels m+1,m+2,m+
3,m + 4, called the 1, 2, 3, 4 levels. Edges between the
1 and 2 levels are called low edges, those between the
2 and 3 levels are middle edges, and those between the
3 and 4 levels are high edges. All edges of P fall into
one of these three sets. Low edges are always upward
and high edges are always downward. Middle edges
are matched to either low or high edges. Therefore,
the number of middle edges is exactly the same as the
total number of low and high edges. Since P contains
no singletons, every path must contain at least one
middle edge. The total number of low and high edges
in a path is at most 1. This implies that every path in
P has exactly two edges and has one of the two forms:
an upward low and middle edge, or a downward top
and bottom edge. The former paths go from level 1
to level 3 and the latter from level 4 to level 2. We
must have at least one path of each type to get both
upward and downward edges. Therefore there is some
level 1 point of dom(f) in P.

Consider some point X = (0, 0, 1, 0, R, R) at level
1 that is a terminal in P. Let path Q ∈ P start
from here. Note that this is the endpoint for some
Pi, which is (0, 0, 1, 0, R, R) → (1, 0, 1, 0, R, R) →
(1, 1, 1, 0, R, R). The certificate P has an upward path
of length 2 from X. The properties of dom(f) tells us
that the other end of Q can only be (1, 1, 1, 0, R, R). It
does not immediately follow that Q is Pi, since there

are two different paths between these points (the end-
points differ in coordinates 1 and 2). But observe
that the second edge of Q must be matched by an
downward edge between levels 4 and 3. This edge
has an endpoint in level 4 that must be a neighbor
of (1, 1, 1, 0, R, R). By the properties of dom(f), this
point must be (1, 1, 1, 0, s(R), R) (assuming s(R) ⊃
R). All downward paths of length 2 from this point
end at (1, 0, 0, 0, s(R), R). The path changes in coordi-
nates 2 and 3. Since the second edge of Q is matched
to the first edge of this path, both of these edges must
be along coordinate 2. Hence, Q is Pi, and Pi+1(modM)

also lies in P. Repeating the argument, we get that
all Pi’s lie in P. This completes the proof. ¤

Proof: (Theorem 1.7) By Claim 4.6, the function f
is not submodular-extendable. For some subset A ⊂
dom(f), suppose f |A is not submodular-extendable.
Since dom(f) contains no squares, by Claim 4.4, there
is a path certificate P in dom(f |A) that contains no
singletons. Note that P is also a path certificate for
f . By Claim 4.7, P contains all Pis. But that means
that P contains all points in dom(f). Contradiction.

¤

5 From monotonicity to
submodularity

In this section, we show a simple reduction from
testing monotonicity to testing submodularity.

Lemma 5.1 Given f : {0, 1}n → R, there exists a
function g : {0, 1}n+1 → R with the following proper-
ties:

• If f is monotonically non-increasing, then g is
submodular.

• If f is ε-far from being monotonically non-
increasing, then g is ε/2-far from being submod-
ular.

• The value g(x) can be computed by looking at 2
values of f .

Proof: We will use small letters x, y, etc. to denote
points in {0, 1}n. Points in {0, 1}n+1 will be denoted
by (0, x) or (1, x), where the first bit denotes the ab-
sence or presence of the new element. We use e∗ to
denote the unit vector corresponding to the new el-
ement, and ei, ej to denote the other unit vectors.
For convenience, monotone will mean monotonically
non-increasing. Define h(x) = f(∅)‖x‖1(n − ‖x‖1).
We define g by the following: g(0, x) = h(x), and
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g(1, x) = f(x) + h(x). So any value of g can be com-
puted by looking at 2 values of f .

We first show that h is submodular. Consider x
and i, j such that xi = xj = 0. Let ‖x‖1 = r and
f(∅) = M .

h(x + ei) + h(x + ej)− h(x + ei + ej)− h(x)

=

M [2(r + 1)(n− r − 1)− r(n− r)− (r + 2)(n− r − 2)]
=

M [(2nr − 2r2 − 2r + 2n− 2r − 2)
−nr + r2 − nr + r2 + 2r − 2n + 2r + 4]

=

M [(2nr − 2r2 + 2n− 4r − 2)
−(2nr − 2r2 + 2n− 4r − 4)]

=

2M

Hence h is submodular.

Assume that f is monotone. Then, for any x,
f(x) 6 f(∅) = M Since f(x + ei) + f(x + ej)− f(x +
ei + ej)− f(x) 6 2M , f + h is also submodular.

Suppose g is not submodular. Then there exists a
violated square in g. Suppose this square does not in-
volve e∗. This square is contained in a copy of {0, 1}n

where the function is equal to h or f + h. But this
would imply that either h or f +h is non-submodular.
So, this square must involve e∗. Then we have the
following:

0 < g(0, x) + g(1, x + ei)− g(0, x + ei)− g(1, x)
= f(x + ei)− f(x)

This violates the non-increasing property of f . Hence,
we conclude that g is submodular.

Now, suppose that f is ε-far from being monotone.
Furthermore, suppose we can modify ε2n values of g to
get a submodular function g′. Consider the function
f ′(x) = g′(1, x) − g′(x). Since g′ is submodular, f ′

must be monotone. Since g′ differs from g in at most
ε2n values, the monotone function f ′ differs from f
in at most ε2n values. This is a contradiction. So, g
must be ε/2-far from being submodular. ¤

By the results in [8], there is an Ω(
√

n) non-adaptive
and Ω(log n) lower bound for 1-sided monotonicity
testers. We get the following corollary.

Corollary 5.2 Any non-adaptive 1-sided tester for
submodularity requires Ω(

√
n) queries. Any adaptive

1-sided tester requires Ω(log n) queries.

6 Future work

All of this work is centered on the following very
general question: what really makes a function sub-
modular? Of course, it is “just” monotonicity of
marginal values, but this does not capture the full
structure of submodular functions. We want to un-
derstand how different sets of values in a submodular
function interact and influence each other. The prob-
lem of property testing submodularity appears to be
a very appealing way of studying this question. Our
constructions show that functions far from being sub-
modular could have marginal values that are much
closer to being monotone.

The problem of completing partial functions comes
up when we try to understand how to convert a non-
submodular function into a submodular one (a major
component of many property testing proofs). Again,
our constructions yield insight into how seemingly un-
connected parts of a submodular function must be re-
lated.

The authors believe there is a lot of scope for fur-
ther research directions. There are many interesting
questions to be answered, and we have barely seen the
tip of the iceberg. We state some questions here.

1. Relation between violated squares and distance to
submodularity: For a function f ε-far from being sub-
modular, what is the minimum (as a function of ε and
n) density of violated squares it can have? Can we
prove that this minimum density is at least poly(ε/n)?

2. Efficient testers for submodularity: Does there
exist a tester for submodularity with running time
poly(n/ε) or maybe poly(n) for constant ε? Perhaps
we can find an efficient adaptive tester, or a tester that
searches for obstructions other than violated squares.

3. Testing rank functions: A matroid gives rise to a
rank function, which is always submodular. A func-
tion is a rank function iff it is a submodular function
with marginal values 0 or 1. Can we test whether an
input function f is a rank function? Note that even
though these are a special case of submodular func-
tions, it is not clear that this is easier (or harder).
This is because the distance to a rank function might
be significantly different from the distance to submod-
ularity.

4. Testing matroid independence oracles: Any ma-
troid can be represented as a collection of indepen-
dent sets. Suppose we have a function that tells us
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whether a set is independent (for some purported ma-
troid). Can we efficiently test whether this function is
indeed a valid independence oracle? This seems like a
rather fundamental question about matroids.
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