
Innovations in Computer Science 2011

Best-Response Mechanisms

Noam Nisan1 Michael Schapira2 Gregory Valiant3 Aviv Zohar4

1School of Eng. and Computer Science, The Hebrew University of Jerusalem
2Computer Science Dept., Princeton University

3Dept. of Computer Science, UC Berkeley 4Microsoft Research, Silicon Valley
noam@cs.huji.ac.il michael.schapira@yale.edu gvaliant@eecs.berkeley.edu avivz@microsoft.com

Abstract: Under many protocols—in computerized settings and in economics settings—participants repeatedly
“best respond” to each others’ actions until the system “converges” to an equilibrium point. We ask when does
such myopic “local rationality” imply “global rationality”, i.e., when is it best for a player, given that the others
are repeatedly best-responding, to also repeatedly best-respond? We exhibit a class of games where this is indeed
the case. We identify several environments of interest that fall within our class: models of the Border Gateway
Protocol (BGP) [7], that handles routing on the Internet, and of the Transmission Control Protocol (TCP) [5],
and also stable-roommates [3] and cost-sharing [9, 10], that have been extensively studied in economic theory.
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1 Introduction

1.1 Motivation: when is it best to
best-respond?

The basic object of study in game theory and in eco-
nomics is the equilibrium: a “stable” state from which
none of the players wish to deviate. Equilibrium is a
static concept that often abstracts away the question
of how it is reached. Once we start looking at dynam-
ics, or at algorithms for finding equilibria, we cannot
escape questions of the form “How is an equilibrium
reached?”. While there can be different formalizations
of this question, in most cases, a truly satisfactory an-
swer would have each player performing only simple
“locally rational” actions and yet, mysteriously, the
system would reach a global equilibrium. The simplest
example of such phenomena is repeated best-response
dynamics: each player selects the best (locally opti-
mal) response to what others are currently doing, and
this process goes on “for a while” until it “converges”
to what must be a (pure Nash) equilibrium. Con-
vergence of repeated best-response is, unfortunately,
not guaranteed in general, and is the subject of much
research, as is the convergence of more sophisticated
“locally-rational” dynamics, e.g., fictitious play or re-
gret minimization.

Our focus in this paper is on a different question
that has received little attention so far: “Is such lo-
cally rational behavior really rational? ”. Specifically,
we consider games in which repeated best-response

dynamics do converge to an equilibrium and study
the incentive properties of this process: Is it rational
for players to repeatedly best-respond? Can a long-
sighted player improve, in the long run, over this re-
peated myopic optimization?

These questions about incentives are best explored
in the context of games with incomplete information.
Switching our attention from games with complete in-
formation to games with uncoupled incomplete infor-
mation, we see that repeated best-response exhibits
another attractive trait: to best-respond each player
need only know his own utility function (“type”), as
his best response does not depend on other players’
utility functions, but only on their actions. Thus,
we can view best-response dynamics as a natural
protocol for gradual and limited sharing of informa-
tion in an effort to reach an equilibrium. Indeed,
in many real-life contexts the interaction between de-
cision makers with incomplete information takes the
form of best-response dynamics (e.g., Internet rout-
ing [7]. When regarding best-response dynamics from
this perspective, it is an indirect mechanism in the
private-information mechanism-design sense. We wish
to understand when such a mechanism, that dictates
that all players repeatedly best-respond, is incentive
compatible.

1.2 The setting

Let us begin by laying out our setting for studying
and formalizing incentives for repeated best-response.
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In our framework, each player holds a private util-
ity function, and all players’ utility functions, when
put together, determine a full-information base game
with some commonly-known strategy spaces. We de-
sire that the outcome of the dynamics be an equilib-
rium of this base game.

Base game: We are given an n-player (one-shot)
base game G, with players 1, . . . , n, in which each
player i has strategy space Si, and S = S1 × ...× Sn.
Each player i has a utility function ui such that
(u1, . . . , un) ∈ U ⊆ U1 × · · · × Un, where Ui ⊆ <|S|
is player i’s utility space. Each player knows only his
own utility function, i.e., we view ui itself as player
i’s type.

Best-response mechanisms: We study a class of
indirect mechanisms, that we term “repeated-response
mechanisms”: players take turns selecting strategies;
at each (discrete) time step t, some player it se-
lects and announces strategy st

i ∈ Sit
. Observe that

one course of action available to each player in a
repeated-response mechanism is to always choose a
best-response to the most recently announced strate-
gies of the others, that is, repeated-best-response.
We call a repeated-response mechanism in which the
prescribed behavior for each player is to repeatedly
best-respond a “best-response mechanism”. To fully-
specify a best-response mechanism we must specify
(1) the starting state; (2) the order of player activa-
tions (which player is “active” when); and (3) for each
player, a rule for breaking ties among multiple best
responses. All of our results hold regardless of the
initial state and of the order of players’ activations
(so long as it is “long enough”), and, in fact, even in
more general settings.1 We discuss tie-breaking rules
below.

Goal: Our general aim is to identify interesting
classes of (base) games for which best-response mech-
anisms are incentive-compatible. Intuitively, a best-
response mechanism is incentive-compatible if, when
all other players are repeatedly best-responding, then
a player is incentivized to do the same. Defining incen-
tive compatibility in our setting involves many intrica-
cies. We opt to focus here on a very general notion of
incentive compatibility that, we believe, captures es-

1Our results actually hold even for (1) asynchronous player
activation orders in which multiple players can best-respond
simultaneously or based on outdated information (as studied
in [12]); (2) adaptive player activation orders that can change
based on the history of play; and also when (3) the mechanism
terminates as soon as all players “pass”, that is, each player
repeats his last strategy.

sentially any variant that the reader may desire; in a
companion paper [11], we present several more games
(auctions) where only strictly weaker notions of incen-
tive compatibility can be obtained. Our notion of in-
centive compatibility here captures the two following
distinct but complementary points of view: a mecha-
nism design perspective and a learning equilibrium [1,
2] perspective.

Mechanism design perspective (in a prior-free
non-Bayesian setting): This point of view is natural
when analyzing finite-time protocols in computerized
and economic settings. We are given a game with in-
complete information G, where each player’s utility
function is private, and we wish to implement a pure
Nash equilibrium (PNE) of G. We point out that this
uncommon objective—implementing an equilibrium—
proves to be a natural implementation goal in many
contexts (see Section 3, where we show that desirable
outcomes can be regarded as “stable states”). Best-
response mechanisms are incentive compatible, from
this perspective, if the desired outcomes are imple-
mented in the ex-post Nash sense2. Importantly, from
this point of view, no actual play happens during the
process of best-response dynamics and players merely
announce strategies as their communication with the
mechanism; each player only cares about maximizing
his benefit from the final outcome of the mechanism,
that is expected to terminate after some finite prede-
termined number of time steps.

Learning equilibrium perspective: This point of
view is natural when analyzing environments such as
Internet protocols and global financial transactions,
where players repeatedly interact with each other and
there is no “final turn”. Now, the players are actually
involved in infinite repeated play of the incomplete-
information game G and each player has a rule for se-
lecting his next strategy based on the history of play.
We are interested in the natural rule that dictates that
a player simply always best-respond to others’ most-
recent strategies. In this context, each player wishes
to maximize his long-term payoff, that we model to be
the lim sup of his stage utilities in this infinitely-played
game3. Best-response mechanisms are incentive com-
patible, from this perspective, if the “best-response”
rules are themselves in equilibrium in this infinite

2The Revelation Principle then implies that the direct reve-
lation mechanism is truthful (in the ex-post-nash sense).

3In all our results, at equilibrium the lim sup is actually the
limit, and thus choosing lim sup gives us the strongest and most
robust results – the definition is in fact adversarial to our proofs,
it potentially allows manipulators to gain utility by avoiding
convergence.
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game regardless of the realization of (u1, . . . , un). Us-
ing the terminology of [1, 2], this means that best-
response dynamics are in “learning equilibrium”. We
stress that this would not follow from the folk theo-
rem since our players do not, in any way, punish other
players for deviation. To the contrary, our incentive
compatibility results establish that the natural best-
response dynamics are in equilibrium without requir-
ing players to be able to detect and penalize other
players’ deviations.

Tie-breaking rules. When multiple best-responses
exist we must specify, for each player, a tie-breaking
rule. Importantly, this tie-breaking rule must be “un-
coupled”, i.e., depend solely on the player’s private
information (utility function) and not on information
that is unavailable to him4. Our tie-breaking rules
always have the following simple form: fix, for each
player i, an a-priori full order ≺i on Si (that can de-
pend on ui), and instruct player i to break ties be-
tween multiple best-responses according to ≺i. While
this might seem innocent enough, we do get signifi-
cant milage from delicate choices of these tie-breaking
rules, to the point that one may desire an intuitive jus-
tification for these choices. Roughly speaking, there
are two main, conflicting, intuitions: in some cases we
simply ask players to break ties so as to be “nice” to
others; in other cases we break ties according to some
“iterated-trembling-hand” logic.

1.3 Games with incentive-compatible
best-response mechanisms

Our main results are identifying a class of games
for which best-response mechanisms are incentive
compatible, and exhibiting several interesting games
that fall within this class (and thus have incentive-
compatible best-response mechanisms). While at first
glance, it might seem that the existence of a unique
PNE to which best-response dynamics are guaran-
teed to converge implies the incentive-compatibility
of best-response mechanisms, this intuition is false.

Figure 1: A game for which best-response mechanisms are

not incentive compatible.

4We note that it is also permissible for the tie-breaking rules
to depend on the players’ actions, though for our purposes this
was not needed.

Observe that in this game, (B,D) is the unique
PNE and every sequence of best responses converges
to it. Yet, consider the scenario that the starting
point is the strategy profile (A,C), and the column
player repeatedly best-responds. Clearly, the row
player’s local improvement from (A,C) to (B,C) will
lead to the column player moving to (B,D). Hence,
the row player can do better by looking ahead, not
moving from (A,C), and thus “getting stuck” at
(A,C), that he strictly prefers to the unique pure
Nash (B,D). Hence, repeated best-responding is not
incentive compatible in this game which is strictly-
dominance-solvable, is a potential game, and has a
unique and Pareto-optimal PNE.

What traits must a game have for best-response dy-
namics to be incentive compatible? We now present
an intuitive exposition of a class of games for which
this is achieved, which we term “Never-Best-Response-
Solvable (NBR-solvable) games with clear outcomes”.
In an NBR-solvable game, strategies are iteratively
eliminated if a best-response never leads to them (this
is slightly different from dominance-solvability and
shall be defined in the following section). Intuitively,
an NBR-solvable game has a clear outcome if when
each player i considers the game after the other players
have already eliminated strategies that can be elimi-
nated regardless of what i does, he can already tell
that he will not be able to do better than the out-
come that is reached via repeated best-response.

Our main, and quite easy to prove, general theorem
is the following. (We now state the theorem for the
case that the strategy spaces are finite, though our
result also holds for infinite strategy spaces.)

Theorem (informal): Let G be an NBR-solvable game
with a clear outcome. Then, for every starting point
and every (finite or infinite) order of player activa-
tions with at least T = Σi|Si| − n “rounds” (a round
is a sequence of consecutive time steps in which each
player is “active” at least once) it holds that:

1. Repeated best-response dynamics converges to a pure
Nash equilibrium s∗ of G.

2. Repeated best-response dynamics is incentive com-
patible.

We prove that each of the four environments be-
low can be formulated as a game that falls within
our class of games, and that the desired outcome in
each environment translates to a PNE in this formu-
lation. Thus, the above result implies the existence of
incentive-compatible best-response mechanisms that
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implement the desired outcome in all the contexts be-
low.

• Stable-roommates. In this classic setting [3],
students must be paired for the purpose of shar-
ing dorm rooms, and each student has a pri-
vate full order over possible roommates. The
objective is to find a “stable matching” where
no two students prefer each other to their as-
signed roommates. We show that a natural mech-
anism, in which a student repeatedly proposes to
his most preferred roommate among those that
would not immediately reject him, and imme-
diately rejects all proposers except for his most
preferred proposer, is incentive compatible in
well-studied environments (interns-hospitals, cor-
related markets).

• Cost-sharing. Cost-sharing arises in situations
in which the cost of some public service (e.g.,
building a bridge) must be distributed between
self-interested users that can benefit from this
service to different extents. We present a dis-
tributed mechanism that achieves this goal in an
incentive-compatible manner. Our mechanism
implements the outcome of the famous Moulin
mechanism [9, 10] (this result can be extended to
the more general class of “acyclic mechanisms”
[8]).

• Internet routing. The Border Gateway Proto-
col (BGP) establishes routes between the smaller
networks that make up the Internet. We abstract
the results in [7] and prove that BGP is incentive
compatible in realistic environments.

• Congestion control. The Transmission Con-
trol Protocol (TCP) handles congestion on the
Internet. Building upon [5], that models key as-
pects of TCP, we consider behavior that is some-
what similar to TCP: increase your attempted
transmission rate until encountering congestion,
and then decrease the transmission rate. We
show that such behavior is in equilibrium.

Our results above establish incentive compatibility
of best-response mechanisms. We also consider the
stronger “collusion-proofness” desideratum, that even
a coalition of players not be able to deviate from re-
peated best-response and all strictly gain from doing
so. We prove that in some of the above environments
best-response mechanisms even achieve this stronger
requirement.

1.4 Research agenda

We view this work as a first step towards a more

general research agenda. While convergence to equi-
librium of “locally-rational” dynamics, e.g., repeated
best-response, fictitious play and regret minimization,
has been extensively studied, little attention has been
given to the question of when such locally-rational dy-
namics are also “globally rational”. Here, we tackle
this question in the context of repeated best-response
and the implementation of PNE. However, we believe
that the examination of other dynamics (e.g., fictitious
play, regret minimization) and other kinds of equilib-
ria (e.g., mixed Nash equilibrium, correlated equilib-
rium) is an interesting direction for future research.
Positive and negative results along these lines can help
shed new light on the incentive structure of existing
protocols/mechanisms (see our results for BGP and
TCP and the results in [5, 7]), and provide new in-
sights into the design of new protocols/mechanisms.

Our results for repeated best-response dynam-
ics establish sufficient conditions for repeated best-
response to be incentive compatible. We still lack
characterizations of conditions that imply incentive
compatibility both for general games and for specific
classes of games (dominance-solvable games, poten-
tial games, etc.). We have thus far considered a very
strong notion of incentive compatibility. We believe
that considering more restrictive notions (e.g., incen-
tive compatibility in expectation) is of interest. In-
deed, in a companion paper [11] we present several
such results for commerce environments.

1.5 Organization

In the next section we formalize our model and
present our general theorem. In section 3 we present
our results for the four specific environments listed
above. We discuss collusion-proofness in Section 4.

2 Incentive-compatible best-response
dynamics

Definition 2.1 (tie-breaking rules) A tie-breaking
rule (or tie-breaking order) for player i is a full order
≺i on Si.

When faced with a choice between multiple best-
responses, player i should choose the highest (under
≺i) best-response. We now present the following def-
initions for full-information games.

Definition 2.2 (never-best-response strategies)
si ∈ Si is a never-best-response (NBR) under tie-
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breaking order ≺i on Si if for all s−i, there exists s′i
so that ui(si, s−i) < ui(s′i, s−i) OR both ui(si, s−i) =
ui(s′i, s−i) and si ≺i s′i.

Definition 2.3 (NBR-solvable games) A game
G is never-best-response-solvable (NBR-solvable) un-
der tie-breaking rules ≺1, . . . ,≺n if there exists a se-
quence of eliminations of NBR strategies (under these
tie breaking rules) that results in a single strategy
profile.

Observe that every weakly-dominance-solvable
game has a tie-breaking order under which it is NBR-
solvable and every strongly-dominance-solvable game
is NBR-solvable for all tie-breaking orders. Observe
also that in every game that is NBR-solvable under
tie-breaking rules ≺1, . . . ,≺n the elimination of NBR
strategies (under these tie-breaking rules) has a unique
order-independent outcome, that is a pure Nash equi-
librium of the game. We call this outcome “the unique
PNE under tie-breaking”.

Definition 2.4 (shortest-elimination parame-
ters) Let G be an NBR-solvable game (under tie-
breaking). Then, there exists a sequence of games
G0, . . . , Gr such that G = G0, in Gr each player
has only a single strategy, and ∀i ∈ {0, . . . , r − 1},
Gi+1 is obtained from Gi via the removal of sets of
NBR strategies (under tie-breaking). The shortest-
elimination parameter eG for G is the length of the
shortest such sequence of games for G.

Observe that if, in an NBR-solvable game G, each
strategy space Si is finite, then eG ≤ Σi|Si|−n. NBR
solvability on its own is insufficient to guarantee in-
centive compatibility, and so we further restrict it.

Definition 2.5 (globally-optimal profiles) s ∈ S
is globally optimal for i if ∀t ∈ S, ui(t) ≤ ui(s).

Definition 2.6 (clear outcomes) Let G be an NBR-
solvable game under tie breaking rules ≺1, . . . ,≺n. Let
s∗ be the unique PNE under tie-breaking of G. We
say that G has a clear outcome if for every player
i there exists a (player-specific) order of elimination
of NBR strategies (under the given tie-breaking rules)
such that s∗ is globally optimal for i at the first step
in the elimination sequence in which a strategy in
Si is eliminated (that is, in the game obtained af-
ter the removal of all previously-eliminated strategies
from G).

We say that an incomplete-information game G
is NBR-solvable with a clear outcome (under tie-

breaking rules) if every realization of (u1, . . . , un) in-
duces a full-information game that is NBR-solvable
with a clear outcome (under tie-breaking, when each
player i uses the tie-breaking rule <i for the realized
ui).

Consider a best-response mechanism M for a base
game G. Let st ∈ S be the players’ strategies at
time step t. We call ui(st) player i’s stage utility at
time t. If M terminates after some finite number of
time steps T > 0 we say that player i’s total utility is
Γi = ui(sT ) (his stage utility at the last time step of
M ’s execution). If M does not terminate after finite
time then i’s total utility is Γi = lim supt→∞ ui(st).
M is incentive compatible if repeated best-response
is a pure Nash equilibrium in this repeated game
with overall utilities Γ1, . . . ,Γn for every realization of
(u1, . . . , un). We say that M is collusion-proof if no
coalition can deviate from repeated best-response and
all strictly gain from doing so in this repeated game.
We show that best-response mechanisms are incen-
tive compatible for NBR-solvable games with clear
outcomes.

Theorem 2.7 (incentive-compatible mecha-
nisms) Let G be NBR-solvable with a clear outcome
s∗ ∈ S under tie-breaking rules ≺1, . . . ,≺n . Let M be
a best-response mechanism for G that breaks ties as in
≺1, . . . ,≺n. Then, for every starting point and every
(finite or infinite) order of player activations with at
least T = eG “rounds”, where a round is a sequence of
consecutive time steps in which each player is “active”
at least once,

1. M converges to s∗.
2. M is incentive compatible.

This holds even for (1) asynchronous player activa-
tions orders in which multiple players can best-respond
simultaneously or based on outdated information (as
studied in [12]); (2) adaptive player activations or-
ders that can change based on the history of play; and
also when (3) the mechanism terminates as soon as
all players “pass”, that is, each player repeats his last
strategy.

Proof sketch: Let G be an NBR-solvable game with a
clear outcome (under tie-breaking). Then, there exists
a sequence of games G0, . . . , Gr with length r = eG,
such that G = G0, in Gr each player has only a single
strategy, and ∀i ∈ {0, . . . , r−1}, Gi+1 is obtained from
Gi via the removal of sets of NBR strategies (under
tie-breaking).

Convergence: We first show that if all players re-
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peatedly best-respond then convergence to a PNE
is guaranteed within eG rounds. Consider the first
round of a best-response mechanism, and consider
some j ∈ [n] such that there exists sj ∈ Sj that is
NBR in G = G0. Observe that once j is activated
for the first time, sj will never be selected thereafter.
Thus, after the first round, no NBR strategy in G0 will
be played ever again and hence the game is effectively
equivalent to G1. We can now use the same argu-
ment to show that after the second round the game
is effectively equivalent to G2. Thus, we mimic the
elimination sequence in each strategy until we end up
at Gr, whose unique strategy tuple s∗ is the unique
PNE under tie-breaking of G.

Incentive compatibility: this property follows from
the fact that when each player i considers the game
after the other players have already eliminated dom-
inated strategies that can be eliminated regardless of
what i does, he can already tell that he will not be
able to do better than the outcome that is reached via
repeated best-response.

We give the precise argument (by contradiction).
Let i be a player that deviates from repeated best-
response and strictly gains from doing so. The fact
that G is NBR-solvable with a clear outcome (un-
der tie-breaking) implies that there exists a (player-
specific) order of elimination of NBR strategies (un-
der the given tie-breaking rules) such that s∗ is glob-
ally optimal for i at the first step in the elimina-
tion sequence in which a strategy in Si is eliminated
(that is, in the game obtained after the removal of
all previously-eliminated strategies from G). Consider
this order of elimination; it induces some sequence of
games G0, . . . , Gl such that G = G0, in Gl each player
has only a single strategy, and ∀i ∈ {0, . . . , l−1}, Gi+1

is obtained from Gi via the removal of sets of NBR
strategies (under tie-breaking) as in the (i+1)’th step
in that order. Now, let ti be the index of the first
game in the sequence in which i’s strategies are elim-
inated in that order. All players but i are repeatedly
best-responding and in the ti−1 first steps of the elim-
ination sequence no strategy in Si is eliminated. We
can use the same arguments that we used to show con-
vergence, to show that after ti− 1 rounds the game is
effectively equivalent to Gti

, regardless of the actions
of player i. However, in that game, i can do no better
than s∗—a contradiction. ¤

3 Four best-response mechanisms

We present four examples of environments that

can be formulated as games that are NBR-solvable
with clear outcomes (sometimes under tie-breaking):
stable-roommates games, cost-sharing games, BGP
games and TCP games. This implies the existence
of incentive-compatible best-response mechanisms for
all these environments.

3.1 Stable-roommates

This following classic setting has been extensively
studied in economics, game theory and computer sci-
ence. n students 1, . . . , n must be paired for the pur-
pose of sharing dorm rooms. Each student has a pri-
vate strict ranking of the others, and prefers being
matched to not being matched. The goal is to find a
stable matching, i.e., a matching where no two stu-
dents prefer each other to their matched roommates.
Unfortunately, a stable matching is not guaranteed
to exist in general and, furthermore, even if a sta-
ble matching does exist (e.g., in bipartite graphs),
existing algorithms for reaching it are not incentive
compatible [3]. We seek environments where a stable
matching is guaranteed to exist and can be reached
in an incentive compatible manner. We focus on two
well-known special cases of stable roommates:

• Intern-hospital matchings: The “students”
are divided into two disjoint sets, called interns
and hospitals, and all hospitals have the same
ranking of interns (e.g., GPA-based).

• Correlated markets: The “students” are ver-
tices in a complete graph in which every edge has
a unique “weight”. The “heavier” the edge con-
necting a student to another student the higher
that student ranks the other student.

We now show how the framework in Section 2 can
be used to design natural incentive compatible mech-
anisms for stable-roommates. We first formulate this
environment as a game and prove that this game is
NBR-solvable with a clear outcome.

Stable-roommates games: The students are the
players and each student i’s strategy space Si is the set
of all students j 6= i. αi(j) denotes student j’s rank
in student i’s ranking (the least desired roommate’s
rank is 1). ∀s = (s1, . . . , sn) ∈ S (that is, choices of
roommates), ui(s) = αi(j) iff si = j and @k 6= i such
that sk = j and αj(k) > αj(i); otherwise, ui(s) = 0.5

(Observe that players’ utilities are correlated.)
5We note that the more natural definition of utilities that

only awards utility to players that are selected by the partner
they themselves choose implies a game in which all matchings
are stable, and is thus not useful to us.
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Theorem 3.1 For every stable-roommates game G it
holds that in both hospital-intern matchings and cor-
related markets

• G is NBR-solvable.
• G’s unique PNE is a stable matchings.
• eG ≤ n.

Proof sketch: We say that a stable-roommates game
is cycle-free if there is no sequence of roomates
r1, r2, . . . rk of length k > 2 such that each student
ri ranks student ri+1 higher than student ri−1 (where
student indices are considered mod k to induce a cy-
cle).

Any matching game that is cycle-free has an elimi-
nation sequence that can be constructed as follows: At
any stage in the elimination start with some arbitrary
student r1 (that has more than one strategy in the
current subgame) and construct a sequence r1, r2, . . .
of students in which ri+1 is the student ri prefers the
most out of the students that still have more than
one possible strategy remaining (other strategies were
eliminated). The number of students is finite and so
the sequence must repeat. Since the game is cycle free,
the cycle must be of length 2. We have thus located
2 students that desire each other the most. We can
eliminate for each of the two the strategies of propos-
ing to any other student since they are guaranteed
to gain the maximal utility by proposing to each
other.

All that remains is to notice that both the hospital-
intern game and the correlated markets game are
cycle-free. In the case of hospitals and interns, the
hospitals agree about the ranking of interns and so
any cycle of players will have to include a hospital
that is placed after a desired intern and before a less
desired one. In the case of correlated markets, any cy-
cle of nodes in the graph must include an edge with a
lower weight that appears after an edge with a higher
one and therefore the preferences do not induce a cycle
in the matching graph in either case. ¤

We observe that the following simple and comput-
ationally-efficient mechanism is a best-response mech-
anism for stable-roommate games, and so Theorem
2.7 implies that it implements a stable matching in an
incentive-compatible manner.

Mechanism for Stable-Roommates:

• Go over the students in some cyclic (round-robin)
order and, at each time step, allow a single stu-
dent to announce another student.

• We say that a student i makes a “better offer” to
another student j at time t if (1) i announces j
at time t; and (2) j prefers i to all students from
whom he has “offers”, that is, all students whose
last announcement was j. The mechanism pre-
scribes that each student repeatedly check which
students he can make a better offer to, and an-
nounce his most preferred student to whom he
can make a better offer.

• The mechanism terminates after n2 steps and
outputs all student pairs (i, j) such that i’s last
announcement was j and j’s last announcement
was i.

Theorem 3.2 The mechanism is incentive-compatible
in ex-post Nash and implements a stable match-
ing in both intern-hospital matchings and correlated
markets.

3.2 Cost-sharing

Cost-sharing arises in situations in which the cost
of some public service (e.g., building a bridge) must
be distributed between self-interested users that can
benefit from this service to different extents, and is
modeled as follows. n users 1, . . . , n aim to share the
cost of building some common infrastructure. Some
cost-sharing rule specifies, for every subset of users S,
and every user i ∈ S, i’s “cost share” ci(S) for build-
ing an infrastructure that only serves members of S.
ci(S) is nonnegative, monotonically non-increasing in
S, and also cross-monotonic, that is, ∀i ∈ S ⊆ T ,
ci(S) ≥ ci(T ). User i gets positive (private) value
vi ∈ <≥0 if the infrastructure serves him and 0 other-
wise. The goal is to split the cost of the infrastructure
between a group of users so that each user’s payment is
at least his cost-share, yet does not exceed his private
value, that is, to find “reasonable” cost shares. Moulin
[9] exhibits a centralized mechanism that achieves this
(see also [10]).

We now use the framework in Section 2 to design
simple and natural distributed incentive-compatible
mechanisms that implement the same outcome as
the Moulin mechanism. We present “1st-price cost-
sharing games” and specific tie-breaking rules.

1st-price cost-sharing games: The users are the
players and, for each user i, Si = <≥0. Given a vector
of users’ bids (strategies)

−→
b = (b1, . . . , bn), the “ser-

viced set” for
−→
b is the maximum-cardinality subset of

users S such that ∀j ∈ S, bj ≥ cj(S) (breaking ties be-
tween such sets lexicographically). ∀−→b = (b1, . . . , bn),
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ui(
−→
b ) = vi − bi if i is in the serviced set for

−→
b ;

ui(
−→
b ) = 0 otherwise.

Tie-breaking rules: Prefer bids closer to vi, i.e.,
∀s, t ∈ Si, if |s− vi| ≤ |t− vi| then t ≺i s.

Theorem 3.3 For every 1st-price cost-sharing game
G it holds that

• G is NBR-solvable under these tie-breaking rules.
• G’s unique PNE under these tie-breaking rules

induces reasonable cost shares as in the outcome
of the Moulin mechanism.

• eG ≤ n.

Proof sketch: Let us show an elimination sequence
for every cost sharing game. First, notice that each
player can only get a non-positive utility from a bid
that is above his valuation. We therefore start by
eliminating these bids for all players. Next, let Rv be
the set of serviced users for bids that are exactly the
valuations of the players. Any player i /∈ Rv will not
get serviced for any set of bids that are in the remain-
ing subgame (costs only increase as players drop out
and he does not win when they all pay the maximal
amount). We can therefore eliminate all strategies be-
low vi for any such player. For every player j ∈ Rv, we
can eliminate all bids below cj(Rv), as he will only get
0 utility with those bids, and non-negative utility with
higher bids. Once these are eliminated, then in the re-
maining subgame Rv will always be the serviced set
of players and we can eliminate all bids above cj(Rv)
as well.

Note that it is also possible to perform the elimi-
nations using a different order. Specifically, for each
player i we can let all other players eliminate bids
above v, then determine a set of serviced agents Ri

for the case in which every agent j bids vj except
for agent i that bids ∞. Then, eliminate all bids
for non-serviced agents (except their valuation), and
check if ci(Ri) is greater than vi. If it is, we can elim-
inate bids below ci(Ri) for agent i. Otherwise, agent
i will not gain a positive utility from the service in
any case and we can eliminate all his strategies except
his valuation. We can then continue along the same
lines as before and eliminate strategies for all other
players. Either way, the elimination done by agent i
leads to a subgame in which s∗ is the optimal out-
come for him, and so the game has a clear outcome as
required. ¤

We observe that the following natural distributed
mechanism is a best-response mechanism for 1st-price

cost-sharing games (under these tie-breaking rules),
and so Theorem 2.7 implies that it implements the
outcome of the Moulin mechanism in an incentive-
compatible manner.

Mechanism for cost-sharing:

• Go over the users in some cyclic (round-robin)
order and, at each time step, allow a single user
to submit a bid in <≥0.

• The mechanism prescribes that each bidder i re-
peatedly bid as follows: submit the minimal bid
bi ≤ vi such that i is in the serviced set for the
most-recently submitted bids; in the event that
no such bid exists submit the bid bi = vi.

• The mechanism terminates after n2 time steps,
outputs the serviced set S for the last-submitted
bids and charges each bidder i ∈ S his last bid
bi.

Theorem 3.4 The mechanism is incentive compatible
and implements reasonable cost-shares.

This result can be extended to the class of acyclic
mechanisms studied in [8]).

3.3 Internet routing

The Border Gateway Protocol (BGP) establishes
routes between the smaller networks that make up
the Internet. Griffin et al. [6] put forth the following
model for analyzing BGP dynamics. The network is
an undirected graph G = (V, E) where the vertex set
V consists of n source nodes and 1, . . . , n a unique des-
tination node d. Each source node has a private strict
ranking of all simple (loop-free) routes between itself
and the destination node d. Under BGP, each source
node repeatedly examines its neighboring nodes’ most
recent route-announcements, selects to forward traffic
through the neighbor whose route it likes the most,
and announces its newly chosen route to all neighbors
via update messages. The network is asynchronous
and so nodes can select routes simultaneously and
based on outdated information (update messages be-
tween nodes can be arbitrarily delayed).

BGP’s convergence to a “stable” routing tree is the
subject of extensive networking research. Levin et al.
[7] observe that BGP can be regarded as best-response
dynamics in a specific class of “routing games”,
and prove that BGP is incentive-compatible in net-
works for which the No Dispute Wheel [6] condition
holds.

No Dispute Wheel is a generalization of the Gao-
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Rexford [4] conditions, that capture common Internet
routing practices. A Dispute Wheel (see Figure 2) is
a 3-tuple (U ,R,Q), where U = (u0, u1, . . . , uk−1) is a
sequence of k vertices in V , called the “pivot nodes”
and R = (R0, R1, . . . , Rk−1), Q = (Q0, Q1, . . . , Qk−1)
are two sequences of k routes, such that (indices are
considered modulo k):

• ∀i, Qi is a simple route from i to d.
• ∀i, Ri is a simple route from ui to ui+1.
• ∀i, ui ranks the route RiQi+1 more highly than

the route Qi.

“No Dispute Wheel” is the condition that no Dis-
pute Wheel exist in the network.

Figure 2: A Dispute Wheel.

Theorem 3.5 ([7]) BGP is incentive-compatible in
ex-post Nash in networks for which No Dispute Wheel
holds.

We now show that the class of “BGP games” pre-
sented in [7] falls within the category of NBR-solvable
games with clear outcomes. Thus, the essence of the
incentive compatibility result for BGP in [7] follows
from Theorem 2.7.

BGP games: The source nodes are the players and,
for each source node i, Si is the set of i’s outgoing
edges in E. Given a vector of source nodes’ traf-
fic forwarding decisions (strategies)

−→
f = (f1, . . . , fn),

ui(
−→
f = (f1, . . . , fn)) is i’s rank for the simple route

from i to d under
−→
f (the least desired route has rank

1) if such a route exists; ui(
−→
f ) = 0 otherwise.

Theorem 3.6 For a BGP game G it holds that

• G is NBR-solvable.
• G’s unique PNE is a stable routing tree.
• eG ≤ n.

Proof sketch: Let us show an elimination order in the
game. At every stage in the elimination, we locate a
node that can guarantee its most preferred route (in
the current subgame) and eliminate all other routing
actions for it. To show that such a node always exists,
we begin with an arbitrary node a0 with at least 2
actions. Let R0 be a0’s most preferred existing route
to d (a route is said to exist if all nodes along it can
route accordingly in the current subgame). Let a1

be the vertex closest to d on R0, with two available
actions in the current subgame, such that a1 prefers
some other route R1 to the suffix of R0 that leads
from a1 to d (if no such node exists a0 can guaran-
tee its most preferred route). Then we choose a2 to
be the vertex closest to d on R1 such that a2’s most
preferred route R2 is preferred over the suffix of R1

that leads from a2 to d. Once again if there is no such
a2 we are done. We can continue to choose a3, a4, . . .
in the same manner. Since there is a finite number of
vertices, at some point some vertex will appear twice
in this sequence (a0, a1, . . .). This would result in the
formation of a Dispute Wheel (in which the ais are
the pivot nodes and the Ris are the routes) which we
assumed is not contained in the graph. We will there-
fore always be able to find a node that can guarantee
its most preferred route and continue with the elim-
ination, until there are no more nodes with several
possible actions. ¤

3.4 Congestion control

Congestion control is a crucial task in communica-
tion networks. Congestion is handled via the combina-
tion of transmission-rate-adjustment protocols at the
sender-receiver level (e.g., TCP), and queueing man-
agement policies at the router level, that dictate how
excess traffic is discarded (e.g., RED). TCP is noto-
riously not incentive compatible. [5] analyzes incen-
tives in the following TCP-inspired environment. The
network is an undirected graph G = (V, E) with a
given a capacity function c that specifies the capacity
c(e) for each edge e ∈ E. The network consists of
n source-target pairs of vertices (αi, βi). Every such
source-target pair (αi, βi) aims to send traffic along a
fixed route Ri in G. Each source αi can select trans-
mission rates that lie in the interval [0,Mi], where Mi

is αi’s private information, and wishes to maximize its
achieved throughput. When an edge encounters con-
gestion, that is, the sum of incoming flows traversing it
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exceeds its capacity, excess traffic must be discarded.
[5] considers two capacity-allocation schemes:

• Strict-Priority-Queueing (SPQ). ∀e ∈ E
there is an edge-specific order over source nodes.
Capacity is shared as follows: the most highly
ranked source whose route traverses the edge gets
its entire flow sent along the edge (up to c(e));
unused capacity is allocated to the second most
highly ranked source whose route traverses the
edge in a similar fashion, etc.

• Weighted-Fair-Queueing (WFQ). ∀e ∈ E,
each source node αi has weight wi(e) at e. Ev-
ery source αi is then allocated capacity wi

Σjwj
c(e).

Unused capacity is allocated in a recursive man-
ner. The special case that ∀e ∈ E, ∀i ∈ [n],
wi(e) = 1 is called “fair queueing” (FQ).

[5] considers a TCP-like protocol called Probing-
Increase-Educate-Decrease (PIED) in which each
source is instructed to gradually increase its transmis-
sion rate until encountering congestion and, at that
point, decrease its transmission rate to its achieved
throughput. [5] analyzes PIED in settings in which
all edges use SPQ or all edges use WFQ, and sources
priorities/weights are identical on all edges. PIED is
shown to be incentive compatible in both these en-
vironments (also under asynchronous timings of rate-
transmission adjustments).

Theorem 3.7 ([5]) PIED is incentive compatible in
networks in which all edges use SPQ with coordinated
priorities.

Theorem 3.8 ([5]) PIED is incentive compatible in
networks in which all edges use WFQ with coordinated
weights (and so if all edges use FQ then PIED is in-
centive compatible).

It is interesting to notice that PIED can be con-
sidered a form of better-response in a setting in which
the exact available capacity is unknown. We unify the
two results above for an abstracted setting by formu-
lating the environment in [5] as a game and showing
that this game is NBR-solvable with a clear outcome
(under specific tie-breaking rules). Our main differ-
ence from [5] is that we allow players more knowledge
about the network, while [5] uses the probing nature
of PIED to learn the needed information (all that is
needed is for players to be able to tell the amount of
available bandwidth on their path). Thus, Theorem
2.7 implies a result that is similar in spirit to the two
theorems in [5].

TCP games: The source nodes are the players and
each source node i’s strategy space is Si = [0,Mi].
Given a vector of source nodes’ transmission rates
(strategies) −→r = (r1, . . . , rn), ui(−→r ) is αi’s achieved
throughput in the unique traffic-flow equilibrium point
of the network for −→r ([5] shows that such a unique
equilibrium point exists for the SPQ and WFQ set-
tings with coordinated priorities/weights).

Tie-breaking rules: ∀s, t ∈ Si, s ≺i t iff s > t.

Theorem 3.9 For every TCP game G such that all
edges use SPQ with coordinated priorities, or all edges
use WFQ with coordinated weights, it holds that

• G is NBR-solvable under these tie-breaking rules.
• G’s unique PNE under these tie-breaking is a sta-

ble flow pattern.
• eG ≤ n.

For clarity of presentation we show only the proof
for the case of Weighted-Fair-Queueing, with equal
weights. The proof for non-equal weights and for
Strict-Priority-Queueing follow similar lines.

Proof sketch: Let us define for each edge e, the share
of each flow as βe = ce/ke where ke is the number of
flows that traverse the edge. We construct an elim-
ination sequence for the game as follows: Let e∗ be
the edge with the minimal β. Each flow on this edge
is guaranteed βe∗ traffic through that edge, and at
least that amount on all other edges. It is therefore
possible to eliminate all actions of transmitting less
than βe∗ for each player that goes through e∗. Now,
if all flows through e∗ claim their fair share, no flow
can send more (no bandwidth is unclaimed). We can
therefore eliminate all actions of transmitting above
βe∗ for these flows. Now, we are left with a subgame
with a smaller number of active players where some of
the bandwidth on each edge is already used up. We
can now repeat the elimination steps for the residual
network graph with the remaining players.

Notice that for each bottleneck edge e∗ that is found
along the process there are several orders of elimina-
tion (according to ordering among players). If player
i eliminates actions below βe∗ last among players that
go through e∗, then he does so in a game in which the
final profile is optimal for him, and so the game has a
clear outcome. ¤

4 Collusion-proof best-response
mechanisms

In Section 3, we establish incentive compatibility re-
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sults for four environments. We are able to strengthen
our results for stable-roommates (Theorem 3.1), BGP
games (Theorem 3.6), and TCP games where all edges
use SPQ with coordinated priorities (see Theorem
3.9). We prove that, in all these settings, best-
response mechanisms are actually also collusion-proof.
We observe, though, that NBR-solvability with a clear
outcome does not imply collusion-proofness of best-
response mechanisms in general. To see this, consider
the game depicted in Figure 3 (which is simply the
prisoner’s dilemma).

Figure 3: An NBR-solvable game with a clear outcome for

which best-response mechanisms are not collusion proof.

Observe that this game is indeed an NBR-solvable
game with a clear outcome, yet both players prefer
(C,C) to the unique equilibrium (D, D). Thus, the
two players can jointly deviate from repeated best-
response and both strictly gain from doing so.
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