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Abstract: In a related-key attack (RKA) an adversary attempts to break a cryptographic primitive by invoking
the primitive with several secret keys which satisfy some known, or even chosen, relation. We initiate a formal
study of RKA security for randomized encryption schemes. We begin by providing general definitions for semantic
security under passive and active RKAs. We then focus on RKAs in which the keys satisfy known linear relations
over some Abelian group. We construct simple and efficient schemes which resist such RKAs even when the
adversary can choose the linear relation adaptively during the attack.
More concretely, we present two approaches for constructing RKA-secure encryption schemes. The first is based
on standard randomized encryption schemes which additionally satisfy a natural “key-homomorphism” property.
We instantiate this approach under number-theoretic or lattice-based assumptions such as the Decisional Diffie-
Hellman (DDH) assumption and the Learning Noisy Linear Equations assumption. Our second approach is
based on RKA-secure pseudorandom generators. This approach can yield either deterministic, one-time use
schemes with optimal ciphertext size or randomized unlimited use schemes. We instantiate this approach by
constructing a simple RKA-secure pseurodandom generator under a variant of the DDH assumption.
Finally, we present several applications of RKA-secure encryption by showing that previous protocols which
made a specialized use of random oracles in the form of operation respecting synthesizers (Naor and Pinkas,
Crypto 1999) or correlation-robust hash functions (Ishai et. al., Crypto 2003) can be instantiated with RKA-
secure encryption schemes. This includes the Naor-Pinkas protocol for oblivious transfer (OT) with adap-
tive queries, the IKNP protocol for batch-OT, the optimized garbled circuit construction of Kolesnikov and
Schneider (ICALP 2008), and other results in the area of secure computation. Hence, by plugging in our con-
structions we get instances of these protocols that are provably secure in the standard model under standard
assumptions.

Keywords: cryptography, encryption, related-key attacks, correlation-robust hash functions, oblivious
transfer.

1 Introduction

Encryption is the most useful and widely known
cryptographic primitive. Encryption schemes are be-
ing used both as standalone applications (as means
of achieving “private” communication), and as build-
ing blocks for more complicated cryptographic tasks
(e.g., secure multiparty computation). At an intu-
itive level, a private-key encryption scheme employs a
secret key k to “garble” a message m into a cipher-
text c, such that only a user who knows the key k
can recover the message m from c, and any other user
learns “nothing” about the message m. Modern no-
tions of security (e.g., semantic security [33] or CCA
security [23, 58, 65]) formulated this intuition in a
very strong way, granting the adversary full control of
almost all aspects of the system including the ability

to encrypt messages and to decrypt ciphertexts at his
choice. These formulations (and others) have led to
increasingly strong notions of security. However, in
all these notions the adversary is assumed to have no
control on the secret keys. That is, security is guaran-
teed as long as keys are chosen truly at random and
are kept secret.

In the past decade, this requirement has been re-
laxed to capture scenarios where some information
about the keys is leaked to the adversary either di-
rectly (cf.[1, 22, 24, 53, 57, 62, 67]) or indirectly in
the form of key-dependent messages (cf. [2-4, 12-15,
17, 36, 37, 39]). The present paper continues this
line of research by studying another relaxation of the
“random key assumption.” Specifically, we study the
security of encryption schemes under related-key at-
tacks (RKA). In such attacks, the adversary attempts
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to break the encryption scheme by invoking it with
several secret keys which satisfy some known rela-
tion. For example, the adversary may ask for encryp-
tions under a tuple of keys (k1, . . . , kt) whose XOR-
differences ∆i = k1⊕ ki are known, or even chosen by
the adversary during the attack.

RKAs are widely used in the area of applied cryp-
tography, especially in the cryptanalysis of block
ciphers (and typically with respect to the XOR-
relation). Such attacks were first considered by Biham
[8] and Knudsen [44] in the early 1990’s. They were
intensively studied in the last decade [9, 10, 26, 42,
70], until the point where today RKA security is con-
sidered to be an important goal in the design of block
ciphers [21]. Motivated by this state of affairs, Bellare
and Kohno [7] initiated a theoretical study of RKA
security for block ciphers, theoretically modeled by
pseudorandom functions (PRFs) and pseudorandom
permutations (PRPs). They defined RKA security
with respect to a class of related-key-deriving (RKD)
functions Φ which specify the key-relations available
to the adversary, and considered an active (and adap-
tive) adversary who can choose the relation from Φ
during the attack.

Despite some limited positive results, obtained in [7,
51] and more recently in [31], it turned out that even
for relatively simple relations (such as the XOR rela-
tion) achieving RKA security is very challenging. (See
Section 1.2.) Only very recently, this goal was met
by Bellare and Cash [6], who constructed RKA-secure
block ciphers based on a standard cryptographic as-
sumption (i.e., hardness of the DDH/DLIN problem).
While their construction forms an important feasibil-
ity result, it is relatively inefficient. Also, it is re-
stricted to linear relations over groups of the form Z∗q
(or Zq) where q is a large prime, rather than XOR-
related attacks which may be considered to be more
realistic (as they manipulate individual bits).

1.1 Our contribution

We continue the study of RKA-secure primitives
but shift the focus to randomized encryption schemes.
That is, instead of asking for pseudorandomness un-
der RKAs we examine semantic security under RKAs.
Apart from being a natural question which deserves
study in its own right, it turns out that a direct treat-
ment of semantic security has an important advan-
tage: it leads to simpler and more efficient schemes for
richer classes of key relations. Furthermore, we show
that such randomized encryption schemes can serve as

useful building blocks for several applications. Specif-
ically, we reconsider several high-level protocols from
the literature which originally employ strong pseudo-
random objects (typically implemented by random or-
acles), and show that these protocols can be modified
to rely on RKA semantically secure (randomized) en-
cryption schemes. This not only serves as additional
motivation for our study, but also further motivates
the general work in the cryptanalysis community on
the RKA security of practical ciphers. Following is a
more detailed account of our results.

1.1.1 Definitions and constructions

We begin by giving a general definition for seman-
tic security under RKAs. Following [7], we consider
RKA security with respect to a class of related-key-
deriving (RKD) functions Φ which specify the key-
relations available to the adversary. Roughly speak-
ing, we let the adversary apply a chosen plaintext at-
tack with respect to a set of keys k1, . . . , kt which are
derived from a master key k via a known function φ
taken from an RKD family Φ. The adversary’s suc-
cess is tested via a distinguishing game. We present
two main variants: a passive RKA (PRKA) in which
φ is chosen by the challenger, and an adaptive RKA
(ARKA) in which the adversary can choose many φ’s
by himself adaptively during the game.

This work focuses mostly on RKA security for lin-
ear relations Φ+ which generalize the aforementioned
XOR relation to an arbitrary Abelian group. We show
that variants of encryption schemes from the litera-
ture are in fact secure against such classes of RKAs.
The security of these schemes can be based on number
theoretic assumptions such as DDH, or coding/lattices
assumptions such as learning parity with noise (LPN)
or Regev’s learning with errors (LWE) assumption [61,
66]. More concretely, these constructions can pro-
vide ARKA-security against linear functions over var-
ious different groups including Zn

2 and Z2n (for which
we get the standard XOR and + mod 2n relations),
as well as additive groups of the form Zn

q for any
2 ≤ q ≤ 2poly(n) (not necessarily a prime). Security is
achieved by exploiting key-homomorphism properties,
i.e., the ability to transform an encryption of a mes-
sage m under a key k into an encryption of the same
message under k + ∆. This property easily leads to
RKA semantic security (while being seemingly insuf-
ficient for RKA-security of PRFs).
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RKAs and the power of randomization

Our results indicate that there is a significant dif-
ference between randomized primitives (e.g., random-
ized encryption) which use some private randomness
in addition to the private key, and deterministic prim-
itives (e.g., PRGs, PRFs, or PRPs). Indeed, although
symmetric encryption is typically considered to be
more “complicated” than pseudorandom generators,
it seems that in the RKA setting the latter are harder
to construct. This view is also supported by the re-
sults of [31].

We do, however, also make progress on the ques-
tion of realizing deterministic primitives by present-
ing a simple and efficient construction of an RKA-
secure PRG (aka correlation robust hash function
[40]). Roughly speaking, an RKA-secure PRG is a
function h such that for a secret seed s and public ran-
dom offsets ∆i, the values (h(∆1 + s), . . . , h(∆t + s))
are pseudo-random. We show that a function of the
form h(x) = gxt

satisfies this requirement under a
variant of the DDH assumption that was considered
in several previous works (e.g., [18, 28, 34]). The as-
sumption asserts that, in a suitable group, the power
sequence (g, gx, gx2

, . . . , gxi

) is pseudorandom, for a
random generator g, a random x, and any polyno-
mial i. This construction yields RKA-secure one-time
symmetric encryption scheme with optimal ciphertext
size. (This should be contrasted with our randomized
DDH-based construction in which the ciphertext must
contain a pair of elements in a DDH group even when
the message is much smaller.) It should be noted that
the notion of one-time security in the RK context al-
lows to encrypt a single message for each related key.
Hence, this primitive is quite strong and, it implies
stateful deterministic RKA-secure encryption scheme
with optimal ciphertext length, or alternatively a ran-
domized stateless scheme with some additional over-
head in the ciphertext length.1

1.1.2 Applications

We show that several previous cryptographic pro-
tocols which were based on random oracles or non-
standard primitives can be instantiated (after some
modifications) by encryption schemes which provide
RKA-security with respect to linear functions. Intu-
itively, such encryption schemes are useful in proto-

1To achieve stateful deterministic RKA-secure encryption,
encrypt the i-th message mi by Encs(mi) = mi ⊕ h(s + i).
A randomized stateless encryption can be achieved by letting
Encs(m; r) = (r, mi ⊕ h(s + r)). See Lemma 3.2.

cols in which one party prepares many different ci-
phertexts, out of which only some will be revealed
to the other parties. Standard encryption schemes
provide security only if the keys are fully indepen-
dent, whereas RKA-secure encryption allows to par-
tially “recycle” keys by deriving new keys from old
ones via the known relation. This additional flexi-
bility naturally leads to improvements in communi-
cation and computation; furthermore, as we will see,
in some scenarios a clever usage of these properties al-
lows to distribute the keys to the participants in a way
that significantly reduces the computational overhead
and/or provides stronger security guarantees. We now
elaborate on these applications.

The Naor-Pinkas Adaptive OT

Oblivious transfer (OT) [16, 25, 43, 63] is a central
cryptographic primitive which allows a receiver R to
obtain a subset of the data items held by a sender
S, without letting S know which items were selected.
Naor and Pinkas [54] studied an adaptive version of
k out of N OT, in which the receiver selects k out
of N items adaptively one-by-one. (Subsequent con-
structions obtained better efficiency under stronger as-
sumptions; see [18, 35] and references therein.) They
described a construction which is based on a special
new primitive called Operation respecting synthesizer
and showed that such a primitive can be realized un-
der the DDH assumption or by using a random ora-
cle. We observe that the Naor-Pinkas protocol can be
instantiated by a special form of encryption scheme
which, in turn, can be realized from any symmetric
encryption scheme which is ARKA secure over linear
functions. Hence, we obtain lattice-based and LPN-
based instantiations for their protocol.

The IKNP Batch OT

Efficiency is particularly crucial for oblivious trans-
fer due to its extensive use in both protocols for gen-
eral secure computation (e.g., [32, 41, 43, 49, 68]), as
well as more specialized or practically-oriented proto-
cols (e.g., [30, 47, 56]). Indeed, OTs, which typically
require computationally expensive public-key opera-
tions, form the efficiency bottleneck in many secure
computation protocols. This fact motivated [40] (fol-
lowing [5, 55]) to present a batch-OT protocol which
efficiently extends a small number of OTs to many
OTs. The construction from [40] uses a random or-
acle or alternatively a XOR-correlation robust hash
function – a nonstandard primitive that can be seen
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as an RKA-secure PRG with respect to XORs. This
primitive was presented in [40] with no concrete in-
stantiation, except for suggesting that practical hash
functions may serve as good heuristic instances. A
similar primitive is also used in subsequent OT exten-
sion protocols which offer better efficiency in the case
of security against malicious parties [38, 41, 59].

We show that the use of correlation-robust hash
functions in these OT extension protocols can be
instantiated with PRKA-secure one-time encryption
scheme with respect to XORs. We also describe a
modification of the construction that can be based
on RKA-security with respect to linear relations over
general groups. By plugging in our RKA-secure con-
structions, we get security in the standard model un-
der the DDH assumption, LPN, or LWE. To the best
of our knowledge, this is the first instantiation of the
IKNP protocol or its variants in the standard model.
As noted above, we also present a very efficient con-
struction of correlation robust hash functions under a
variant of the DDH assumption.

Optimized garbled circuit
constructions

Yao’s garbled circuit (GC) technique [69] (see [48])
is a powerful tool that allows to securely evaluate any
two-party functionality represented as a Boolean cir-
cuit. Recently, progress has been made on improving
the efficiency of GC-based protocols [49, 60], including
some practical implementations [50, 52, 63]. In [46] it
is shown how to eliminate the overhead of handling
XOR-gates by relying on a random oracle or XOR-
correlation robust functions. It turns out that here
too, the primitive is used as a one-time encryption
scheme and therefore one can use PRKA-secure en-
cryption scheme instead. Although this leads “only”
to an efficiency improvement by a constant factor,
such savings can still be very beneficial especially for
large or medium size circuits as demonstrated in [45,
65]. Another GC optimization which relies on XOR-
correlation robust function can be found in [60]. In
this application the use of related keys allows to pro-
tect the protocol against malicious parties by using an
improved cut-and-choose technique.

Heuristic instantiations

We believe that the results of this work are useful
even if one decides, due to efficiency considerations,
to instantiate the above applications with a heuristic

implementation (e.g., a practical hash function such
as SHA128). This is for two reasons: First, knowing
that such primitives can be instantiated under stan-
dard assumptions gives better confidence in the plausi-
bility of heuristic constructions. Second, viewing the
primitive as a non-adaptive RKA-secure scheme al-
lows to rely on other heuristic solutions such as block
ciphers, for which RKA security is well studied. In-
deed, the security of, say, AES under passive-RKAs
for linear functions is considered to be a very conser-
vative assumption. This may be better than relying
on non-standard (yet plausible) properties of a hash
function such as correlation robustness. Moreover, as
said before, the above applications further motivate
the practical study of RKA-security for block ciphers.

1.2 Related work

Bellare and Kohno [7] were the first to study
related-key attacks in a theoretical framework. Other
than providing a formal definition for RKA-secure
PRPs and PRFs and pointing to some of their ap-
plications, [7] attempted to characterize the classes of
RKDs Φ under which RKA security is possible. They
showed that RKA security (for PRFs and PRPs) is
impossible even with respect to relatively simple re-
lations, while for other classes of attacks they proved
possibility results in the ideal cipher model. They also
gave constructions in the standard model that resist
partial -RKAs (i.e., key-relations that leave some part
of the key untouched).

Lucks [51] further studied partial-RKAs and, in
addition, showed that RKA-security with respect
to linear relations can be achieved under non-
standard number-theoretic assumptions. Goldenberg
and Liskov [31] studied RKA security for more ba-
sic symmetric primitives such as one-way functions
and pseudorandom generators. Their results indicate
that the way from RKA-secure one-way functions to
RKA-secure PRFs or even PRPs is “blocked” at the
hard-core bit level. Specifically, while a single related-
secret pseudorandom bit is sufficient and necessary to
create RKA-secure block ciphers, such hard-core bits
cannot be constructed via typical (black-box) proof
techniques.

Finally, two very recent related works that were
done concurrently to our work are [6, 11]. In [6]
Bellare and Cash provided the first construction of
a block cipher which is provably RKA-secure against
linear relations based on a standard assumption (i.e.,
hardness of the DDH or the DLIN problem). Bitan-
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sky and Canetti [11] studied a new notion of obfus-
cators and, among other things, showed that obfusca-
tors for multibit point functions give rise to encryp-
tion schemes which remain secure under passive key-
related attacks (extending similar connections that
were made in [19, 20]). They also presented an ob-
fuscator, whose security follows from a strong (non-
standard) variant of the DDH assumption, which
gives rise to an encryption scheme that satisfies pas-
sive RKA security with respect to a wide family of
relations as well as active RKA security for linear
relations.2

Organization

The rest of this paper is structured as follows. In
Section 2 we define the notion of semantic-security
under Related-Key Attacks and discuss some basic
aspects of this notion. In Section 3 we present gen-
eral tools for constructing RKA secure schemes, and
use them to obtain constructions based on concrete
cryptographic assumptions. The last two sections are
devoted to applications of RKA security — batch-
OT is constructed in Section 4, and adaptive-OT in
Section 5.

2 Definitions
Symmetric encryption (syntax)

Typically, symmetric encryption schemes can be
solely defined by a pair of encryption and decryp-
tion algorithms where keys are just random bit strings
whose length is equal to the security parameter. How-
ever, for our number-theoretic constructions it will
be convenient to assume that keys are drawn from
other domains (e.g., some group G) whose description
is public and possibly generated randomly by some
set-up algorithm once and for all. Formally, symmet-
ric encryption scheme consists of three probabilistic-
polynomial time algorithms (SetUp,Enc,Dec) as fol-
lows: (1) The randomized algorithm SetUp is given a
security parameter 1n and outputs the description of
the key space K from which secret keys are sampled
uniformly at random. The description of K includes
its size, and a circuit for sampling a random element.
Typically, K is assumed to be an Abelian group and
in this case its description also includes a circuit for
implementing the group operations. The key space
and its full description are given as a public param-

2It should be mentioned, however, that passive RKA seems
much weaker than active RKA. See Section 2.

eter and are also passed implicitly to the encryption
and decryption algorithms. (2) For K ∈ SetUp(1n),
the randomized encryption algorithm Enc takes a mes-
sage m of length poly(n) and a secret key k ∈ K
and outputs a ciphertext c. The randomized decryp-
tion algorithm Dec takes a ciphertext c and a se-
cret key k ∈ K and outputs a plaintext. (3) Cor-
rectness: for every message m, the error probability
Pr

k
R←K

[Deck(Enck(m)) 6= m], taken over the random-

ness of Enc,Dec and K
R← SetUp(1n), is negligible

in n.

Related-key-deriving functions (RKDs)

Our formal definition is based on the notion of
related-key-deriving (RKD) functions [7]. Let Φ be
a family of related-key-deriving (RKD) functions φ :
K → Kt which map a key to a tuple of related t
keys. Formally, we think of these objects as infinite
families which are indexed by all possible key-spaces
K ∈ SetUp(1n); i.e., for every K ∈ SetUp(1n) the fam-
ily ΦK contains functions of the form φ : K → Kt(n).
We will always assume that Φ is equipped with an effi-
cient algorithm B and a canonical (and typically nat-
ural) representation that allows to specify a function
φ ∈ ΦK by a string σ ∈ {0, 1}poly(n) where B(K, σ, ·)
evaluates φ.

Adaptive RKA Security

Adaptive Related-Key (ARK) security is defined
with respect to Φ via the following game that takes
place between a challenger and an adversary A.
For a security parameter n the game proceeds as
follows:

• Initialization. The challenger chooses a key
space K by invoking the algorithm SetUp(1n).
Then it randomly chooses a secret key k0

R← K

and a challenge bit b
R← {0, 1}. The challenger

sends K to the adversary.
• Queries. The adversary asks polynomially-

many queries, where each query is of the form (φ,
m0,m1, . . . , mt) where φ ∈ ΦK . For 1 ≤ i ≤ t,
let ki be the i-th entry of φ(k). The challenger
responds with the tuple

c
R←

{ (Enc(kj ,mj))j=0..t if b = 1,

(Enc(kj , 0|mj |)j=0..t if b = 0.

• Final phase. The adversary attempts to guess
b and outputs a bit b′ ∈ {0, 1}.

49



B. APPLEBAUM, D. HARNIK, Y. ISHAI

Definition 2.1. (ARKA-secure encryption) A
symmetric encryption scheme (SetUp,Enc,Dec) is
semantically-secure under Adaptive Related-Key at-
tacks (in short, ARKA-secure) with respect to an RKD
ensemble Φ if every polynomial-time attacker A has no
more than negligible advantage over 1

2 in guessing the
value of the bit b in the above game (where the running
time and the advantage are measured as functions of
the security parameter n).

Remarks

• (Avoiding trivialities.) Our syntactic definition
requires that all but negligible fraction of the keys
in the key space K be valid, i.e., respect correct-
ness. Without this property (which is also crucial
for applications), ARKA-security can be easily
achieved (even for arbitrary functions) by adding
some redundancy to the keys such that φ(k) will
result in an invalid key.3

• (RKA ⇒ Semantic security.) It is not hard to
show that for any family Φ breaking ARKA-
security is at least as hard as breaking standard
semantic security. Indeed, a standard chosen-
plaintext attack can be emulated by an ARK at-
tack in which the adversary restricts its attention
to ciphertexts generated under k0 and ignores all
other ciphertexts.

• (Impossible families) There are RKD families
for which RKA security is impossible to realize.
Consider, for example, the function φ0 which
maps the key k to the all zero key k1 = 0. In
such a case, since k1 is known to the adversary,
it is easy to distinguish the real mode (b = 1)
from the dummy mode (b = 0). (E.g., ask for
an encryption c of some message m 6= 0 under
k1, and then check whether the ciphertext c
decrypts to m under k1 = 0.) More generally, if
the function φ(k) does not leave enough entropy
in each of the related keys (when k0

R← K), then
RKA security is impossible to achieve.

Relaxations

For some of our applications it suffices to consider

3At the extreme, consider a scheme in which the key space
K contains only a single valid key k (uniquely defined via some
information given as part of the public parameters such as point
obfuscator). The encryption and decryption algorithm will en-
crypt/decrypt only after verifying that the given key is the right
one. Such a scheme provides security against any Φ but does
not satisfy our syntactic definition.

a relaxed notion of passive RKA (PRKA for short)
in which the function φ is randomly chosen by the
challenger. This relaxation is obtained by modifying
the ARKA game as follows. At the initialization phase
the challenger generates K and chooses k0 and b as be-
fore. In addition, it chooses a KDM function φ

R← ΦK

and defines a vector of t keys by (k1, . . . , kt) = φ(k0).
It sends K and φ to the adversary. At the query
phase the adversary is allowed to ask polynomially
any queries of the form (i,m) where 0 ≤ i ≤ t and m
is in the message space, and the challenger responds
with either with a real encryption Enc(ki,m) or with
a dummy encryption Enc(ki, 0|m|) depending on the
value of b. As before the goal of the adversary is to
guess the bit b. (See Appendix A for formal defini-
tion.) This notion can be further relaxed to the case
of one-time encryption schemes by restricting the ad-
versary to use only a single encryption query for each
key ki. To avoid trivialities, we assume that the length
of t messages is bigger than the key length. (Other-
wise a perfectly PRKA-secure one-time scheme can be
constructed by letting disjoint parts of the key act in
each invocation.) We note that this notion suffices
for some applications, and that all the remarks made
above about ARKA security also apply to the case of
PRKA one-time encryption.

3 Constructions

We will focus on RKA security with respect to the
RKD family of linear functions Φ+

t . In this case, we
think about the key space K as a group G, and for
each ∆ = (∆1, . . . ,∆t) ∈ Gt define φ∆ : G → Gt

to be the mapping k 7→ (k + ∆1, . . . , k + ∆t). Passive
RKA-security implies that the adversary cannot break
the scheme when given the differences of a (t + 1)-
tuple of random keys. Adaptive RKA provides this
guarantee even if the adversary chooses the differences
∆i by himself. Note that ARKA security under the
family Φ+

1 easily implies security under Φ+
t for any

polynomial t. (As any RK query with φ(∆1,...,∆t) can
be emulated by t calls to Φ∆i

for i ∈ [t].) Hence,
in such a case we say that the scheme is simple Φ+

ARKA secure. Finally, observe that for G = F`
2 we

get the standard XOR-family Φ⊕t .

3.1 Generic tools

We will rely on two generic approaches for con-
structing RKA-secure encryption scheme, described in
Section 3.1.1 and Section 3.1.2.
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3.1.1 Key-homomorphism

Let E = (SetUp,Enc,Dec) be a symmetric encryp-
tion scheme where the key space is a family of groups
Gn. We say that E has key-homomorphism if there
exists an efficient algorithm (key-homomorphism) H
that maps a ciphertext c and a shift amount ∆ into
a new ciphertext c′ such that for every k,∆ ∈ Gn

and message m the random variable c = Enck+∆(m)
is distributed identically to the random variable c′ =
H(Enck(m),∆) where the distribution is induced by
the random coins of Enc and H.

Lemma 3.1. A semantically-secure encryption
scheme with key-homomorphism is adaptively-RKA
secure with respect to linear RKD’s, i.e., Φ+.

Sketch. We use the homomorphism to convert an RKA
adversary into an adversary that uses only queries to
the original key k0 (i.e., a CPA adversary). When the
RKA adversary A asks for an encryption under the
key k + ∆ we will ask for Enck(m) and use the key-
homomorphism H to translate it into Enck+∆(m). We
will end with the same output of A. Since the view
of A is distributed exactly as in the real game in both
cases, namely when b is either zero or one, we get a
CPA adversary that breaks semantic security with the
same advantage of the RKA adversary. ¤

Note that, for the special case of non-adaptive RKA
security under Φ+

t it suffices to use a weaker notion of
homomorphism in which H generates (and outputs)
the random shift ∆ by itself rather than taking it as
an input. We will later apply Lemma 3.1 to (variants)
of known encryption schemes and get schemes that
achieve ARKA security for linear functions under the
DDH assumption (Lemma 3.3) and under the LPN
and LWE assumptions (Construction 3.6).

3.1.2 Correlation robust generators

RKA-security can be also obtained from corre-
lation robust generators [40], which we define be-
low. (The original term used in [40] is correla-
tion robust hash function.) Let t = t(n) be a
polynomial, and let Gn,Hn be two sequences of
groups. We say that an efficiently computable func-
tion h : Gn → Hn is t-correlation robust if
for a random and independent choice of t(n) ele-
ments s,∆1, . . . ,∆t(n) ∈ Gn, the joint distribution
(h(∆1 + s), . . . , h(∆t + s)) is pseudo-random given
∆1, . . . ,∆t. More formally, the ensemble (∆1, h(∆1 +
s), . . . ,∆t(n), h(∆t(n) + s))n is computationally indis-
tinguishable from (∆1, y1, . . . ,∆t(n), yt(n))n where s

and the ∆i’s are chosen uniformly and independently
at random from Gn and the yi’s are chosen uniformly
and independently at random from Hn. The function
h is correlation robust if it is t-correlation robust for
every polynomial t(·).

We now observe that correlation robust genera-
tors give rise to both a deterministic, one-time RKA-
secure encryption scheme with optimal ciphertext
size and a randomized unlimited use ARKA-secure
scheme.

Lemma 3.2. If h : Gn → Hn is t-correlation robust
then the symmetric encryption scheme (Encs(m) =
h(s)+m,Decs(c) = c−h(s)) is one-time RKA secure
with respect to Φ+

t−1. Furthermore, if h is correlation
robust then the scheme Encs(m; r) = (r, h(s + r) + m)
is ARKA secure with respect to Φ+.

Proof. An adversary A that breaks the one-time RKA
security of the first scheme can be used the break
the pseudorandomness of h as follows. Given a
challenge (∆1, c1, . . . ,∆t, ct) we emulate the one-time
RKA game with φ∆′2,...,∆′t where ∆′

i = ∆i − ∆1 and
toss the challenge coin b. (We pretend that s + ∆1 is
the original key k to be attacked.) When the adver-
sary asks for an encryption of m under the i-th key
(which can happen only once per key) we answer with
ci+1 +m if b = 1, and with ci+1 otherwise. At the end
we output “pseudorandom” if and only if the output b′

of the adversary equals to b. Observe that if the chal-
lenges c1, . . . , ct were truly random then the adversary
cannot win with probability better than 1

2 as in both
modes, b = 0 and b = 1, the ciphertext distribution is
uniform (and independent of the messages). On the
other hand, if the challenge vector is pseudorandom
then the view of the adversary is distributed exactly
as in the real game where ki = s + ∆i+1. Hence, an
adversary which breaks the scheme with advantage ε
results in a distinguisher with similar advantage, and
the first part of the claim follows.

We move to the second scheme. Recall that to prove
ARKA security with respect to Φ+ it suffices to show
ARKA security with respect to Φ+

1 . Furthermore,
we can assume, wlog, that each query is of the form
(δi,mi) and is answered by Enck0+δi(mi) as queries to
Enck0(·) can be emulated by letting δi = 0. Given an
adversary A that breaks the ARKA security with re-
spect to Φ+

1 by making at most ` queries we break the
`-correlation robustness of h. Given (∆i, ci)1≤i≤` we
emulate the RKA game as follows. We think of s, the
seed of h, as the “master key” k0, and toss a challenge
coin b. Given the i-th query of the adversary (δi,mi),
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we let ri = ∆i − δi, and answer the query with the
ciphertexts yi = (ri, ci + b ·mi). At the end we output
“pseudorandom” if and only if the output b′ of the
adversary equals to b.

Again, if the challenge is truly random, the adver-
sary’s view in the case where b = 0 and b = 1 is
identical, and consists only of random strings. Hence,
in this case the adversary cannot guess the bit b with
probability better than 1

2 . It remains to show that
when the input is pseudorandom the view of the ad-
versary is distributed identically to the real view. (As
in this case, an adversary with advantage ε breaks the
correlation robust PRG with advantage ε.)

Indeed, if ci = h(s + ∆i) then yi = Enck0+δi(mi ·
b; ri) where ri = ∆i − δi is distributed uniformly and
independently. Hence, the view of the adversary is
distributed exactly as in the real game. ¤

3.2 Number-theoretic constructions

3.2.1 Decisional Diffie-Hellman

Our first concrete construction is based on a private-
key version of El-Gamal [27]. Let GrpGen (for group
generator) be an efficient probabilistic algorithm that
given a security parameter 1n generates parameters
for some cyclic multiplicative group G, including the
group order q which is an n-bit integer, a generator
g, and an efficient algorithm (e.g., circuit) for multi-
plication (and thus also exponentiation). We say that
GrpGen satisfies the DDH assumption if the ensem-
ble (g, gx, gy, gxy)n is computationally indistinguish-
able from a random tuple (g, gx, gy, gz)n where g and
the other public parameters are chosen by GrpGen(1n)
and x, y, z

R← Zqn .

Lemma 3.3 (Symmetric El-Gamal) Consider the en-
cryption scheme in which (1) public parameters G, g, q
are generated via GrpGen(1n); (2) a secret key k is
chosen uniformly at random from Zq; (3) a message

m ∈ G is encrypted by the pair (a, ak·m) where a
R← G;

and (4) a ciphertext (a, b) is decrypted by dividing b
by ak. Then, assuming that GrpGen satisfies the DDH
assumption, the above construction is adaptively-RKA
secure with respect to linear RKDs Φ+ where addition
is over Zq.

Proof. The proof will follow from Lemma 3.1. First
we show that the scheme is semantically secure un-
der the DDH assumption. To see this, note that
we could equivalently describe the encryption algo-

rithm, as Enck(m) = (gr, grs · m) where r
R← Zq is

the randomness of the scheme. This is exactly the El-
Gamal scheme whose semantic security follows from
DDH. (This is true even in the public-key version
where gk is public.) It remains to describe a key-
homomorphism. Indeed, given a ciphertext (a, b) and
∆ ∈ Zq we let H((a, b),∆) be (a, b ·a∆). The resulting
ciphertext equals to (a, ak+∆ · m) which is the out-
put of Enck+∆(m) when the randomness a is used, as
required. ¤

Note that the construction makes only a single
exponentiation for both encryption and decryption.
However, it requires to transmit a group element even
if we are interested in much smaller message space.
Since ciphertext length is quite important for some of
our applications (e.g., the batch OT), we present an al-
ternative construction for one-time encryption scheme
that relies on a variant of the DDH assumption that
was used in several previous works. This construction
employs a “correlation robust generator” as defined in
Section 3.1.2.

3.2.2 Power Diffie-Hellman

The PDH assumption

Let t = t(n) be a polynomial. We say that
GrpGen satisfies the t-Power-Diffie-Hellman (PDH)
assumption if the ensemble (g, gx, gx2

, . . . , gxt(n)
)n

is computationally indistinguishable from a random
tuple (g, ga1 , ga2 , . . . , gat(n)) where g and the other
public parameters are chosen by GrpGen(1n) and
x, a1, . . . , at

R← Z∗qn
.

Lemma 3.4 (PDH-construction). Suppose that
GrpGen satisfies the t-PDH assumption for some poly-
nomial t(·). Let G, g, q be public parameters generated
by GrpGen(1n) and let h(k) = gkt

where k
R← Zq. Then

the function h is a t-correlation robust generator with
respect to addition in Zq.

The proof of the lemma is based on the fact that,
for any choice of distinct ∆i, both the PDH tuple
(gki

)t
i=1, and the t-correlated output of the genera-

tor (g(∆i+k)t

)t
i=1 represent a tuple of polynomials in k

(hidden in the exponents) which form a basis for the
set of polynomials of degree at most t. Hence, given
the ∆i’s one can transform the first tuple to the sec-
ond one. This transformation also takes the uniform
distribution to itself and so reduces the security of the
t-correlation robust generator to the PDH assumption.
Formally, we will need the following standard fact:
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Fact 3.5. Let ∆1, . . . ,∆t ∈ Zq be distinct non-zero
elements. Let pi(x) be the polynomial (x+∆i)i. Then
the set of polynomials P = {p0(x), . . . , pt(x)} forms a
basis for the linear space of polynomials of degree at
most t.

Proof of fact. Since P consists of t + 1 polynomials of
degree at most t it suffices to show that P is linearly
independent. To see this, arrange the coefficients in
an (t + 1)× (t + 1) matrix M whose j-th row consists
of the t + 1 coefficients of pj . By the binomial theo-
rem, the i-th coefficient of pj is

(
t
i

)
∆t−i

j hence M is a
Vandermonde matrix which has full rank since all the
∆i’s are distinct non-zero elements. ¤

Proof of Lemma 3.4 Let t = t(n), q = q(n) and
k,∆1, . . . ,∆t

R← Zq and c1, . . . , ct
R← G. We will prove

that the tuple

(g, ∆1, h(∆1 + k), . . . ,∆t, h(∆t + k))

is computationally indistinguishable from

(g, ∆1, c1, . . . ,∆t, ct)

based on the pseudorandomness of (g, gx, gx2
,

. . . , gxt

). In fact, it suffices to prove this conditioned
on the event that the ∆i’s are all distinct non-zero
elements as this event happens with all but negligible
probability t2/q.

Let (y0, y1, . . . , yt) be our PDH challenge. First,
we choose a tuple of t random distinct non-zero el-
ements ∆ = ∆1, . . . ,∆t

R← Zq. By Fact 3.5, there
exists an invertible linear transformation L∆ which
maps the polynomials (1, x2, . . . , xt) to the polynomi-
als (h(x+∆1), . . . , h(x+∆t)). Since t is polynomially
bounded we can also compute L∆ efficiently. Now
we apply L∆ to the “exponent” of the yi’s. I.e., in-
stead of summing we multiply and instead of mul-
tiplying by a constant c we raise to the power of
c. Let z = (z0, . . . , zt) be the result. Suppose that
the input was a PDH tuple. Then, the joint dis-
tribution of z and ∆ is identical to the distribution
(g, ∆1, h(∆1 + k), . . . ,∆t, h(∆t + k)) (conditioned on
the ∆i’s being distinct non-zero elements). On the
other hand, if the input was a random tuple then the
zi’s are truly random as the linear transformation L∆

is of full rank. Hence, a distinguisher for h allows to
break the PDH assumption. ¤

By Lemma 3.2, we get the following efficient con-
struction of encryption scheme with one-time RKA
security family with respect to Φ+

1,t. The key k is

chosen uniformly at random from Z∗q , to encrypt a
message m ∈ G we output the value (gkt ·m), and to
decrypt the ciphertext c divide it by gkt

. To optimize
efficiency one can take a small exponent t = poly(n)
which upper bounds the required related-key security.
More importantly, if the message space is smaller than
G, we can hash down gkt

and reduce the ciphertext
length.

3.3 LPN/LWE-based constructions

The learning parity with noise problem is parame-
terized by positive integers n, t, and noise parameter
0 < ε < 1

2 . The input to the problem is a random

matrix A
R← Ft×n

2 and a vector y = As+ e ∈ Ft
2 where

s
R← F2 and each entry of e is chosen independently

according to the error distribution Bertε in which each
entry is chosen to be 1 independently with probability
ε. We say that the problem LPNt,ε is hard, if there
is no efficient adversary that can recover s from the
input with more than negligible success probability.4

We say that LPNε is hard if LPNt,ε is hard for every
polynomial t(·). We describe the symmetric encryp-
tion scheme of [2] which is a variant of the scheme
of [29].

Construction 3.6 (LPN-construction). Let ` = `(n)
and N = N(n) be an arbitrary polynomials. Let ε < 1

2
be a constant error parameter and 0 < δ < 1

2 be a
constant. Let G = ΩG` be an (ensemble of) t × `
binary generator matrix of a family of linear error-
correcting codes with efficient decoding algorithm D
that can correct up to (ε + δ) · t errors.

• Secret-key: The secret key of the scheme is a ma-
trix S chosen uniformly at random from Fn×N

2 .
• Encryption: To encrypt a message M ∈ F`×N

2 ,
choose a random A

R← Ft×n
2 and a random noise

matrix E
R← Bert×N

ε . Output the ciphertext (A,A
· S + E + G ·M).

• Decryption: Given a ciphertext (A,Z) apply the
decoding algorithm D to each of the columns of
the matrix Z −AS and output the result.

Efficiency and security

The scheme is highly efficient as encryption requires
only cheap matrix operations and decryption requires

4This can be considered to be a “decoding game” where A
generates a random linear code and the goal is to recover a
random information word s given a noisy codeword y.
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in addition to decode the code G. It is shown in [2]
that for proper choice of parameters both encryption
and decryption can be done in quasilinear time in the
message length (for sufficiently long message). The
above scheme is semantically secure assuming the in-
tractability of the LPNε problem (see [2]). It is not
hard to see that the scheme has a key-homomorphism
by letting H((A, Y ),∆) = (A, Y + A ·∆) where ∆ ∈
Fn×N

2 . Hence, by applying Lemma 3.1, and viewing
the key as bit string of length n ·N , we get:

Lemma 3.7. Assuming that LPNε is hard, the above
construction is adaptively RKA-secure with respect to
XOR-RKDs Φ⊕.

Extension to LWE

The LPN problem can be generalized by replacing
the moduli 2 with a larger moduli q = q(n) ≤ 2poly(n),
and by choosing each entry of the noise vector e
from some distribution χ over Fq. Typically, χ is
taken to be Ψ̄α which is a discrete Gaussian cen-
tered around 0 with standard deviation αq. (Formally,
we sample from Ψ̄α by drawing y from the Gaus-
sian probability distribution whose density function
is exp(−π(x/α)2)/α and outputting bq · ye mod q).
This version of the problem called learning with error
(LWEq,Ψ̄α

) was introduced by Regev [66], who demon-
strated strong evidence for its hardness. Specifically,
Regev discovered a quantum reduction from approxi-
mating well-studied lattice problems to within Õ(n/α)
factors in the worst case to solving LWEq,Ψ̄α

, when
α · q ≥ n and q is polynomial in n. Recently, Peikert
[61] also gave a related classical reduction for the case
where q is exponential in n and all the prime factors
of q are polynomially bounded.

Construction 3.6 can be generalized to the LWE vari-
ant in a natural way. That is, we choose the entries
of the matrices S and A randomly from Fq, and the
entries of the matrix E from χ. The message space
can be taken to be any arbitrary subset of F`×N

q . Se-
mantic security follows from a Lemma of [66] which
shows that, assuming the hardness of LWEq,χ, the dis-
tribution (A,A · S + E) is pseudorandom.5 To enable
decryption, we should employ an error-correcting code
which corrects (whp) errors drawn from χ.6

5In fact, Regev [66] proves this lemma only for the case where
N = 1. i.e., S is a vector. However, a simple hybrid argument
shows that this is true for arbitrary polynomial N . See [2].

6For example, one can encode each bit b of the message by
a symbol in Fq via the mapping b · dq/2e this encoding works
as long as χ < q/4 with overwhelming probability. Of course,
better ECC’s can improve the rate of the encryption as long as
the noise rate is not too large.

4 Batch OT from RKA security

4.1 High-level description

Oblivious transfer [25, 64] is a two-party protocol
between a sender S and a receiver R. The sender holds
a pair of strings and the receiver holds a selection bit.
At the end of the protocol the receiver should learn
just the selected string, and the sender should not
gain any new information. Batch OT, OTm

` , realizes
m (independent) oblivious transfers of `-bit strings.
Formally, this can be defined as a secure two-party
protocol between a sender S and a receiver R realizing
the following OTm

` functionality: The input of S is m
pairs (xj,0, xj,1),1 ≤ j ≤ m, where each xj,b is an `-
bit string, and the input of R is m selection bits r =
(r1, . . . , rm). The output of R is xj,rj

for 1 ≤ j ≤ m,
while S has no output.

In [40] it was shown how to efficiently extend a
small number of OTs to many OTs. The construc-
tion uses a random oracle or a correlation robust gen-
erator with respect to XOR. We describe a variant
of this construction which relies on one-time symmet-
ric encryption with RKA-security under linear func-
tions Φ+

k over general groups. Below we give a high
level intuitive description of our version of the proto-
col. More details and proofs are deferred to Section
4.2. We focus for simplicity in the semi-honest set-
ting. (The protocol can be adapted to the malicious
model via cut-and-choose-techniques as in [38, 40, 59]
or, with only a constant asymptotic overhead, by us-
ing the general compiler of [41].)

Our starting point is the standard fact that OT
can be easily reduced to a randomized version
of OT in which m pairs of random secret keys
(T1,0, T1,1), . . . , (Tm,0, Tm,1) are generated and given
to the sender, while the receiver learns the keys
(Ti,ri

)m
i=1 where r = (r1, . . . , rm) are the receiver’s se-

lection bits. Indeed, given such a functionality OTm
`

can be implemented by letting the sender use sym-
metric encryption scheme to encrypt the secret xj,b

under the key Tj,b and send all the ciphertexts to the
receiver who can decrypt only the ciphertexts which
correspond to the keys that he learned.

The first observation is that if the symmetric en-
cryption scheme satisfies RKA-security under linear
functions Φ+

m then the reduction still works even if
Ti,0 = Ti,1 + s for a random s as long as it is be-
ing kept hidden from the receiver. Next, we observe
that the key-distribution functionality can be imple-
mented in the “reverse” order: Let the receiver choose
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the keys (Ti,ri
)m
i=1, let the sender choose the “shift” s

and construct a protocol which allows the sender learn
the T0,i’s. Then have S set Ti,1 to Ti,0− s. Hence, for
each i we would like S to learn the value Ti,ri + ri · s.
In the binary case, where the keys and the shift s are
k-bit strings (and the encryption satisfies Φ⊕m-RKA se-
curity), this operation can be implemented by a single
call to OTk

m where R plays the role of the sender with
input pairs (Ti,ri

, Ti,ri
+ri) and S plays the role of the

receiver with selection vector s.

Hence we reduced OTm
` to the “simpler” OTk

m. The
efficiency gain here comes from the fact that the new
“batch” parameter (which dominates the efficiency of
the OT) depends only in the security parameter k of
the symmetric scheme and is independent of the data
size m. (The dependency of the length parameter in m
has only minor effect on the efficiency.) After resolving
some technicalities, it is possible to adapt the above
solution the non-binary case with some minor loss in
efficiency, i.e., logarithmic in the size of the group.7

The feasibility result established in this section can
be summarized by the following variant of the main
theorem from [40].

Theorem 4.1. Let k be a security parameter. For any
constant c > 1, there exists a protocol which reduces
kc instances of OTk to k instances of OTk and only
makes a black-box use of any one-time symmetric en-
cryption scheme which is RKA secure with respect to
linear relations.

4.2 Details and proofs

Our variant of [40] requires one-time RKA security
under the RKD family Φ±t whose members are in-
dexed by a shift vector ∆ = (∆1, . . . ,∆t ∈ Kt and
a sign vector v ∈ Ω±1t and the i-th component of
φ∆,v(k0) is set to ∆i +vi ·k0. We note that in the spe-
cial case, where the linear relation is XOR, this RKD
family equals to Φ+

t . We now show that any one-time
scheme (SetUp,Enc,Dec) which satisfies RKA under
Φ+

t can be easily converted to satisfy the new RKA
under Φ±t .

Lemma 4.2. Let E = (SetUp,Enc,Dec) be

7In fact, security is a bit more subtle as one needs RKA-
security against a KDM family which is slightly larger than
the family Φ+

t of linear functions. In particular, one needs to
consider one-time RKA security under functions which either
maps k0 to ∆i + k0 or to ∆i − k0. We show that any RKA
secure scheme (wrt linear functions) can be converted into one
which supports this RKD family with almost no overhead.

an RKA secure one-time encryption scheme
(SetUp,Enc,Dec) under Φ+

t . Consider the scheme
E ′ = (SetUp,Enc′,Dec′) where Enc′k chooses a ran-
dom bit b ∈ Ω±1 as part of its randomness, and
outputs the pair (Encb·k(m), b); and Dec′k(c, b) applies
Decb·k to the first entry of the ciphertext c. Then,
(SetUp,Enc′,Dec′) is a one-time Φ±t -RKA secure
scheme.

Proof. We use an adversary A that breaks E ′ via Φ±t -
RKA to break E via Φ+

t -RKA as follows. We begin the
standard Φ+

t -RKA game and let the challenger choose
k0 and publish ∆1, . . . ,∆t. Then we choose a random
sign vector v

R← Ω±1t, define ∆′
i = vi · ∆i and pass

the values of the ∆′
1, . . . ,∆

′
t to A. Then, whenever

the adversary asks for an encryption of a message mi

under the i-th key, we ask for ci = Enck+∆i
(m) and

pass the ciphertext (vi, ci) to the adversary.

Consider the joint view of the adversary:
(∆′

i,mi, (vi, ci))i∈[t]. First observe that for each i the
marginal distribution (∆′

i,mi, (vi, ci)) is distributed
properly, i.e., (vi, ci) = Enc′k+vi∆′i

(mi). This is im-
midiate when vi = 1, while for vi = −1 it follows by
writiting (vi, ci) as Enck+∆i

(mi) = Enc′−(k−∆′i)
(mi).

Now, observe that all the pairs (∆′
i, vi) are distributed

uniformly and independently (as the ∆i’s are uniform
and are not part of the view). Hence, the view of the
adversary is distributed exactly as in a real Φ±t -RKA
in both cases where the challenge bit is 0 and
1,and so we break E with the same advantage as A
breaks E ′. ¤

Let us now present the (modified) IKNP proto-
col. We focus in the semi-honest version of the
construction as the extension to the malicious set-
ting follows easily from [40] or, more generally, from
the generic transformation of [41]. Due to the well
known “random-self-reducibility” property of OT, we
may also assume that the selection bits of the re-
ceiver are chosen by the receiver uniformly at ran-
dom (this version of OT reduces to the standard one
via simple and efficient transformation). For simplic-
ity, we begin with the special case where the scheme
(SetUp,Enc,Dec) is secure under Φ⊕k . In the following
we adopt the notation of [40]. Let m be the desired
number of OTs and k ¿ m be a security parameter.
In Fig. 1 we describe how to reduce OTm

` to OTk
m. We

note that OTk
m can be easily reduced to OTk

k via a stan-
dard use of standard one-time symmetric encryption
(e.g., pseudorandom generator). (See [40].)

The correctness of the protocol (when both parties
are honest) follows directly from the correctness of
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