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Abstract: We study extensions of the k-SUM problem to vector spaces over finite fields. Given a subset S ⊆ Fn
q

of size r 6 qn, an integer k, 2 6 k 6 n, and a vector v ∈ (Fk
q \ {0})k, we define the TargetSum problem to be

the problem of finding k elements xi1 , . . . , xik
∈ S for which

∑k
j=1 vjxij = z, where z may either be an input or a

fixed vector. We also study a variant of this, where instead of finding xi1 , . . . , xik
∈ S for which

∑k
j=1 vjxij

= z,
we require that z be in span(xi1 , . . . , xik

), which we call the (k, r)-LinDependenceq problem.
These problems are natural generalizations of well-studied problems that occur in coding theory and property

testing. Indeed, the (k, r)-LinDependenceq problem is just the Maximum Likelihood Decoding problem
for linear codes. Also, in the TargetSum problem, if instead of general z we require z = 0n, then this is
the Weight Distribution problem for linear codes. In property testing, these problems have been implicitly
studied in the context of testing linear-invariant properties.

We give nearly optimal bounds for TargetSum and (k, r)-LinDependenceq for every r, k, and constant
q. Namely, assuming 3-SAT requires exponential time, we show that any algorithm for these problems must
run in min(2Θ(n), rΘ(k)) time. Moreover, we give deterministic upper bounds that match this complexity, up
to constant factors in the exponent. Our lower bound strengthens and simplifies an earlier min(2Θ(n), rΩ(k1/4))
lower bound for both the Maximum Likelihood Decoding and Weight Distribution problems.

We also give upper and lower bounds for variants of these problems, e.g., for the problem for which we must
find xi1 , . . . , xik

for which z ∈ span(xi1 , . . . , xik
) but z is not spanned by any proper subset of these vectors, and

for the counting version of this problem.

Keywords: coding theory, computational geometry, k-sum.

1 Introduction

We study the computational complexity of algo-
rithms that test if linear combinations of certain-sized
subsets of a set of input vectors equal a desired target
vector. This is a fundamental problem with applica-
tions to coding theory, computational geometry, and
property testing.

The special case when the field is R, there is
only a single dimension, and one wants to find a
sum of k numbers that equals 0 is the well-known
k-SUM problem. Many problems, especially in
computational geometry, have been shown to be
k-SUM hard for certain k; see, for example, the works
of [20-22,25,38,40]. Some problems known to be
3-SUM hard include 3-Points-On-Line, Minimium-
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Area-Triangle, Separator, Strips-Cover-Box,
Triangles-Cover-Triangle, Planar-Motion-
Planning, Dihedral-Rotation, and Polygon-
Containment; see the survey by King [31]. As stated
in [5], the body of work on 3-SUM “is perhaps the
most successful attempt at understanding the com-
plexity inside P (polynomial time).” We believe the
study of the extension of this problem to vector spaces
over finite fields will likewise result in a deeper under-
standing of the complexity of many other problems.

Let F = Fq be the finite field of q elements and let n
be a natural number. We assume that q is a constant
independent of n. The main problems we study are
the following.

Let k, r : Z+ → Z+ be functions.

Definition 1 The (k, r)-ZeroSumq problem takes
as input r(n) many elements x1, . . . , xr(n) ∈ Fn

q

and checks if there exist xi1 , . . . , xik(n) such that
i1, . . . , ik(n) ∈ [r(n)] and xi1 + · · ·+ xik

= 0.
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The (k, r)-TargetSumq problem takes as input
r(n) elements x1, . . . , xr(n) ∈ Fn

q and z ∈ Fn
q

and checks if there exist xi1 , . . . , xik(n) such that
i1, . . . , ik(n) ∈ [r(n)] and xi1 + · · ·+ xik(n) = z.

We also study the following slight extension to gen-
eral linear combinations of input vectors. Let v =
(v1, . . . , vk(n)) ∈ (Fq\{0})k(n) be a family of vectors.

Definition 2 For every n > 1, the1

(k, r, v)-ZeroSumq problem takes as input r(n)
elements x1, . . . , xr(n) ∈ Fn

q and checks if there
exist xi1 , . . . , xik

such that i1, . . . , ik ∈ [r(n)] and
v1xi1 + · · ·+ vkxik

= 0.

For every n > 1, the (k, r, v)-TargetSumq problem
takes as input r(n) elements x1, . . . , xr(n) ∈ Fn

q and
z ∈ Fn

q and checks if there exist xi1 , . . . , xik
such that

i1, . . . , ik ∈ [r(n)] and v1xi1 + · · ·+ vkxik
= z.

Notice that for q = 2, (k, r, v)-ZeroSumq and
(k, r, v)-TargetSumq coincide with (k, r)-ZeroSumq

and (k, r)-TargetSumq, respectively. We also con-
sider a related problem when it is more useful to look
at the span of vectors than it is to fix a single combi-
nation v.

Definition 3 The (k, r)-LinDependenceq problem
takes as input r elements x1, . . . , xr(n) ∈ Fn

q and z ∈
Fn

q and checks if there exist xi1 , . . . , xik(n) such that
z ∈ span(xi1 , . . . , xik(n)).

Finally, we consider a variant of this problem which
requires the linear dependence to be minimal. Vectors
x1, . . . , xk are said to be minimally linearly dependent
if 0 ∈ span(x1, . . . , xk), but 0 cannot be written as a
non-trivial linear combination of any proper subset of
{x1, . . . , xk}.

Definition 4 The (k, r)-MinLinDependenceq prob-
lem takes as input r(n) elements x1, . . . , xr(n) ∈ Fn

q

and checks if there exist xi1 , . . . , xik(n) that are mini-
mally linearly dependent.

Notice that in all of the above problems, we do
not require the i1, . . . , ik in the solution to be dis-
tinct. To understand how these problems are re-
lated to existing coding-theoretic problems, consider
first the (k, r)-LinDependenceq problem. This is
just the Maximum Likelihood Decoding prob-
lem for linear codes, that is, the problem of deter-
mining the most likely transmitted codeword given a

1We allow a slight abuse of notation in allowing v to refer
both to the family of vectors and each vector itself.

certain received word. This problem is well-studied
[6,18,19,23,28,42,46]. To see the connection, if the
columns of an n × r(n) parity check matrix are
x1, . . . , xr(n), and the received word is z, then if there
are k(n) elements xi1 , . . . , xik(n) whose span contains
z, then there is a codeword that if corrupted in at
most k(n) positions, equals z.

Now consider the (k, r)-ZeroSum2 problem. Let
A be the n × r matrix whose columns correspond to
the input vectors to this problem. Consider the code
C = {x | Ax = 0}. Then C is of dimension at least
r − n, and the (k, r)-ZeroSumq problem has a solu-
tion iff there is a codeword of weight k. This is the
Weight Distribution problem for linear codes in
coding theory, a problem studied in [6,18].

In the property testing literature, these problems
have been studied in the context of testing linear-
invariant properties [30], though the model differs
from ours in the sense that the input set is promised
to either contain a certain linear dependence or to
be far from a set that does. In analogy to triangles
in graphs, we define the triangles in a set S ⊆ Fn

q

as the triples 〈x1, x2, x3〉 such that x1, x2, x3 ∈ S
and x1 + x2 + x3 = 0. Similarly, for k > 3 we
define the k-cycles [7] in a set S ⊆ Fn

q to be the
k-tuples 〈x1, x2, . . . , xk〉 such that each xi ∈ S for
i = 1, 2, . . . , k and x1 + x2 + · · · + xk = 0. Green
[27] showed that for constant k, one can distinguish,
in constant time, between the case when the input
set is free from k-cycles and the case when a con-
stant fraction of the elements of the set need to be
removed in order to make it free. This result has been
generalized in several directions [7,8,32,33,44]. In par-
ticular, Shapira [44] and Král’, Serra and Vena [32]
independently showed that testing whether a set S is
free from containing tuples x = (x1, . . . , xk) ∈ Sk sat-
isfying Mx = b (where M is a constant-sized matrix
over Fq with k columns and b is a vector over Fn

q ), or
whether S is far from being such a set, can also be
done in constant time. Our work can be viewed as
addressing the classical versions of these problems.

The problems we study are also similar to those
of finding subgraphs inside of graphs. For example,
finding solutions to x1 + x2 + · · · + xk = 0 in a set
S ⊆ Fn

q and finding k-cliques in a graph both require
finding k items from the input (elements and vertices,
respectively) that satisfy a given constraint. There
has been a lot of algorithmic work on the problem
of finding subgraphs [1-4,15,26,43,47,48]. The best
known algorithm for finding triangles [4] runs in time
O(min(|E|2ω/(ω+1), nω)) where ω is the matrix mul-
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tiplication exponent, and the best known algorithm
for finding k-cliques in a graph with n vertices, due
to Nešetřil and Poljak [39], runs in time O(n.792k). It
is not known whether algorithms for either of these
problems running in time O(n2) can be ruled out,
although an algorithm for k-clique running in time
no(k) would imply a subexponential algorithm for 3-
SAT [11,49]. In contrast, we show that the situation
for our linear algebraic problems is much clearer. We
can show nearly tight upper and lower bounds based
on standard complexity assumptions. Additionally,
our upper bounds are relatively stronger, essentially
because, while the graph algorithms use fast matrix
multiplication which runs in time n2+0.376... for two n-
by-n matrices, we can use fast convolution which runs
in time N1+o(1) for two real-valued functions over a
finite field of order N .

1.1 Results

Assuming 3-SAT cannot be solved in sub-
exponential time, we resolve (up to polynomial fac-
tors) the time complexity of the problems:

• (k, r)-ZeroSumq,
• (k, r)-TargetSumq,
• (k, r, v)-ZeroSumq,
• (k, r, v)-TargetSumq, and the
• (k, r)-LinDependenceq

problems. Namely, we show that any deterministic al-
gorithm must run in min(rΘ(k), 2Θ(n)) time, and we
give a deterministic algorithm running in this amount
of time to solve these problems. Our lower bound
also holds for randomized algorithms, provided we as-
sume that 3-SAT cannot be solved in sub-exponential
time by a randomized algorithm. The complexity as-
sumption we use is the well-known Exponential Time
Hypothesis conjectured by Impagliazzo, Paturi, and
Zane [29], and used in a number of papers to estab-
lish hardness results [12,13,24,34-36]. It is known that
this assumption is equivalent to the assumption that
d-SAT cannot be solved in sub-exponential time for
some constant d > 3.

Our lower bound strengthens and simplifies the pre-
vious lower bound for both the Maximum Likeli-
hood Decoding and Weight Distribution prob-
lems [18]. In that paper, the authors start with the
Independent Set problem of size k on graphs of n
vertices, and produce an instance of what is called the
Perfect Code problem [16,17] with parameter k2

on graphs containing n2 vertices. Then, the authors
obtain a more “robust” version of Perfect Code, with
certain properties of every dominating set in the in-
stance. The new instance has parameter k4 and the
corresponding graphs contain at least n2 vertices, and
is used to derive hardness results for coding-theoretic
problems. This last step is Theorem 1 in [18] and is
complicated, the proof introducing a number of gad-
gets and spanning about eight pages. Due to the
chain of reductions, this implies that the lower bound
obtained for Maximum Likelihood Decoding and
Weight Distribution is at best rΩ(k1/4), and this
only holds if the number r of input vectors is at most
linear in the dimension n. Thus, their lower bound
leaves open the possibility of algorithms that solve
these problems in time significantly faster than testing
all k subsets of r vectors. In contrast, if rk < 2n, then
our min(rΘ(k), 2Θ(n)) lower bound shows one cannot
do polynomially better than this testing algorithm.

Once rk > 2n, we provide a much faster algorithm
based on the Fast Fourier Transform (FFT). Even
when rk < 2n, we still achieve a polynomially bet-
ter algorithm than the testing algorithm. In this case
our algorithm’s complexity is 2O(k)

(
r

dk/2e
)
poly(n).

For the (k, r)-MinLinDependenceq problem, our
min(rΘ(k), 2Θ(n)) lower bound continues to hold pro-
vided that the characteristic of Fq does not divide
k. Here we give a deterministic algorithm that runs
in 2O(k2+n) time. We leave it as an open question
whether this can be reduced to 2O(k+n) time.

1.2 Techniques and comparison to
previous work

1.2.1 Lower bounds

Our starting point for the lower bound is the recent
NΩ(k) bound for the k-SUM problem on N integers of
[41]. We briefly review their proof in order to compare
it to ours.

At the heart of their reduction is a way of cre-
ating integers ζ1, . . . , ζN from partial assignments
A1, . . . ,AN to variables of a One-in-Three-SAT for-
mula F , i.e., F is a formula that evaluates to true iff
exactly one literal per clause evaluates to true. This is
done in such a way that there is a sum ζi1 + · · ·+ζik

=
M iff the partial assignments Ai1 , . . . ,Aik

correspond-
ing to these integers can be patched together to form
a consistent assignment to all variables that causes F
to evaluate to true. Here, M is the positive integer
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that, when written in base k +1, equals 1k+c, where c
is the number of clauses. The idea is to partition the n
variables arbitrarily into k equal-sized groups Gi. For
each Gi, the reduction generates a new integer ζj for
each assignment to the variables in that group. The
ζj are interpreted in base k + 1. The first k digits of
each ζj are set so that the i-th digit is 1 if ζj comes
from the i-th block, otherwise it is 0. The digit of ζj

corresponding to a clause is 1 if the assignment of the
variables corresponding to ζj causes exactly one of the
literals of the clause to be true. In order to obtain a
sum ζi1 + · · · + ζik

= M , one must take an integer
associated with each block, so one obtains a consis-
tent assignment, and each clause must have exactly
one literal set to true.

By replacing “digits” with “coordinates” and “in-
tegers” with “vectors”, the proof of [41] shows a
min(2Θ(n), rΩ(k)) hardness for (k, r)-ZeroSumq and
(k, r)-TargetSumq with the following restrictions:

1. the characteristic of the field Fq must be larger
than k, and

2. r belongs to a geometric sequence of numbers,
rather than being an arbitrary integer.

We are not able to modify the proof of [41] to remove
these restrictions. The issue is that when the charac-
teristic is 2, there are cancellations that lead to false
positives in the reduction of [41]. Indeed, trying to
adapt their reduction to binary fields would instead
require hardness of the problem Odd-SAT, the prob-
lem of having an odd number of literals evaluate to
true in each clause. However, this latter problem is in
P via Gaussian elimination.

We instead base our reduction on the Not-All-
Equal-SAT problem, the problem of having one or
two out of three literals evaluate to true in each clause.
We again partition the variables into blocks, but now
we want a clause coordinate to be 1 iff one or two
of its literals evaluates to one. The obstacle, though,
is that for a given block, not all the variables asso-
ciated with a clause may be assigned to that block.
For instance, a clause on three variables may have
its variables assigned in three different blocks. It is
easy to see that some interaction between the blocks
is needed to enforce consistency. By using a version
of Not-All-Equal-SAT in which each variable oc-
curs a bounded number of times, we are able to intro-
duce a linear number of new variables and dimensions,
which overall have the effect of allowing the blocks to
communicate in a way that a consistent assignment is

enforced.

This approach allows us to conclude hardness for
a sequence r0 < r1 < r2 < · · · of values to r. We
show that if there were an r between ri−1 and ri for
which the problem were “easy”, this would contradict
the hardness of the problem on ri vectors. This does
not follow from standard “padding arguments”, since
we must have distinct vectors and cannot create new
dependences.

It is worth pointing out again that our bounds apply
for the full range of r and k, in contrast to previous
work.

1.2.2 Upper bounds

Our algorithms for

• (k, r)-ZeroSumq,
• (k, r)-TargetSumq,
• (k, r, v)-ZeroSumq,
• (k, r, v)-TargetSumq, and
• (k, r)-LinDependenceq

problems are based on the FFT and convolution.

Our algorithm for (k, r)-MinLinDependenceq is
one step beyond this. We choose a small (in fact,
pairwise independent) family of linear maps from
Fqn to Fqk such that for any minimal k-dependence
xi1 , . . . , xik

in the input, there exists a linear map h
in our family for which the image of xi1 , . . . , xik

un-
der h is a minimal k-dependence. We can find such
a minimal k-dependence by testing all minimally k-
dependent vectors in Fqk , each test using several ap-
plications of the FFT. The small set of functions can
be chosen in a variety of ways. The overall technique
of hashing followed by fast convolution bears a strong
similarity to the color-coding method of Alon, Yuster
and Zwick [3] which applies hashing followed by fast
matrix multiplication in order to find copies of a small
subgraph inside a given graph.

2 Preliminaries

The following standard claim is useful.

Claim 5 Let q > 2 be a prime power and let x1, . . . , xn

be n elements chosen independently and uniformly at
random from Fn

q , then the probability that they are
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linearly independent is at least e−
2
q . Equivalently, a

random n by n matrix over Fq is non-singular with
probability at least e−

2
q .

Our upper bounds depend on efficient algorithms
that compute the Fourier coefficients over any abelian
group. Fast Fourier Transform (FFT) algorithms first
appeared in [14] for the cyclic group Z/nZ and later
were generalized to any abelian groups (see, e.g., the
survey article [37]).

Fact 6(Fast Fourier Transform). Let Fq be the
finite field with q elements. Let f : Fn

q → C be
a complex-valued function defined over Fn

q . Then
there is a Fast Fourier Transform (FFT) algorithm
which compute all the Fourier coefficients of f in time
O(nqn).

Fact 7 Let f1, . . . , fk : Fn
q → {0, 1} be k Boolean

functions defined on Fn
q , then the number of elements

(x1, . . . , xk) such that x1 + · · ·+ xk = 0 and f1(x1) =
· · · fk(xk) = 1 can be computed from the Fourier coef-
ficient of the convolution of these k functions:

|{〈x1, . . . , xk〉 : x1 + · · ·+ xk = 0

and fi(xi) = 1 for each i = 1, . . . , k }|
= qn(k−1)(f1 ∗ f2 ∗ · · · ∗ fk)(0)

= qn(k−1)
∑

α∈Fn
q

k∏

j=1

f̂j(α). (1)

3 Hardness

Theorem 8 Given function k : Z+ → Z+ such
that k(n) < n for all n ∈ Z+ and function r :
Z+ → Z+ such that k(n) < r(n) < qn for all
n ∈ Z+, then the (k, r)-TargetSumq problem re-

quires at least min
((

r(n)
βk(n)

)
, 2βn

)
time for some con-

stant β < 1, unless d-SAT on n variables can be solved
in 2O(dn)β1/O(d)

time for any d > 3.

Proof Suppose q is a power of some prime p > 2.
Let F be an instance of d-SAT with n variables and
m clauses. For some ε > 0 to be specified later, we
use the improved Sparsification Lemma of Calabro,
Impagliazzo and Paturi [9] to reduce F to a collection
of 2εn d-SAT formulas, with each formula having n
variables and n · (d/ε)O(d) clauses. Next, we use a
standard reduction to convert each d-SAT formula to
a 3-SAT formula with f

def= O(nd)(d/ε)O(d) variables
and clauses.

Now, we convert each 3-SAT formula to an nae-
sat formula by a standard reduction: each clause
(v1 ∨ v2 ∨ v3) is replaced by three clauses (v1 ∨ v2 ∨
x)∧ (¬x∨ v3 ∨ y)∧ (x∨ y ∨α) where x and y are new
variables and α is a common variable used across the
clauses in the formula. Furthermore, we can ensure
that each variable occurs only a constant number of
times in each nae-sat formula by replacing duplicate
copies of a variable by distinct variables and intro-
ducing equality constraints (two variables x and y can
be constrained to be equal by two nae-sat clauses
(¬x ∨ y) ∧ (x ∨ ¬y)). The number of variables and
clauses in each formula remains O(f).

Next, we reduce each nae-sat formula to a sep-
arate (k, rk)-TargetSumq problem, where the func-
tion rk : Z+ → Z+ will be specified later. Fix an
arbitrary ordering of the literals inside each clause of
the formula. For any literal `, let us denote by v(`)
the variable corresponding to the literal. To start off
the reduction, for each clause (`1 ∨ `2 ∨ `3) in the
nae-sat formula, where `1, `2, `3 are literals, we in-
troduce three, possibly new, variables (v(`1), v(`2)),
(v(`2), v(`3)) and (v(`3), v(`1)). We call each such
variable (a, b) a pairvar. The number of pairvars is at
most three times the number of clauses, O(f). Next,
for a function k′ : Z+ → Z+ to be specified later,
partition the original set of variables arbitrarily into
k′ = k′(n) blocks, of sizes within a constant factor of
each other, and assign an arbitrary ordering among
the blocks. For each pairvar (a, b), if both a and b be-
long to the same block, we include the pairvar in that
block. Otherwise, we include it in the first block con-
taining either a or b. Thus, each variable (original or
pairvar) is contained in exactly one block. Also, since
each variable occurs a constant number of times, each
block contains O(f/k′) original and pairvar variables.

We now generate the (k, rk)-TargetSumq in-
stance. Each block will yield 2O(f/k′) many elem-
ents of Fn′

2 , where n′ will be O(f). Consider the
i’th block, with i ∈ [k′]. Let Ai be the set of all
possible 0/1-assignments to the set of variables
{x | x is an original variable in block i} ∪ {a | ∃
pairvar (a, b) or (b, a),not necessarily in block i, with

b in block i}. Note that an assignment in Ai fixes the
values of all pairvars in block i. For each assignment
α ∈ Ai, we produce an element xα ∈ Fn′

2 in the follow-
ing way. The first k′ bits of xα are 0, except for the
i’th which is 1. Next, there is a coordinate for each
clause C in the formula, called the clause coordinate.
If C = (`1 ∨ `2 ∨ `3), its clause coordinate value is
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set to:
∑

i∈[3]: v(`i) in block i

α(`i) mod p

−
∑

(i,j)∈[3]2:(v(`i),v(`j)) in block i

α(`i)α(`j) mod p.

The rest of the coordinates, called the consistency
coordinates, will be set so as to ensure consistency
among assignments to the pairvars by different blocks.
We partition the consistency coordinates into pairs
and index each pair with a pairvar. For the pair of
coordinates indexed by pairvar (a, b), if neither a nor
b is in block i, then both these coordinates are set to 0,
and the same if both a and b are in block i. Otherwise,
if a is in block i but b is not, then the first coordinate
is set to α(a) and the second to −α(b), and similarly,
if a is not in block i but b is, then the first coordinate
is set to −α(a) and the second to α(b). This com-
pletes the description of xα. The target vector z for
the (k, r)-TargetSumq instance is set to 1n′−2p ◦ 02p

where p is the total number of pairvars. To make n′ in-
dependent of k′, we can pad all the strings with extra
zeroes at the end.

In the above construction, we define functions
k′ and rk such that k′(n) = k(n′) and rk(n′) =∑

i∈[k′(n)] |Ai| for every n > 1, where n′ and
the Ai’s are as above. Thus, we obtain a valid
(k, rk)-TargetSumq instance, where rk(n) = k(n) ·
2O(n/k(n)). To see the correctness of the reduction,
suppose there are xα1 , . . . , xαk′ such that xα1 + · · ·+
xαk′ = z. First, assume that all the pairvars are
assigned consistently by the assignments α1, . . . , αk′ .
Because each xαi has a 1 in only one of the first k′ co-
ordinates, and z has 1’s on all the first k′ coordinates,
each αi is in Ai without loss of generality. Since con-
sistency of the pairvars assignments is assumed, the
partial assignments αi can be combined to obtain an
assignment α to all the original variables. The claim
is that α is a satisfying assignment to the nae-sat
formula. Take a clause C = (`1 ∨ `2 ∨ `3) from the
nae-sat formula. If we add up, modulo p, the value
of the clause coordinate corresponding to C for each
xαi , then this sum must equal:

SC = (α(`1) + α(`2) + α(`3)− α(`1)α(`2)
−α(`2)α(`3)− α(`3)α(`1)) mod p

• If three literals in C are assigned 1, then SC =
1 + 1 + 1− 1− 1− 1 = 0.

• If two literals in C are assigned 1, then SC =
1 + 1 + 0− 1− 0− 0 = 1.

• If one literal in C is assigned 1, then SC = 1 +
0 + 0− 0− 0− 0 = 1.

• If no literal in C is assigned 1, then SC = 0 +
0 + 0− 0− 0− 0 = 0.

Since all the clause coordinates of z are set to 1, it
must be the case that α satisfies the nae-sat formula.

It remains to check that the pairvars are set consis-
tently. For the pair of consistency coordinates indexed
by a pairvar (a, b), either these coordinates are zero in
all of the xαi

’s, or there exist i 6= j such that these
coordinates are nonzero in xαi and xαj but they are
zero for all the other strings. In the first case, there
is no consistency issue. The second case occurs when
one of a and b is in block i and the other is in block j.
But then, because the value of xαi +xαj is zero at the
consistency coordinates indexed by (a, b), it must be
the case that αi(a)−αj(a) = 0 and αi(b)−αj(b) = 0.

Thus, the reduction yields 2εn (k, rk)-TargetSumq

instances on n′ = O(dn)(d/ε)O(d) many coordinates,
with rk(n′) = k′ · 2O(f/k′) = k′ · 2nd(d/ε)O(d)/k′ =
k′ ·2nd/(k′

√
δ) where the last equality follows by choos-

ing ε = dδ1/γd for an appropriate value of γ. There-
fore, if the output of the reduction can be solved in
time

(
rk(n′)
δk(n′)

)
, then, using the standard bound

(
a
b

)
6

(ae/b)b, an arbitrary d-SAT on n variables can be
solved in time 2εn · (e/δ)k2nd

√
δ = 2O(dn)δ1/O(d)

.

We need to show how to reduce a
(k, rk)-TargetSumq to a (k, r)-TargetSumq

instance for an arbitrary function r : Z+ → Z+.
First consider the case of r(n) 6 rk(n). For
i ∈ [dn/k(n)e], let ki : Z+ → Z+ be defined so that
ki(n) = n/i. Note that ki(n) < n if k(n) < n for all
positive i. Now, apply the reduction above to get
an instance of (ki, rki)-TargetSumq of size ik(n)
that requires

(rki
(ik(n))

δki(ik(n))

)
time, unless d-SAT on n

variables can be solved in 2O(dn)δ1/O(d)
time. We

can pad the strings of such an instance with zeroes
in order to get an instance of (k, ri)-TargetSumq

of size n with the same hardness guarantee, where
ri(n) = rki(ik(n)) = k(n) · 2O(i). Now, for the
given r, suppose ri(n) < r(n) < ri+1(n) for some
i ∈ [dn/k(n)e − 1]. We show how to reduce
(k, ri+1)-TargetSumq to (k, r)-TargetSumq. We
need the following claim.

Claim 9 For positive integers k < m < n, there exists
a collection C of subsets of [n] such that each subset
S ∈ C is of size m and for any subset I ⊂ [n] of size
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k, there exists S ∈ C containing I. The size of C is at
most (12n/m)k, and it can be constructed determinis-
tically in the same amount of time.

Proof Arbitrarily partition [n] into nearly equal-
sized buckets, each of size either dm/2ke or bm/2kc.
The number of buckets is at most 4nk/m. Consider
all subsets of exactly k of these buckets. There are(
4nk/m

k

)
6 (4en/m)k many such subsets. For each

choice of k buckets, take the union S of items in these
buckets. S contains at most m/2 < m items; add
m− |S| many arbitrary distinct additional items to S
so as to make the size of S equal to m. The collection
of all S satisfies our claim. ¤

Apply Claim 9 with k as above, m = r, n = ri+1.
The size of the collection C we get is 2O(k). Now, sup-
pose there is an algorithm Ar for (k, r)-TargetSumq.
Given x1, . . . , xri+1 and a target vector z, for every
S ∈ C, run Ar with input {xi : i ∈ S} and the
same target vector z. If indeed there exists a solu-
tion of (k, ri+1)-TargetSumq, Ar should accept for
some choice of S ∈ C. Hence, if Ar runs in time
2−O(k)

(
r
δk

)
=

(
r

O(δ)k

)
, then (k, ri+1)-TargetSumq

can be solved in time
(

r
δk

)
6

(
ri+1
δk

)
, implying there is

an algorithm for d-SAT running in time 2O(dn)δ1/O(d)
.

It remains to consider the case of r(n) > rk(n). De-
fine ` : Z+ → Z+ so that r(n) − k(n) = r`(n − k(n))
for every n > 1. First, obtain a hard instance of
(`, r`)-TargetSumq of size n−k(n) by the earlier re-
duction. The instance consists of r(n)− k(n) vectors
x1, . . . , xr−k ∈ Fn−k

q and a target vector z ∈ Fn−k
q ,

and say x1, . . . , xs for some s < r − k consists of
the vectors that arise out of assignments to the first
block in the reduction from d-SAT. We construct an
instance of (k, r)-TargetSumq of size n, consisting
of y1, . . . , yr ∈ Fn

q and target vector w ∈ Fn
q . Set w

to z ◦ 0k. For i ∈ [k], set yr−k+i to 0n−k ◦ ei where
ei ∈ Fk

2 has all 0’s except for 1 at the ith position.
For i ∈ [s + 1, r − k], set yi = xi ◦ 0k. Finally, for
i ∈ [s], set yi = xi ◦ v where v ∈ Fk

2 is the vector with
−1’s in the first k − ` positions and 0’s in the rest.
Observe that any solution to this (k, r)-TargetSumq

instance, when restricted to the first r−k coordinates,
must yield a solution to the (`, r`)-TargetSumq in-
stance, and so in particular, must contain one of
y1, . . . , ys. But then, to satisfy the constraints on
the last k coordinates, the solution must also contain
{yr−k+1, . . . , yr−`}. This gives a correspondence be-
tween solutions to the (`, r`)-TargetSumq instance
and the (k, r)-TargetSumq instance. Hence, unless
there is an algorithm to solve d-SAT in 2O(dn)δ1/O(d)

time, solving (r, k)-TargetSumq requires at least(
r`(n/2)
δ`(n/2)

)
= 2βn time for some constant β < 1. ¤

Now, consider the (k, r, v)-TargetSumq problem,
where k and r are as in Theorem 8 and v denotes
an arbitrary family of vectors in (Fq\{0})n. We ob-
serve that the above proof of Theorem 8 also shows
hardness for this problem. Specifically, in the reduc-
tion from nae-sat, multiply each vector arising from
block i by v−1

i , for every i ∈ [k′(n)]. It is easy to see
that this gives a reduction from nae-sat to (k, rk, v)-
TargetSumq for the same function rk as in the above
proof. The rest of the proof goes through straight-
forwardly, with the only other nontrivial modification
occuring in the last paragraph of the proof where we
again need to multiply the vectors being appended by
the appropriate scaling factors. We have thus proved
the following theorem.

Theorem 10 Given k, r : Z+ → Z+ as in The-
orem 8 and an arbitrary family of vectors v =
(v1, . . . , vk(n)) ∈ (Fq\{0})k(n) for every n > 1,
the (k, r, v)-TargetSumq problem requires at least

min
((

r(n)
βk(n)

)
, 2βn

)
time for some constant β <

1, unless d-SAT on n variables can be solved in
2O(dn)β1/O(d)

time for any d > 3.

For the (k, r, v)-ZeroSumq problem, we have al-
ready observed that the problem is trivial if sv =∑k(n)

i=1 vi = 0 over Fq. But if sv 6= 0, then we can
again show the same hardness as above by reducing
from (k, r, v)-TargetSumq. Given x1, . . . , xr and tar-
get vector z, define yi = xi − s−1

v z for every i ∈ [r].
Now, if the instance of (k, r, v)-ZeroSumq with in-
puts y1, . . . , yr has a solution ii, . . . , ik ∈ [r] such that∑k

i=1 viyi = 0, then
∑k

i=1 vixi = z and vice versa.
Therefore:

Theorem 11 Given k, r : Z+ → Z+ as in Theo-
rem 8 and a family of vectors v = (v1, . . . , vk(n)) ∈
(Fq\{0})k(n) such that

∑k(n)
i=1 vi 6= 0 for every

n > 1, the (k, r, v)-ZeroSumq problem requires at

least min
((

r(n)
βk(n)

)
, 2βn

)
time for some constant β <

1, unless d-SAT on n variables can be solved in
2O(dn)β1/O(d)

time for any d > 3. Specifically, this
hardness holds for the (k, r)-ZeroSumq problem if
k(n) 6= 0 (mod p) where p is the characteristic of Fq.

For the (k, r)-lindependenceq problem also, we
can show the same hardness, this time by examining
the proof of Theorem 8. Observe that for the output of
the reduction from the nae-sat instance in the proof,
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not only is the generated target vector the sum of
k′ vectors iff the nae-sat formula is satisfiable but
actually, the generated target vector is in the span of
k′ vectors iff the nae-sat formula is satisfiable. The
rest of the proof goes through straightforwardly.

Theorem 12 Given k, r : Z+ → Z+ as in Theo-
rem 8, the (k, r)-lindependenceq problem requires

at least min
((

r(n)
βk(n)

)
, 2βn

)
time for some constant

β < 1, unless d-SAT on n variables can be solved
in 2O(dn)β1/O(d)

time for any d > 3.

4 Algorithms for (k, r, v)-TargetSumq

and (k, r)-LinDendenceq

We show how to solve the (k, r, v)-TargetSumq

problem in 2O(k)
(

r
dk/2e

) · poly(n) time for constant
q, which improves the

(
r
k

) · poly(n) time algo-
rithm of exhaustive search. This implies a solu-
tion for (k, r)-TargetSumq, (k, r, v)-ZeroSumq, and
(k, r)-ZeroSumq. By enumerating over different v,
it can also be used to solve (k, r)-LinDependenceq

with a blowup of an additional qk factor.

The basic idea is most easily seen for q = 2 and an
even integer k. In this case v = 1k. We form a table T
of all possible vector sums of k/2 vectors xi1 , . . . , xik/2

from x1, x2, . . . , xr. Next, for each vector w ∈ T , we
check if w⊕ z ∈ T , where z ∈ Fn

2 is the target vector.
Since we do not require that i1, i2, . . . , ik are distinct,
if there is a sum of k input vectors that equals z, we
will find it, and if we find such a sum, it solves the
(k, r, v)-TargetSum2 problem. The time is clearly(

r
k/2

) ·poly(n). Handling odd k is straightforward - we
can build a table T1 of all sums of dk/2e input vectors,
and a table T2 of all sums of bk/2c input vectors, and
check if there is a vector w ∈ T1 for which w⊕ z ∈ T2,
which can be done in (|T1|+ |T2|)poly(n) time.

We now describe the extension for general q. The
main difference is that we first group the coefficients
of v = (v1, . . . , vk) based on their value in Fq \ {0}.
Let z ∈ Fn

q be the target vector. Let the input vectors
be x1, . . . , xr ∈ Fn

q , so we want to find a sub-multiset
xi1 , . . . , xik

for which
∑k

j=1 vjxij = z.

In the first stage, for each subset A of the input vec-
tors of size dk/2e, the algorithm considers a special set
of 2O(k) sequences (xi1 , . . . , xidk/2e) of dk/2e elements
of A with repetition. Here, some elements of A may
not be included in a given sequence in the set.

The special set of sequences for the subset A is
formed as follows. For a sequence (xi1 , . . . , xidk/2e)
of dk/2e elements of A (with repetition), for each
` ∈ Fq \ {0}, let B` be the multiset of xij

for which
vj = `. Note that |B`| is the number of coordi-
nates of v which equal `. Let C` be the multiset ob-
tained from B` by taking each distinct element of B`,
and reducing its multiplicity modulo the characteris-
tic of Fq. For any two sequences (xi1 , . . . , xidk/2e) and
(yi1 , . . . , yidk/2e) which result in the same collection of

multisets {C`}, we have
∑dk/2e

j=1 vjxij
=

∑dk/2e
j=1 vjyij

.
In this case we say sequences (xi1 , . . . , xidk/2e) and
(yi1 , . . . , yidk/2e) are equivalent.

The special set of sequences we use for the subset A
is a maximal set of non-equivalent sequences, and we
call such a set of sequences a representative sequence
set. The number of sequences in the representative se-
quence set is bounded by 2O(k) for constant q. To see
this, for each distinct element x of A, and for each of
the at most q−1 different C`, we choose a number be-
tween 0 and the characteristic of Fq, minus one, which
is at most q, representing the number of occurrences of
x in C`. Since A has at most dk/2e distinct elements,
the number of choices we have is qO(qk) = 2O(k) for
constant q. However, not all such collections of {C`}
correspond to a sequence of exactly dk/2e elements
of A. For each such collection of {C`}, there is such
a sequence if and only if |B`| − |C`| is a multiple of
the characteristic of Fq for all `. Indeed, in this case,
case we can arbitrarily increase the multiplicity of a
vector in C` by a multiple of the characteristic. On
the other hand, any sequence gives rise to a collection
{C`} with the property that |B`| − |C`| is a multiple
of the characteristic of Fq for all `. For each sequence
in the representative sequence set, the algorithm first
computes the vector

∑dk/2e
j=1 vjxij . This can be done

in 2O(k)
(

r
dk/2e

)
time.

In the second stage, for each sub-multiset B of the
input vectors of size bk/2c, the algorithm considers all
sequences (xi1 , . . . , xibk/2c) of B from a representative

sequence set, and computes
∑bk/2c

j=1 vj+dk/2exij .

Then there is a solution to the (k, q, v)-targetsum
problem if and only if there is a vector w computed
in the first stage for which the vector −w + z is com-
puted in the second stage. This can be easily tested
in 2O(k)

(
r

dk/2e
) · poly(n) time. We thus have:

Theorem 13 (k, r, v)-targetsumq can be solved in
deterministic 2O(k)

(
r

dk/2e
) · poly(n) time.
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When r = 2Ω(n/k), we can do better and match the
lower bound from Theorem 8, up to a constant factor
in the exponent. Again, suppose we have an instance
of (k, r, v)-TargetSumq with inputs x1, . . . , xr ∈ Fn

q

and target vector z ∈ Fn
q . For i ∈ [k], define the set

Si ⊆ Fn
q to be {vixj | j ∈ [r]}, and let fi : Fn

q →
{0, 1} be the indicator function of Si. Now, Fact 7,
concerning convlution and the FFT, directly leads to:

Theorem 14 (k, r, v)-targetsumq can be solved in
deterministic O(n · log k(n) · qn) time.

5 (k, r)-MinLinDependenceq algorithms
and algorithms for related problems

5.1 An algorithm for the decision
problems

In this section, we show an algorithm for the
(k, r)-MinLinDependenceq problem which is tight
for k(n) = O(

√
n) but is not for larger k.

Theorem 15 For functions k, r : Z+ → Z+, the
(k, r)-MinLinDependenceq problem can be solved

in O
(
poly(n) ·min

((
r(n)
k(n)

)
, qO(n+k2(n))

))
determinis-

tic time.

Proof The algorithm with running time
poly(n)

(
r(n)
k(n)

)
simply picks each k(n)-sized subset

of the r(n) inputs and checks if they are minimally
dependent using Gaussian elimination. For the other
upper bound, we first give a randomized algorithm
which is easy to describe, and for which there is a
standard way to derandomize it.

Choose uniformly at random a full-rank linear map
L : Fn

q → Fk−1
q . The algorithm passes if and only

if there are xi1 , . . . , xik
for i1, . . . , ik ∈ [r] such that:

(i) L(xi1), . . . , L(xik−1) are linearly independent, and
(ii) xik

∈ span(xi1 , . . . , xik−1). We need to justify the
success probability of this algorithm as well as its run-
ning time.

Suppose there is no subset of k minimally de-
pendent elements. In this case, note that if
L(xi1), . . . , L(xik−1) are linearly independent, then
xi1 , . . . , xik−1 are also linearly independent. There-
fore, the above algorithm will fail with probability 1.
On the other hand, suppose that the input contains
a set of k minimally dependent elements xi1 , . . . , xik

.
Then, xi1 , . . . , xik−1 are linearly independent. There-
fore, the probability that L(xi1), . . . , L(xik−1) are lin-
early independent is exactly equal to the probabil-

ity that k − 1 elements, uniformly chosen from Fk−1
q ,

are linearly independent. This probability is lower
bounded by a constant by Claim 5, and so, the algo-
rithm passes with constant probability. Finally, note
that since the given algorithm is one-sided, we can am-
plify the success probability to any required threshold
by running it O(1) times and passing if any of the runs
passes.

We now describe how to get the claimed running
time. We repeat the following for each choice of
v1, . . . , vk−1 ∈ Fq that are not all zero. For each choice
of k− 1 linearly independent elements yi1 , . . . , yik−1 ∈
Fk−1

q , with yk defined as v1yi1 + · · · + vkyik−1 , we
will show how to efficiently check if there exist any
xi1 , . . . , xik

such that L(xi1) = yi1 , . . . , L(xik
) = yik

and x1 + · · · + xk+1 = 0. For each of the at most(
qk

k

)
6 qO(k2) choices of y1, . . . , yk, we will achieve

this in Õ(qnpoly(n)) time, proving our claim. So, fix
linearly independent yi1 , . . . , yik−1 ∈ Fk

q and set yik
to

v1yi1 + · · · + vk−1yik−1 . Let H equal Ker(L) = {x :
L(x) = 0}; H is a subspace of dimension n − k + 1.
For each j ∈ [k], we have that L−1(yij ) is a coset
vj + H. For each j ∈ [k], we define fj : H → {0, 1}
as fj(x) = I(vj + x), where I(x) = 1 if x is one of
the r inputs and 0 otherwise. Now, observe that there
exist xi1 ∈ L−1(yi11), . . . , xik

∈ L−1(yik
) such that

xi1 +· · ·+xik
= 0 if and only if (f1∗f2∗· · ·∗fk)(0) > 0.

By Fact 7, concerning convlution and the FFT, we can
compute the convolution in O(nqn) time, proving the
running time bound.

Derandomization. We can choose a family H of
pairwise-independent hash functions from Fqn to Fq3k

as follows. We choose a ∈ Fqn and b ∈ Fq3k arbi-
trarily, and our map is [a · x]k + b, where [y]k denotes
the restriction to the last k coordinates of y. Then
|H| = qn+3k. Such a family is known to be pairwise-
independent. Although the family is not linear, it is
affine, and we know the offset b, so we can perform
the above algorithm by looking for sets of k vectors
in the range with the property that any non-trivial
linear combination of them that spans a scalar mul-
tiple of the offset b must have a non-zero coefficient
multiplying every vector, and there is such a linear
combination.

Suppose that S is a set of k items that forms a
linear dependence that is not minimal. Then there is
a linear dependence on a proper non-empty subset of
these items. It follows that a multiple of b is in the
span of this subset, and so it cannot map to a set of
k vectors in the range that we consider.
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Suppose that S is a set of k items that is linearly
independent. This set will not be found by the FFT
verification, even if it passes our criterion (e.g., if we
look at its image).

Suppose that S is a minimal k-dependence. With
probability 1 − k2/q3k, the k vectors map to distinct
images. Moreover, since the map is affine, a linear
combination involving all k such vectors equals a mul-
tiple of b. It remains to check that any proper non-
empty subset T of S does not span a multiple of b.
There are at most qk elements in the union of such
sets T , and none can be zero since S is a minimal k-
dependence. For any fixed element y, the probability
that [a · y]k is a multiple of b is at most q/q3k, and
so by a union bound none of these span a multiple of
b with probability at least 1− qk+1/q3k. Hence, by a
union bound S will pass the criteria of our procedure
with probability at least 1− k2/q3k − qk+1/q3k. ¤

5.2 An approximation algorithm for
counting the number of witnesses

Note that the algorithms in Section 4 not only de-
tect solutions to the TargetSum problem but also
count them. It is easy to see this is the case for the first
algorithm. For the second FFT-based algorithm, the
output of the convolution itself gives the count. The
situation is more complicated for the FFT-based al-
gorithm for the MinLinDependence problem. Here,
we are only able to find an approximation to the total
number of solutions.

Theorem 16 For any ε > 0, there exists
a randomized algorithm that, with probability at
least 2/3, approximates the number of solutions to
(k, r)-MinLinDependenceq to within a multiplica-
tive factor of (1 ± ε). The running time of the al-
gorithm is Õ

(
qO(n+k2)poly(n)/ε2

)
.

Proof The algorithm for approximate counting is
essentially the same as the algorithm for detect-
ing! As before, choose a random full-rank linear
map L : Fn

q → Fk
q . Suppose there are s so-

lutions to (k, r)-MinLinDependenceq. By Claim
5, for each such solution xi1 , . . . , xik

, the proba-
bility that L(xi1), . . . , L(xik−1) are linearly indepen-
dent is at least a constant, say, pk, and so, the ex-
pected number of solutions with linearly independent
L(xi1), . . . , L(xik−1) is spk. We want to bound the
concentration around this mean.

Formally, let C denote the set consisting of all the
s solutions. For a given c ∈ C, let χc be the indicator
variable for the event that L maps k−1 of the elements
in c to linearly independent elements, and let X =∑

c∈C χc. So, E [χc] = pk and E [X] = spk. Also,
Var[X] =

∑
c∈C Var[χc] +

∑
c 6=c′∈C Cov(χc, χc′). But

note that:

Var[χc] = pk(1− pk) 6 pk

and

Cov(χc, xc′) = E [χcxc′ ]− E [χc]E [xc′ ]
6 E [χcxc′ ]
6 pk

So, Var[X] 6 spk + s(s− 1)pk = s2pk.

Now, suppose we independently choose s full-rank
linear maps L1, . . . , Ls : Fn

2 → Fk
2 , and let Y be the av-

erage of the s independent copies of X. Then, E [Y ] =
E [X] = spk, while Var[Y ] = Var[X]/s 6 s2pk/s. By
Chebyshev:

Pr[|Y − spk| > εspk] 6 Var[Y ]
ε2s2p2

k

6 1
ε2pks

Thus, choosing s to be O(1/ε2) suffices to make the
probability of error less than 2/3.

The algorithm is therefore to independently choose
m = O(1/ε2) many full-rank linear maps L1, . . . , Lm :
Fn

q → Fk
q , and for each Lj , compute Xj , the num-

ber of linearly dependent elements xi1 , . . . , xik
such

that Lj(xi1), . . . , Lj(xik−1) are linearly independent.
Xj is simply the appropriate scaling of the value
of the computed convolution. This makes the run-
ning time O(poly(n)qO(n+k2)/ε2). Finally, we output
X1+···+Xm

spk
. ¤

We also note that one can find (not just decide
the existence of) a witness for each of the problems
we have considered without paying any asymptotic
overhead on the decision algorithms. Namely, we can
use self-reducibility to fix the elements xi1 , . . . , xik(n)

sequentially and after each fixing, check if the re-
stricted problem still has a solution. We pay an
extra O(r(n)k(n)) for this, which is asymptotically
negligible.

6 Conclusion

In this work we studied a wide range of problems
that test if linear combinations of certain-sized sub-
sets of the input vectors equal a desired target vector.
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For many of these problems, we resolved the time com-
plexity (up to polynomial factors) under the Exponen-
tial Time Hypothesis. As these problems are natural
extensions of the well-studied k-SUM problem, we be-
lieve they will lead to a deeper understanding of the
complexity of other problems.

One question that remains open is the complexity
of the problem (k, r)-ZeroLinDependenceq, which
for functions k, r : Z+ → Z+, takes as input r el-
ements x1, . . . , xr(n) ∈ Fn

q and checks if there exist
xi1 , . . . , xik(n) such that 0n can be written as a non-
trivial linear combination of xi1 , . . . , xik(n) . This is
similar to the (k, r)-LinDependenceq problem, but
the target vector z = 0n is fixed. It is also similar to
the (k, r)-ZeroSum2 problem, but we require the k
vectors chosen be distinct. This problem is equivalent
to the parameterized complexity of testing if the min-
imum distance of a linear code is at most k. Indeed,
if A is the n × r matrix whose columns correspond
to the input vectors, then the code {x | Ax = 0}
has minimum distance at most k iff there is a positive
answer to the (k, r)-ZeroLinDependenceq problem.
The parameterized complexity, as a function of r and
k, of this problem is listed as an open question in [10]
(see the listing under the EvenSet problem). One
property is that by Corollary 3.17 of [45], if r > 2cn/k

for a large enough constant c > 0, then there is al-
ways a solution to the (k, r)-ZeroLinDependenceq

problem.
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