
Innovations in Computer Science 2011

Computationally Limited Randomness∗

Matei David1 Phuong Nguyen2 Periklis A. Papakonstantinou3 Anastasios Sidiropoulos4

1Center for Computational Intractability, Princeton University, Princeton, NJ, USA
2Department of Computer Science, McGill University, Montreal, QC, Canada

3ITCS, Tsinghua University, Beijing, PR China 4Toyota Technological Institute, Chicago, IL, USA
mateid@cs.princeton.edu pnguyen@cs.toronto.edu papakons@tsinghua.edu.cn tasos@ttic.edu

Abstract: The starting point of this work is the basic question of whether there exists a formal and meaningful
way to limit the computational power that a time bounded randomized Turing Machine can employ on its
randomness.
We attack this question using a fascinating connection between space and time bounded machines given by Cook
[4]: a Turing Machine S running in space s with access to an unbounded stack is equivalent to a Turing Machine
T running in time 2O(s). We extend S with access to a read-only tape containing 2O(s) uniform random bits,
and a usual error regime: one-sided or two-sided, and bounded or unbounded. We study the effect of placing a
bound p on the number of passes S is allowed on its random tape. It follows from Cook’s results that:
• If p = 1 (one-way access) and the error is one-sided unbounded, S is equivalent to deterministic T .
• If p = ∞ (unrestricted access), S is equivalent to randomized T (with the same error).

As our first two contributions, we completely resolve the case of unbounded error. We show that we cannot
meaningfully interpolate between deterministic and randomized T by increasing p:
• If p = 1 and the error is two-sided unbounded, S is still equivalent to deterministic T .
• If p = 2 and the error is unbounded, S is already equivalent to randomized T (with the same error).

In the bounded error case, we consider a logarithmic space Stack Machine S that is allowed p passes over its
randomness. Of particular interest is the case p = 2(log n)i

, where n is the input length, and i is a positive integer.
Intuitively, we show that S performs polynomial time computation on its input and parallel (preprocessing plus
NCi) computation on its randomness.
Formally, we introduce Randomness Compilers. In this model, a polynomial time Turing Machine gets an input
x and outputs a (polynomial size, bounded fan-in) circuit Cx that takes random inputs. Acceptance of x is
determined by the acceptance probability of Cx. We say that the randomness compiler has depth d if Cx has
depth d(|x|). As our third contribution, we show that:
• S simulates, and is in turn simulated by, a randomness compiler with depth O

(
(log n)i

)
, and O

(
(log n)i+1

)
,

respectively.
Randomness Compilers are a formal refinement of polynomial time randomized Turing Machines that might
elicit independent interest.

Keywords: randomness, limited randomness, probabilistic polynomial time, hierarchy, stack machine.

1 Introduction

Most deterministic computational devices can be
extended by providing them access to a uniform ran-
dom string, and allowing them to err on every in-
put with some probability. Several error regimes are
usually investigated. We say that the error is bounded

∗M.D. is supported in part by NSF grant CCF-0832797, P.N.

is funded by an NSERC postdoctoral fellowship, P.P. is sup-

ported in part by the National NSF China Grant 60553001,

61073174, 61033001 and the National Basic Research Program

of China Grant 2007CB807900, 2007CB807901.

if it can be reduced, e.g., to an arbitrary constant, and
unbounded otherwise. In the case of decision prob-
lems, to which we restrict our attention, we say that
the error is one-sided if the device makes only false
negatives error, and two-sided otherwise. Random-
ization with one-sided unbounded error is commonly
referred to as nondeterminism. Randomness might
or might not add power to the underlying computa-
tional device. For example, randomness does not add
any power to an unrestricted Turing Machine, but it
does add power to an efficient two-party communica-
tion protocol, see e.g. [8]. Understanding the effect of
randomness on the power of a time or space bounded

522

COMPUTATIONALLY LIMITED RANDOMNESS

Turing Machine is the subject of some of the most
fundamental open problems in theoretical computer
science; see e.g. [7] for results and references within,
and e.g. [12].

Our motivation in this paper is the question of
whether there exists a formal and meaningful way to
limit the computational power that a time bounded
randomized Turing Machine can employ towards its
randomness, all while keeping its original power to-
wards its input. We attack this question by using an
equivalence between time and space bounded compu-
tation given by Cook [4]. Our approach is further mo-
tivated by some fundamental questions involving the
effect of randomness on the power of space bounded
Turing Machines.

Several methods have been considered to give a Tur-
ing Machine access to randomness. A common way
is to implement the access to randomness inside the
transition function. Alternatively, this can be seen
as having access to an one-way tape that contains a
uniform random string. Henceforth, we refer to this
as read-once or one-way access to randomness. Most
randomized computational complexity classes are de-
fined in terms of read-once randomness. Another way,
referred to as two-way access to randomness or tape
randomness, is to provide the machine with an aux-
iliary read-only tape containing uniform random bits.
In this case, the machine can control the movement of
the input head on the extra tape, using the random
bits only when needed. Also, note that in this case the
length of the random tape may significantly affect the
power of the machine. Finally, a third way is to ap-
pend randomness as part of the input, a common way
to add randomization to combinatorial circuits. Of
these three methods, tape randomness is the most gen-
eral since it naturally simulates the others. Tape ran-
domness, however, allows for more refinements. For
example, much effort in the areas of derandomization
and pseudorandomness has been placed on the task of
reducing the amount of randomness used by a Tur-
ing Machine. In this case, the context of the random
string is replaced by a pseudo-random one of much
smaller entropy.

Randomness in Space Bounded Computation.
Traditionally, space bounded complexity classes such
as RL and NL are defined using read-once random-
ness. The need to consider (potentially more pow-
erful) two-way access to randomness becomes appar-
ent e.g. when space bounded Turing Machines are
used to simulate other computational models. Con-
sider, for instance, the known fact (e.g. [5]) that a

logarithmic space Turing Machine simulates a poly-
nomial size, logarithmic depth, bounded fan-in circuit
(i.e., NC1 ⊆ L). We emphasize that a similar re-
lation between the respective randomized extensions
(i.e., RNC1 ⊆ RL) does not follow immediately, and
in fact it is not known to hold. The reason is that in
a randomized circuit the randomness is appended to
the input, so the circuit can inspect both with com-
mon resource bounds. On the other hand, it is easy to
see that this model is simulated by a logarithmic space
Turing Machine with unrestricted (two-way) tape ran-
domness.

In this paper, we investigate the difference between
read-once and general tape randomness in a variant
of space bounded Turing Machines. Before proceed-
ing any further, it is important to point out that
this is a non-issue in the case of time-bounded Tur-
ing Machines(!) If such a machine is provided with ei-
ther read-once or tape randomness, then it can simply
save the random bits it uses on a separate work tape,
and subsequently retrieve any of them. However, this
scheme no longer works in the case of a space-bounded
Turing Machine, and the results in [9,11], and in part
in this work, suggest that its power is indeed greatly
influenced by its capacity to recall and reuse random
bits.

Stack Machines. A stack naturally models an un-
bounded storage space that comes equipped with a
first-in last-out access restriction. While ubiquitous
in algorithm design, the stack has found significant
applications in complexity theory, where it was used
to prove connections between several important mod-
els of computation. First, note that it is not use-
ful to add a stack to a Turing Machine that has no
restrictive space bound (e.g., a purely time-bounded
machine), because a stack can easily be simulated by
an additional work tape. Second, note that a space
bounded Turing Machine with two unbounded stacks
and no additional work space can simulate an unre-
stricted Turing Machine (by “juggling” the input be-
tween the two stacks). There are, however, highly
nontrivial consequences to adding a single, unbounded
stack to a space-bounded Turing Machine. This model
was previously referred to as an “auxiliary push-down
automaton” (AuxPDA). In this work, we prefer the
simpler term Stack Machine.

There are no known equivalences between purely
space and time bounded Turing Machines. The main
premise of this work is a result of Cook [4], who
showed that such a connection does exist when the
space bounded machine is augmented with a stack.

523

M. DAVID, P. NGUYEN, P. A. PAPAKONSTANTINOU, A. SIDIROPOULOS

Theorem 1([4]). A deterministic Stack Machine S
running in space s is equivalent to a deterministic
Turing Machine T running in time 2O(s).

We extend S with access to a read-only tape con-
taining 2O(s) uniform random bits, on which S is al-
lowed p passes1. We consider the usual error con-
ditions: one-sided or two-sided, and bounded or un-
bounded. It follows from Cook’s results [4] that:

Corollary 2([4])

• If p = 1 (one-way access) and the error is one-
sided unbounded, S is equivalent to deterministic
T .

• If p = ∞ (unrestricted access), S is equivalent
to randomized T (with the same error).

Moreover, although there are no known (or be-
lieved) equivalences between simultaneous time-space
bounded Turing Machines and size-depth bounded
families of circuits, these equivalences hold if instead
of Turing Machines we have Stack Machines; e.g.
[3,14,15,17].

1.1 Our results

There is a large gap between allowing the Stack Ma-
chine S one-way and unrestricted access to the random
tape. We study the effect of increasing the number of
passes p that S is allowed on its random tape from 1
(corresponding to one-way access) to ∞ (correspond-
ing to unrestricted access). As suggested by Corollary
2 (for one-sided error), this increases the power of S
from deterministic to randomized T .

Unbounded Error. As our first contribution, we
extend Cook’s result on the power of read-once access
to tape randomness, showing that even if the error is
two-sided unbounded, S still does not gain any addi-
tional power.

Theorem 3. If p = 1 (one-way access) and the er-
ror is two-sided unbounded, S is still equivalent to
deterministic T .

Informally, we achieve this by showing how to com-
pute exactly in time 2O(s), for every pair of “surface
configurations” of the Stack Machine, the probabil-
ity that if we start in one we reach the other at the
same stack level, without having popped the initial top
stack symbol. For comparison, for Cook’s one-sided
unbounded error result, one only needs to compute

1We assume the passes alternate in direction, so that p passes
are equivalent to p− 1 reversals.

whether the corresponding probabilities are positive.

As our second contribution, we completely resolve
the case of unbounded error. We show that, perhaps
surprisingly, allowing as little as 2 passes over the ran-
dom tape is equivalent to having no pass bound at
all. Thus, in the case of unbounded error, there is no
meaningful way to interpolate between the power of
the deterministic and randomized versions of the time
bounded Turing Machine T .

Theorem 4. If p = 2 (two passes) and the error is
unbounded, S is already equivalent to randomized T
(with the same error).

Informally, to achieve this result we prove that ev-
ery path in the computation tree of the randomized
Turing Machine can be encoded as a “special” certifi-
cate that can be checked by the Stack Machine. Most
certificates of the Stack Machine are not special, but
this is inconsequential in the case of unbounded error.

Bounded Error. In the bounded error case, we re-
strict our attention to comparing a logarithmic space
Stack Machine S with p passes over a polynomially
long random tape with a polynomial time Turing Ma-
chine T (i.e., we set s = log n in Corollary 2). By
Corollary 2 and Theorem 3, we know that by increas-
ing p from 1 to ∞, S ranges in power from deter-
ministic to randomized T . Naturally, this hierarchy
collapses to level p = 1 if one were to show, e.g., that
P = BPP. Moreover, the collapse demonstrated in
Theorem 4 (level p = 2 equals level p = ∞) crucially
hinges on the ability of the Stack Machine to decide
based only on a minimal advantage drawn from ex-
ponentially few random strings. Informally, it seems
that this can only be as easily achieved in a regime of
unbounded error.

In light of the discussion above, we find it inter-
esting to ask what kind of computational power is
achieved at intermediate levels of the bounded-error
hierarchy. In particular, it is natural to ask whether
there exists some refinement of the randomness in the
time bounded Turing Machine T that is captured by
restricting the number of passes over tape randomness
in the Stack Machine S. In answering this question,
we are inspired by the line of work in [3,14,15], leading
to the result of Allender [2].

Theorem 5([2]) A logarithmic space Stack Machine
that makes 2O((log n)i) input head moves is roughly
equivalent 2 to a polynomial time uniform circuit

2We defer a formal statement to Section 1.2

524

COMPUTATIONALLY LIMITED RANDOMNESS

with bounded fan-in gates, polynomial size, and depth
O

(
(log n)i

)
(i.e., NCi).

Returning to the Stack Machine S which has un-
restricted access to the input and p = 2O((log n)i)

passes over the random tape, we observe that, intu-
itively, S seems to perform two types of computation:
an arbitrary polynomial time computation on its in-
put, and a parallel (NCi) computation on its random
tape. Below, we formalize this intuition and we show
that, perhaps surprisingly, these two computations
can be formally separated in the following two-phase
model.

Consider the following model3 of computation. A
randomness compiler R consists of a polynomial time
Turing Machine (transducer) M , and it operates as
follows. When R is given input x and randomness r:

Phase one: M is given x (alone) and it produces a cir-
cuit Cx (obviously, of polynomial size);

Phase two: Cx is given input r;
The output of the compiler R is defined to be the
output of Cx on r.

Acceptance/rejection of an input x is defined in the
usual way depending on the error condition. We say
that a randomness compiler has depth d if the depth
of the intermediate circuit Cx is at most d(|x|). In-
tuitively, this is a formal model of computation which
separates the power used to access the input and the
power used to access the randomness. In particular,
this model can simulate both a deterministic polyno-
mial time Turing Machine (by producing a constant
circuit), and a randomized polynomial size depth d
circuit (when the precomputation is used to select a
circuit of the appropriate size from the family, and the
input x is substituted inside).

As our third contribution, we show that the power of
logarithmic space Stack Machines with pass bounded
tape randomness is closely connected to the power of
depth bounded randomness compilers.

Theorem 6. For every positive integer i, the fol-
lowing holds. A logarithmic space Stack Machine
with p = 2O((log n)i) passes over a polynomially long
random tape simulates, and is in turn simulated by,
a randomness compiler of depth O

(
(log n)i

)
, and

O
(
(log n)i+1

)
, respectively.

Informally, one simulation follows from the known
results connecting Stack Machines and circuits. For

3The model of Randomness Compilers was suggested by
Mark Braverman.

the nontrivial one (the compiler simulating the ran-
domized Stack Machine), we prove a more technical
Time Compression Lemma (not to be confused with
other uses of the term in computational complexity),
and use it together with appropriately adjusted older
works on Stack Machines.

1.2 Related work

The difference between read-once and unrestricted
tape randomness in space bounded Turing Machines
has been studied before in the absence of a stack.

A corollary of the work by Karpinksi and Verbeek
[9] is that a logarithmic space Turing Machine with
two-way access to a 2nO(1)

-long random string char-
acterizes PSPACE with zero error. The result of [9]
suggests that unrestricted tape randomness adds sig-
nificant power to a space bounded machine.

Nisan [11], shows that when the random tape is of
polynomial size, a logarithmic space Turing Machine
with read-once randomness and two-sided bounded er-
ror can be simulated by a logarithmic space Turing
Machine with unrestricted tape randomness and zero
error, i.e., the machine produces an answer with con-
stant probability, and when it does, it is always cor-
rect.

A good reference on the power of randomized space
bounded Turing Machines without a stack, is the sur-
vey by Saks [16].

Relations and equivalences between Stack Machines
and other models of computation (e.g. simultaneous
size-depth bounded circuits) have been studied in a
long line of work, see e.g. [2-4, 14, 15, 17].

2 Preliminaries

2.1 Notation and conventions

We denote by n the input length. Whenever we
use s = s(n) to denote the space bound in a Turing
Machine, we assume that s(n) = Ω(log n).

We use standard definitions for Turing Machines,
circuits, and complexity classes such as Time (t),
Space (s), L, P, NCi, ACi, SACi. We use the standard
prefixes R-, BP-, N-, P-, to denote one-sided bounded,
two-sided bounded, one-sided unbounded, and two-
sided unbounded error conditions, respectively. For
all randomized Turing Machines we consider, we re-

525

M. DAVID, P. NGUYEN, P. A. PAPAKONSTANTINOU, A. SIDIROPOULOS

quire that they respect their (time, space) bounds in
the worst case with respect to the random string. We
use standard notions of uniformity for circuit families.
For reference, see e.g., [1,5].

2.2 Stack machines

A (decider) Stack Machine is a space bounded Tur-
ing Machine with access to an unbounded stack (for
more formal definition of the model and the computa-
tion, see [4].) Concretely, a Stack Machine with space
bound s = s(n) consists of: a finite state control;
a read-only input tape of length n; one (or several)
read-write work tape(s) of total size s(n); and an un-
bounded stack. A (full) configuration of a Stack Ma-
chine consists of: the state (O (1) bits); the position
of the head on the input tape (O (log n) bits); the con-
tent and head positions of the work tapes (O (s) bits);
and the content of the stack. A surface configuration
is similar to a full configuration, but only includes the
top stack symbol instead of the entire content of the
stack. The following are easy to prove:

Fact 7. Let S be a decider Stack Machine with space
s. Then, the stack height achieved by S is at most
2O(s), and the running time of S is at most 22O(s)

.

We add the term -Pd- (for “push-down”) to denote
the fact that the Turing Machines used to character-
ize a certain complexity class are augmented with an
unbounded stack. Thus, we write PdSpace (s), PdL,
and PdSpaceTime (s, t) for the classes of languages de-
cided by Stack Machines with space s, logarithmic
space, and simultaneous space s and time t, respec-
tively. With this notation, Cook [4] shows that:

Theorem([4]). PdSpace (O (s)) = Time
(
2O(s)

)

For example, O(log n) space Stack Machines com-
pute exactly the problems in P. Note that, in general,
such machines take 2nO(1)

steps. In fact, one can show
that they must take 2(log n)ω(1)

steps, unless P = NC,
e.g. [3]. Furthermore, logarithmic space Stack Ma-
chines running in quasi-polynomial time characterize
the NC-hierarchy.

Theorem([15]). For every positive integer i, NCi ⊆
PdSpaceTime

(
O (log n), 2O((log n)i)

)
⊆ NCi+1.

2.3 Randomized stack machines

We extend Stack Machines with randomness as fol-

lows.

Definition 8. A randomized Stack Machine with
space s and pass bound p = p(n) is a regular Stack
Machine extended with access to a read-only tape of
length 2O(s) containing uniform random bits, on which
the machine is allowed p passes.

We emphasize the fact that there is no bound on the
number of passes the Stack Machine is allowed on any
of its other tapes (input, work, or stack). We write
p = ∞ if there is no bound on the number of passes
over the random tape.

Remark 9. In our definition, we use a bound on the
length of the random tape that needs to be justified.
When a space s Stack Machine is extended with ran-
domness by allowing it to “flip coins” inside the tran-
sition function, it can potentially use as many bits of
randomness as its running time. By Fact 7, this can
be up to 22O(s)

(!) However, we would like a space s
Stack Machine with unrestricted (two-way) access to
the random tape to be equivalent with a randomized
time 2O(s) Turing Machine. We stress that such an
equivalence is only known to hold when the length of
the random tape is at most 2O(s).

For every error condition X- (R-, BP-, N-, or P-) we
denote by XPdSpacePasses (s, p) the class of problems
decided by randomized Stack Machines with space s
and p passes over the random tape. We write XPdL [p]
for XPdSpacePasses (O (log n), p). With this notation,
it follows from Cook [4] that:

Theorem([4])
NPdSpacePasses (O (s), 1) = PdSpace (O (s))
= Time

(
2O(s)

)
. Furthermore, for every error condi-

tion X-, XPdSpacePasses (O (s),∞) = XTime
(
2O(s)

)
.

3 Unbounded error

Consider a randomized Stack Machine S with space
O (s) and p passes over the random tape, as in Def-
inition 8. By the results of Cook [4], we know that
if S makes 1 pass over the random tape (p = 1) and
one-sided unbounded error, S is equivalent with a de-
terministic Turing Machine with time 2O(s). Cook’s
results do not say anything about the power of S if it
is allowed 1 pass and (potentially more powerful) two-
sided unbounded error. At the other extreme, we know
that when S is allowed unrestricted access to the ran-
dom tape (p = ∞), S is equivalent with a randomized
Turing Machine with time 2O(s) and the same error

526

COMPUTATIONALLY LIMITED RANDOMNESS

condition.

Our first two contributions completely settle the
case of unbounded error. Our results are, in a sense,
negative. We show that we cannot meaningfully in-
terpolate between the powers of a deterministic and
a randomized Turing Machine with time 2O(s) by in-
creasing the number of passes p that a randomized
space s Stack Machine is allowed on its random tape.
In other words, in this case the hierarchy of classes
obtained by increasing the number of passes p is com-
pletely degenerate:

• If S is allowed a single pass over its random tape
(p = 1), it is equivalent to a deterministic Turing
Machine with time 2O(s).

• If S is allowed 2 passes over its random tape
(p = 2), it is equivalent to a randomized Turing
Machine with time 2O(s).

We achieve this in two steps. First, we show that
one pass over the random tape is useless, even if the
Stack Machine is allowed two-sided unbounded error.

Theorem3.PPdSpacePasses (O (s), 1) = Time
(
2O(s)

)

The easy inclusion is

Time
(
2O(s)

)
⊆ NPdSpacePasses (O (s), 1)

⊆ PPdSpacePasses (O (s), 1)

The other direction is a non-trivial extension of Cook’s
arguments [4]. We need to show that a randomized
Stack Machine S with space O (s), p = 1 pass over
the random tape, and two-sided unbounded error, can
be simulated by a deterministic Turing Machine T in
time 2O(s). Intuitively, T must compute exactly, for
every input x, the probability that S accepts x. To
do that, we start with the same notion of “realizable
pair” of surface configurations used by Cook: these are
two surface configurations C1, C2 such that there exist
some computation path of S leading from C1 to C2 in
such a way that the top stack symbol is the same in
both, and this symbol is not popped in between them.
Cook shows that all realizable pairs can be computed
efficiently, which is sufficient when S has one-sided
unbounded error. In our case, we need to compute,
for every such pair, the exact probability (over the
choice of the random string) that S will reach C2 when
started in C1. The full proof is deferred to Appendix
B.

An important remark on Theorem 3 is that the
proof crucially relies on the fact that the random tape

has length at most 2O(s). For comparison, Cook’s
proof for the one-sided unbounded error case does not
need this bound. Also, recall Remark 9.

Our second result in the unbounded error case is a
strong collapse.

Theorem 4. For X- being either N- or P-,
XPdSpacePasses (O (s), 2) =
XPdSpacePasses (O (s),∞) = XTime

(
2O(s)

)

It is sufficient to show that XPdSpacePasses
(O(s), 2 = XTime

(
2O(s)

)
. The ⊆ direction is triv-

ial. The proof of the other simulation, though techni-
cally easy, illustrates an interesting and fundamental
interaction between the stack and the unbounded er-
ror condition. Informally, using the stack and only
2 passes over the random tape, the Stack Machine
can check that the certificate on the random tape
is of a very particular form; a form that encodes a
unique computation path of the randomized Turing
Machine.

Proof Sketch of Theorem 4. Let T be a randomized
Turing Machine running in time 2c1·s, for some con-
stant c1. Assume T has one-sided unbounded (nonde-
terministic) error. (The case of two-sided unbounded
error is similar). Our goal is to construct a Stack Ma-
chine S with space O (s) and 2 passes over the random
tape that accepts its input x if and only if T accepts
x along some computation path.

Note that a full configuration of T can be encoded
on 2c2·s bits, for some constant c2. S uses a random
tape of length 2(c1+c2)·s = 2O(s), which it conceptu-
ally divides into 2c1·s regions R1, R2, . . ., each one of
them of length exactly 2c2·s. In the first pass over the
random tape, S simultaneously checks that: (i) Ri en-
codes a configuration Ci of T , for odd i; (ii) the reverse
of Ri encodes a configuration Ci of T , for even i; and
(iii) Ci can be followed by Ci+1 in the computation of
T , for odd i. In the second pass, S checks that: (iv) Ci

can be followed by Ci+1 in the computation of T , for
even i. Clearly, (i) and (ii) do not require the use of
the stack, and O (s) space is sufficient. Furthermore,
it is not much harder to see that (iii) and (iv) can
be achieved by pushing Ci on the stack and popping
it while scanning Ci+1. Finally, S accepts if the last
configuration of T is accepting. Then, if T accepts
along some computation path π, S accepts with the
certificate that encodes the sequence of configurations
of T in π. ¤

527

M. DAVID, P. NGUYEN, P. A. PAPAKONSTANTINOU, A. SIDIROPOULOS

4 Randomness compilers

In this section, we consider the case of random-
ized Stack Machines with bounded error conditions.
We restrict our attention to the case of logarithmic
space (s = O (log n)). We discuss the two-sided
bounded error (BP-), but everything applies to one-
sided bounded error (R-) as well.

By the results of Cook [4] and Theorem 3, we know
that a logarithmic space randomized Stack Machine
S with an increasing number p of passes over a poly-
nomially long random tape interpolates between de-
terministic and randomized polynomial time compu-
tation. Two observations are in order. First, if one
were to prove such a strong statement as P = BPP,
the entire hierarchy would collapse to level p = 1 (or,
even p = 0). This seems to be a difficult task [7], and
is not suggested in any way by our results. Second,
the collapse shown in Theorem 4 of the associated
unbounded error hierarchy crucially depends on the
ability of the randomized Stack Machine (that is sim-
ulating a randomized Turing Machine) to accept with
exponentially small advantage over a random guess,
derived from very few “special” certificates. Infor-
mally, this seems more like a “glitch” in definitions
than evidence that such a collapse can be achieved in
the bounded error case. Thus, we find it interesting
to ask what kind of computational power is achieved
along this hierarchy, and, in particular, whether this
power captures a natural refinement of randomness in
polynomial time computation. In this section, we pro-
vide some indication that this is indeed the case, by
providing an alternative characterization of the mid-
dle layers in terms of other familiar computational de-
vices. In our study, we are inspired by the line of work
in [2,3,14,15] connecting logarithmic space Stack Ma-
chines in the presence of other bounds (time or input
head moves) with combinatorial circuits.

Consider a logarithmic space randomized Stack Ma-
chine S with p = 2O((log n)i) passes over the random
tape. Intuitively, S is free to perform arbitrary poly-
nomial time computation with respect to its input [4],
but only limited computation with respect to its ran-
dom tape. In particular, we see that S can perform
2O((log n)i) random accesses on the random tape 4,
since it is allowed to perform 2O((log n)i) passes and the
random tape is just polynomially long. Thus, S could
easily simulate (using depth first search) the evalua-
tion of a bounded fan-in circuit of depth O

(
(log n)i

)
whose input gates are the bits on the random tape.

4We hope it is clear that in this statement, the word “ran-
dom” refers to two standard, yet different concepts.

Moreover, at every node in this circuit, S could pause
the depth first search and perform arbitrary polyno-
mial time computation with respect to its input. Moti-
vated by the discussion above, we define the following
model of computation.

Definition 10. A Randomness Compiler R consists
of a deterministic polynomial time Turing Machine
(transducer) M , and it operates as follows. The com-
piler R is a randomized computational device that
takes an input x and a uniform random string r. In
the first phase, M is given x, and it outputs a circuit
Cx. In the second phase, Cx is given input r. The
output of the compiler R is defined to be the output
of Cx on r. We say that R computes a language L
with two-sided bounded error if it accepts an x ∈ L
and it rejects an x /∈ L with error probability 6 1/3.

We say that the compiler R has depth d = d(n) if
for every x, Cx has depth at most d(|x|). We denote
by P+BPNCi the class of languages accepted with one-
sided bounded error by Randomness Compilers with
depth O(logi n).

Remark 11. To clarify this definition, recall the defi-
nition of P-uniform BPNCi. A language L is computed
by a P-uniform BPNCi circuit family if the following
holds. On input (x, r), where |r| ≤ |x|O(1), a poly-
nomial time Turing Machine is given input 1n, and it
outputs a circuit Cm, where m = |(x, r)|. This cir-
cuit has size nO(1), depth O

(
(log n)i

)
, and gates with

bounded fan-in. The circuit Cm is then given input
(x, r). We are guaranteed that for every x ∈ L, (x, r)
is accepted with probability at least 2/3, and for every
x /∈ L, (x, r) is rejected with probability at least 2/3.
The main difference between P-uniform BPNCi and
P+BPNCi is that in the latter, the intermediate cir-
cuit depends on x itself, rather than just on |x|. Thus,
the Turing Machine transducer M computing Cx can
potentially decide membership of x in L without even
inspecting r, and simply produce a constant circuit.
Also, there is no need for x itself to be given as in-
put to Cx: if this were in any way advantageous, the
Turing Machine M could simply substitute x inside
the circuit. Finally, for inputs x1, x2 of the same size
(|x1| = |x2|), the circuits produced by M can be very
different. In contrast, the Turing Machine comput-
ing the circuit Cm only gets |x| as input, so it must
produce the same circuit.

Remark 12. Recall that BPP is not known to have
complete problems. In fact, it would be considered
as progress towards showing P = BPP if one could
prove such a thing. Contrast to promiseBPP which

528

COMPUTATIONALLY LIMITED RANDOMNESS

does have as complete the promise problem where the
input is a circuit (promised to accept/reject bounded
away from 1/2) and the question is whether it ac-
cepts or rejects on the majority of the inputs. There
is some superficial similarity of this complete prob-
lem with the definition of randomness compiler. How-
ever, the two objects are different, until one shows
that promiseBPP = BPP.

By the discussion preceding Definition 10, it is easy
to see that the logarithmic space randomized Stack
Machine S with p = 2O((log n)i) passes over the ran-
dom tape can simulate a Randomness Compiler with
depth O

(
(log n)i

)
. Our main contribution in this sec-

tion is to show that, perhaps surprisingly, a partial
converse is true.

Theorem 6. For every positive integer i,

P+BPNCi ⊆ BPPdL
[
2O((log n)i)

]
⊆ P+BPNCi+1

The reason the second inclusion might be surpris-
ing is that, in a sense, we are able to formally “break
apart” (modulo the loss in the exponent) the com-
putation that S performs on its input tape from the
computation it performs on its random tape. Tech-
nically, the heart of this argument is (i) an adaptap-
tion of the results in [14,15] and the observation that
the constructions in these proofs are also efficiently
computable, and (ii) the Time Compression Lemma
13, stating that given polynomial time precomputa-
tion depending only on the input length, we can “com-
press” the computation of a Stack Machine by giving
it access to an advice tape. At first this seems un-
expected since the computation of the Stack Machine
depends on the input itself. Allender [2] obtains a
similar result, in a somewhat related setting with dif-
ferent parameters and proof. The formal statement of
the Time Compression Lemma involves a somewhat
technical extension of the Stack Machine model. We
defer the precise statement and proof to Appendix C.

Lemma 13(Time Compression Lemma (informal
statement)). Let S be a logarithmic space randomized
Stack Machine that makes p passes over its random
tape. Then, there exists a randomized Stack Machine
S ′ which in addition has a polynomial time uniform
advice tape (on which we do not count passes) such
that S ′ decides the same as S and

• S ′ makes p passes over its random tape and
• S ′ runs in time nO(1)p.

For example, a randomized Stack Machine that
works in exponential time and which makes polyno-
mially many passes over its random tape can be sim-
ulated by a randomized Stack Machine with advice
that works in polynomial time.

5 Discussion

To put things in perspective let us fix s(n) =
O(log n); i.e. we consider the connection between log-
arithmic space Stack Machines and polynomial time
Turing Machines. In this case, by parametrizing on
the number of passes over the random tape we define
a hierarchy of classes between P on the one side, and
RP, BPP, NP, or PP on the other, depending on the
error condition. The level p of this hierarchy is the
class of languages decided by Stack Machines that are
allowed p passes over the random tape (we think of
p = 0 as representing no access to the random tape at
all). We have completely settled the case of NP and
PP: a single pass over the polynomially long random
tape does not get us outside P, whereas two passes
suffice to get the whole NP and PP.

Let us turn our attention to the more interesting
case of bounded error. In this case, we do not know
whether 2 passes over the random tape are useless (i.e.,
whether we can derandomize that class) or whether
they give as significant a power jump as in the un-
bounded error case. However, we note that any po-
tential derandomization argument, even for p = 2,
would have to use the fact that the error is bounded
(unless e.g. P = NP).

We find Theorem 6 particularly interesting. It
states that the two hierarchies defined between P and
BPP, one through Randomness Compilers and one
through Stack Machines, are essentially equivalent. A
conceptual implication of this equivalence is that the
hierarchies are not contrived.

It is natural to consider what type of questions one
could hope to answer about randomness compilers
short of derandomizing BPP. The standard construc-
tion of the circuit in the Cook-Levin theorem (see e.g.
[5]) depends on the input length. Perhaps if the circuit
is allowed to depend on the input itself (as in the case
of a randomness compiler) one could reduce the depth
of the standard construction. Of course, if P = BPP
then there is a randomness compiler where the cir-
cuits on the output are just trivial and constant. As
another research direction, one could ask whether de-
randomizing P+BPNCi (for some i) has implications

529

M. DAVID, P. NGUYEN, P. A. PAPAKONSTANTINOU, A. SIDIROPOULOS

towards the higher levels of P+BPNC.

We conclude by mentioning two technical points.
The first regards an implication of Theorem 6.
By Theorem 6 pseudo-random generators (PRGs)
that fool NCi+1 circuits can be used to derandomize

BPPdL
[
2O((log n)i)

]
. These PRGs can fool even non-

uniform machines, which is common (e.g. [13]). That
is, derandomizing using PRGs along BPNC (a class
believed to be deeply inside P) we derandomize along
BPPdL (which contains P).

The second point motivates the study of a new type
of pseudo-random generators against space bounded
adversaries. Before we proceed any further, we re-
mark that the derandomization of the lower levels of
the hierarchy, and in particular of BPPdL [polylog] :=
∪k>0BPPdL

[
logk n

]
, may happen without the full de-

randomization of BPNC2 when using pseudo-random
generators (which is sufficient by Theorem 6). In
particular, one can apply the Time Compression
Lemma and extend the analysis in [5] to show (this
is non-immediate) that BPPdL [polylog] can be de-
randomized in quasi-polynomial time if there exists
a pseudo-random generator that stretches a seed of
length logO(1) n to nΩ(1) and it fools machines M ,
where: (i) M works in space logO(1) n, (ii) M is non-
deterministic, (iii) the input bits are accessed in an
arbitrary order (random access to the input), and (iv)
each bit can be read at most logO(1) n many times. In
other words, if we construct stronger pseudo-random
generators, or strengthen the analysis of existing ones
(such as [10] or [6]), which fool space bounded distin-
guishers, then we can derandomize BPPdL [polylog], a
probabilistic time class.

Acknowledgments

We’d like to thank Eric Allender, Allan Borodin,
Mark Braverman, Stephen Cook, and Charles Rackoff
for the useful discussions.

References

[1] S. Arora and B. Barak. Computational Complex-
ity: A Modern Approach. Cambridge University
Press, 2009.

[2] E. W. Allender. P-uniform circuit complexity. J.
Assoc. Comput. Mach., 36(4):912–928, 1989.

[3] A. Borodin, S. A. Cook, P. Dymond, L. Ruzzo,
and M. Tompa. Two applications of induc-
tive counting for complementation problems.
SICOMP: SIAM Journal on Computing, 18,
1989.

[4] S. A. Cook. Characterizations of pushdown ma-
chines in terms of time-bounded computers. J.
Assoc. Comput. Mach., 18:4–18, 1971.

[5] Ding-Zhu Du and Ker-I Ko. Theory of Computa-
tional Complexity. John Wiley and Sons, 2000.

[6] R. Impagliazzo, N. Nisan, and A. Wigderson.
Pseudorandomness for network algorithms. In
Proceedings, Symposium on Theory of Comput-
ing (STOC)’94. 1994.

[7] V. Kabanets and R. Impagliazzo. Derandomizing
polynomial identity tests means proving circuit
lower bounds. Comput. Complexity, 13(1-2):1–
46, 2004 (also STOC’03).

[8] E. Kushilevitz and N. Nisan. Communication
Complexity. Cambridge University Press, New
York, NY, USA, 1997.

[9] M. Karpinski and R. Verbeek. There is no poly-
nomial deterministic space simulation of proba-
bilistic space with a two-way random-tape gen-
erator. Inform. and Control, 67(1-3):158–162,
1985.

[10] N. Nisan. Pseudorandom generators for space-
bounded computation. Combinatorica, 12(4):
449–461, 1992 (also STOC’90).

[11] N. Nisan. On read-once vs. multiple access to
randomness in logspace. Theoret. Comput. Sci.,
107(1):135–144, 1993 (also Structure in Complex-
ity Theory’90).

[12] N. Nisan. RL ⊆ SC. Comput. Complexity, 4(1):
1–11, 1994 (also STOC’92).

[13] N. Nisan and A. Wigderson. Hardness vs. ran-
domness. J. Comput. System Sci., 49(2):149–
167, 1994 (also FOCS’88).

[14] W. L. Ruzzo. Tree-size bounded alternation. J.
Comput. System Sci., 21(2):218–235, 1980.

[15] W. L. Ruzzo. On uniform circuit complexity. J.
Comput. System Sci., 22(3):365–383, 1981.

[16] M. Saks. Randomization and derandomiza-
tion in space-bounded computation. In Proceed-
ings, Conference on Computational Complexity
(CCC), pages 128–149, 1996.

[17] H. Venkateswaran. Properties that characterize
LOGCFL. J. Comput. System Sci., 43(2):380–
404, 1991 (also STOC’87).

530

COMPUTATIONALLY LIMITED RANDOMNESS

A Additional notation and
preliminaries

Stack machines. We assume that a Stack Machine
always halts on all inputs. Here are some additional
conventions and useful definitions related to Stack Ma-
chines. We picture the stack vertically, so that sym-
bols are always pushed and pop from the top. The
height of the stack is defined to be the total number of
symbols it contains. (So the empty stack has height
0.) We call a string placed on the random (external)
tape the external string.

Definition 14(Full configuration and surface configu-
ration). A full configuration (or just configuration) of
a Stack Machine M consists of all information about
M at a given time: the state M is in, the content of
the work tape and its head, the entire content of the
stack, the positions of the input tape and the external
tape, and the current symbols on the input and ex-
ternal tapes. A surface configuration of M consists of
all these pieces of information but instead of the stack
content, it contains only the stack height and the top
symbol on the stack.

Fact 15. A Stack Machine M with space bound s
and an external tape of size 2O(s) can achieve stack
height at most 2O(s).

Proof of Fact 15. Clearly, a surface configuration as
defined above minus the stack height can be encoded
on c · s bits, for some constant c. Imagine that ev-
ery symbol ever placed on the stack is annotated with
the surface configuration minus the stack height that
caused it to be pushed on the stack. Assume that
under some input and some random string, there is a
point at which the stack height becomes 2c·s +1. This
means one annotation is repeated. But then, M will
never halt, because the computation between two suc-
cesive equal annotations will be repeated indefinitely.
This contradicts the assumption that M halts on all
inputs and random strings. ¤

By Fact 15, there are 2O(s) many surface configu-
rations. We will use C, C1, C2, . . . for surface configu-
rations, and C, C1, C2, . . . for full configurations. For
each full configuration C there is an unique surface
configuration C, and we say that C extends C. (Po-
tentially there are many full configurations that ex-
tend the same surface configuration.) For a (surface)
configuration C, head(C) denotes the position of the
external tape head in C, and height(C) denotes the
stack height in C.

The following relation was considered in [4].

Definition 16. Let M be a Stack Machine with 1
pass over the random tape. Let x be an input. For
two surface configurations C1, C2 with the same stack
height (i.e., height(C1) = height(C2)), and for a ran-
dom string r of length head(C2) − head(C1), we say
that the pair (C1, C2) is realized by r if there exist full
configurations C1 extending C1 and C2 extending C2

such that: when M is given input x, random string
r is placed on the random tape starting at position
head(C1) + 1, and M is started in configuration C1,
M eventually arrives at a configuration C2, and the
stack height never drops below the height in C1. We
say that the pair (C1, C2) is realizable if it is realized
by some r.

We say that a surface configuration C is reachable if
there exists a random string r and a full configuration
C extending C such that, if M is started in the initial
configuration with input x and random string r, M
eventually reaches C.

Note that in the above definition, for a pair of sur-
face configurations (C1, C2) it does not matter how
they are extended to C1 and C2 as long as these ex-
tensions have the same stack content.

We make the convention that every transition of a
stack machine is of exactly one of the following types:
a push, a pop, an external move in which the external
tape head moves, and an (internal) move for other all
other transitions. When the external tape is nonde-
terministic (resp. random, or advice) we also call an
external move a nondeterministic (resp. random, or
advice) move.

Pseudo-random generators against O(logi n)-
depth polynomial size circuits. Our PRGs defini-
tions are more qualitative than usual. Several param-
eters have been fixed to reduce clutter. For example,
we focus on PRGs that stretch polylogarithmic bits to
polynomial. These parameters can be adjusted in the
standard way to generalize our results. In what fol-
lows, all distinguishers are non-uniform circuits. We
denote by Un the random variable of the uniform dis-
tribution over {0, 1}n.

Definition 17(PRGs against adversaries with fixed
complexity bounds). Let 0 < ε < 1, k > 1. Let
G : {0, 1}∗ → {0, 1}∗ be a function, such that G(z)
is computable in time 2O(|z|1/k). We say that G is an
(NCi, k, ε)-pseudorandom generator if for every non-
uniform NCi circuit-family C and for sufficiently large

531

M. DAVID, P. NGUYEN, P. A. PAPAKONSTANTINOU, A. SIDIROPOULOS

|z| := n, z ∈ {0, 1}∗, where |G(z)| = 2|z|
1/k

:= m

|Pr[Cm(G(Un)) = 1]− Pr[Cm(Um) = 1]| 6 ε

where Cm ∈ C has m input bits.

B The unbounded case: proof of
Theorem 3

This theorem is proved by modifying Cook’s argu-
ment [4]. Let L be the language accepted by a ran-
domized Stack Machine M : on input x, M makes
at most one pass on any random string r (of length
2O(s)), and

x ∈ L ⇔ Prr[M accepts (x, r)] > 1/2

To show L ∈ P, we show that there is a 2O(s)-time al-
gorithm that computes the number of random strings
r that make M accept. We give a dynamic program-
ming algorithm, which builds on the one used in [4] to
compute the realizability relation. Recall the notation
of Section 2.

In what follows, we show how to compute, for every
pair of realizable surface configurations (C1, C2), the
exact number α(C1, C2) of random strings that real-
ize (C1, C2). Then, to determine acceptance of x, we
compute the sum over Cf of α(C0, Cf) weighted by
2−head(Cf), where C0 is the surface of the initial con-
figuration, and Cf are surfaces of accepting configu-
rations with different positions of the external tape
head.

To compute α, we first define a partial order relation
≺ on pairs of surface configurations, as follows:

Definition 18. For two surface configurations C1, C2,
we have C1 ≺ C2 if either of the following holds:

(i) head(C1) < head(C2); or

(ii) height(C1) < height(C2); or

(iii) (C1, C2) is realizable and (C2, C1) is not realiz-
able.

Since the original realizability relation is com-
putable in time 2O(s) by the original Cook’s algorithm
[4], so is the relation ≺. If we restrict our attention to
the set of all surface configurations with the same ex-
ternal head position and stack height, we know that
realizability is transitive, so condition (iii) above ef-
fectively removes all cycles in the realizability relation
(restricted to the same set.) This makes ≺ a partial
order relation.

For a surface configuration C let next(C) denote the
set of all possible surface configurations that can be
obtained from C. Note that if the transition deter-
mined by C is not a pop or a move on the random
tape, then next(C) consists of only one element which
is completely determined by C. On the other hand,
if the transition determined by C is either a move on
the random tape, or a pop, then next(C) consists of
two elements corresponding to the two possibilities for
the symbol on the random tape, or the symbol popped
from the stack. The next lemma provides us with the
recursion for computing the table α(C1, C2).

Lemma 19. For all surface configurations C1, we
have α(C1, C1) = 1. For all surface configurations
C1 6= C2:

• Suppose that C1 is followed by an internal move.
Let {C ′1} = next(C1). Then α(C1, C2) =
α(C ′1, C2).

• Suppose that C1 is followed by a move on the
random tape. Let {C ′1, C ′′1 } = next(C1). Then
α(C1, C2) = α(C ′1, C2) + α(C ′′1 , C2).

• Suppose that C1 is followed by a push. Let x be
the symbol that is pushed on the stack as dictated
by C1, and {C ′1} = next(C1). Then

α(C1, C2) =
∑

C3

α(C ′1, C3) · α(C4, C2).

where the sum is over all C3 such that (C ′1, C3)
is realizable and C3 is followed by a pop, and C4

is the next surface configuration of C3 where x
is the symbol popped from the stack.

Proof. The first two items are straightforward. For
the last, we can treat the surface configurations
C1, C2, C4 as full configurations whose stacks are
empty, and C ′1, C3 as full configurations whose stacks
each contains only one symbol x. The sum on the RHS
can be seen as summing over all possible first con-
figurations C4 reachable from C1 that have the same
stack height as C1. Such configuration C4 must be ob-
tained from C3 by a pop where the popped symbol is
x. Because all configurations in the partial computa-
tion from C1 to C4 (except for C1 and C4 themselves)
have stack height larger than that of C1 and C4, the
total number of random strings that realize (C1, C4)
in this way is precisely α(C ′1, C3). ¤

The following captures the interplay between the
relation ≺ and the recursive formulas computing α.

Lemma 20. Let C1, C2 be two surface configurations
such that C1 is reachable, and some entry of the form

532

COMPUTATIONALLY LIMITED RANDOMNESS

α(C1, ·) depends on an entry of the form (C2, ·) in the
formulas from Lemma 19. Then C1 ≺ C2.

Proof of Lemma 20. Observe that (C1, ·) never
depends on (C2, ·) if either head(C1) > head(C2)
or height(C1) > height(C2). Moreover, if either
head(C1) < head(C2) or height(C1) < height(C2), then
C1 ≺ C2, so there is nothing to prove.

The remaining interesting case is where an en-
try (C1, ·) depends on an entry (C2, ·), and we have
head(C1) = head(C2) and height(C1) = height(C2).
Clearly, this happens when either C1 is followed by a
move transition directly yielding C2, or C1 is followed
by a push yielding C ′1, (C ′1, C

′
2) is realizable, and C ′2

is followed by a pop transition yielding C2. In either
case, (C1, C2) is realizable.

Assume that C1 6≺ C2. By the discussion above,
this can only happen if (C2, C1) is also realizable. But
recall that C1 is reachable. Then, M can get into an
infinite loop by first reaching C1, then repeating the
computation between C1 and C2 indefinitely. This
contradicts the assumption it halts on every input and
every random string. ¤

Proof of Theorem 3. We compute α(·, ·) row by row,
as follows. Below, a linearization of a partial order is
a total order that respects the partial order. Let Γ be
the set of all surface configurations. We write Γi,j for
the set of surface configurations C with head(C) = i
and height(C) = j.

Initialize α(·, ·) ← 0
Compute (Γ,≺)
For i ← 2O(s) down to 0

For j ← 2O(s) down to 0
Let (Γi,j , C) be a linearization of (Γi,j ,≺)
For C1 in Γi,j in reverse order of C

For all C2

compute α(C1, C2) as in Lemma 19

Correctness follows from Lemma 20. By inspection,
the running time is seen to be 2O(s). ¤

C Randomness compilers:
omitted proofs

The proof of Theorem 6 is the most tech-
nically involved one. The non-trivial inclusion
BPPdL

[
2logi n

]
⊆ P+BPNCi+1 relies on (i) the Time

Compression Lemma, (ii) adaptation of the results in
[14,15], and by observing that the constructions in the

modified proofs in [14,15] can be efficiently computed.

We first present the Time Compression Lemma.

Definition 21. A log-space randomized Stack Ma-
chine with advice is a randomized Stack Machine with
three read-only tapes. (i) its input of length n, (ii)
a nO(1)-long random tape, and (iii) an advice tape
whose content is computed in polynomial time on in-
put 1n.

We consider randomized Stack Machines with ad-
vice that are log-space bounded. As usual we only
bound by p the number of passes over the random
tape (in particular, there is no bound on the number
of passes over the advice tape). Below, we restate the
Time Compression Lemma.

Lemma 13. Let S be a logarithmic space randomized
Stack Machine that makes p passes over its random
tape. Then, there exists a randomized Stack Machine
with advice Sadv such that L(Sadv) = L(S) and

• Sadv makes p passes over its random tape, and
• Sadv runs in time nO(1)p.

Proof. It suffices to show that the computation be-
tween two successive input head-moves can be “com-
pressed” to be polynomially long by the use of a P-
uniform advice. Fix two arbitrary successive head-
moves. Partition the computation γ between these
head-moves in two phases. Suppose that immediately
after reading the input symbol the stack level is at
l. In phase 1, γ reaches its lowest stack height lmin.
Let γ1 be the computation subsequence of γ from the
beginning until we reach the lowest stack level and
just before we start going upwards (pushing symbols
to the stack). Define γ2 to be the complement of γ1

wrt γ. Hence, in γ2 the computation reaches its fi-
nal stack height llast. By a simple counting argument
we have that the stack height of M is polynomial,
and therefore the stack height in γ1 gets decreased at
most polynomially lower (from l to lmin) and in γ2 gets
increased po! lynomially higher (from lmin to llast).
We construct M ′ simulating M using the following P-
uniform advice. The advice is a function from every
surface configuration to the set of surface configura-
tion together with two special symbols {↑, ↓}. For
every surface configuration σ define exactly one of the
three pairs:

1. If starting from σ we can return to the same
stack level without ever going below the ini-
tial stack-level (and without a head-move on the

533

M. DAVID, P. NGUYEN, P. A. PAPAKONSTANTINOU, A. SIDIROPOULOS

input) then consider the configuration after a
maximally-long computation such that when M
returns to the same stack-level the surface con-
figuration is σ′. Then, the corresponding pair is
(σ, σ′).

2. If starting from σ we move at least one level up-
wards without ever returning to the initial stack-
level (and without moving the head) then the
pair is (σ, ↑).

3. Else, the pair is (σ, ↓).

Obviously, this is a well-defined function and we say
that a surface configuration σ is of type (1), (2) or (3)
respectively. Furthermore, using a variation of Cook’s
dynamic programming algorithm we have that we can
compute this advice in polynomial time.

Between two successive head-moves M ′ simulates
M by reading the advice tape and updating its surface
configuration appropriately. In case of (1) it updates
the worktape, the state and the top stack symbol. In
case of (2) and (3) it simulates M for one step.

We refer to a simulation step as the computation
sequence of M ′ in which M ′ reads the non-uniform
tape, compares it to the current surface configuration
and updates the surface configuration appropriately.
In what follows the reader is reminded that γ1, γ2 is
the computation of M which is simulated by the ma-
chine M ′, and that M ′ is given the non-uniform ad-
vice. We say that a function from the integers is 2-
monotonically increasing (decreasing) if it is strictly
increasing (decreasing) for two successive integers; i.e.
for the function h : Z+ → Z+, h(n) 6 h(n + 1) and
h(n) < h(n + 2).

Claim 22. In the simulation of γ1 the stack height
in M ′ is 2-monotonically decreasing. Hence, this sim-
ulation takes at most 2(l − lmin) simulation steps of
M ′.

Proof. Consider two successive stack levels l1 > l2 :=
l1 − 1 in γ1 and consider the first time M ′ gets to l1.
The current surface configuration σ1 cannot be of type
(2). Suppose that σ1 is of type (2). Since we are in γ1

we know that the stack level gets as low as lmin. If σ1

is of type (2) then we know that during γ1 the stack
level will get back to l1. Hence, σ1 should instead be
of type (1).

Hence, σ1 is either of type (1) or of type (3). If it is
of type (3) there is nothing left to show. Suppose σ1

is of type (1). The fact that the next surface config-
uration in the simulation cannot be of the same type

(1) follows by the maximality in the definition of type
(1). ¤

Similarly, we show that in the simulation of γ2 the
stack height in M ′ is 2-monotonically increasing. ¤

Now, we are ready to give the proof of Theorem 6.

Proof of Theorem 6. P+BPNCi ⊆ BPPdL
[
2O(logi n)

]

is the easy inclusion. Let L ∈ P+BPNCi and M be
the polytime transducer that on input x computes Cx.
Construct a Stack Machine M ′ that on input 〈1|x|, k〉
works as follows: use Cook’s algorithm [4] to simu-
late M so as to obtain the k-th output bit from the
description of Cx. Note that each bit is computed
without accessing the random tape. M ′ evaluates Cx

on the provided randomness in the usual way (e.g.
[15]) by a depth first search. Note that if the de-
scription of the circuit were given through oracle ac-
cess, the evaluation procedure would have taken time
2O(logi n). Hence, M ′ makes at most 2O(logi n) rever-
sals on the random tape and the accepting probability
is the same as that of Cx.

To show BPPdL
[
2O(logi n)

]
⊆ P+BPNCi+1 we rely

on Lemma 13 and on [14,15].

Let M ′ be a SM witnessing L ∈ BPPdL
[
2O(logi n)

]
,

for an arbitrary such L. We will show how to construct
a polytime M that on input x outputs a circuit Cx

with the same accepting probability as M ′.

There exists M ′′ extending M ′ as follows: M ′′ is
M ′ as described in the proof of Lemma 13; i.e. it
has an additional read-only advice tape and it works
as specified in the proof of Lemma 13. Therefore,
on input x given that the extra-tape contains this
advice, M ′′ computes identically to M ′. Syntacti-
cally, M ′′ is a SM with three read-only input tapes.
When the 3rd tape contains the appropriate advice,
M ′′ is a SM that works in space O(log n) and in time
2O(logi n)nO(1) = 2O(logi n), i > 1. We assert the exis-
tence of an equivalent ATM MATM that works in space
O(log n) and in time O(logi+1 n). It is straightforward
to verify that all equivalences between SMs and ATMs
in the constructions of Theorem 5 part 3 [15] p.379
(i.e. Theorem 2 [14] pp. 227-231), and Corollary 3
(c,d,e) [15] pp. 379-380 are the same when instead
of one we have three inputs tapes. Hence, syntacti-
cally given the 3-input tape SM M ′′ we have an ATM
MATM with 3-input tapes that computes identically.
The constant description of MATM can be hardwired

534

COMPUTATIONALLY LIMITED RANDOMNESS

in a (polytime) TM M . Although MATM and M ′′

accept the same inputs, we are only interested in the
computations where their 3rd tape contains the advice
of Lemma 13; in which case M ′′ computes the same
as M ′. Intuitively, one can blur the distinction be-
tween space-time bounded ATMs and size-depth fam-
ilies of combinatorial circuits, and moreover we ob-
serve that given the description of the ATM we can
construct efficiently the circuit for the corresponding
input length. That is, the description of the polytime
M should be evident through the observation that
the construction in the proof of Theorem 3 [15] p.375
is computable in time 2O(S(n))O(T (n))nO(1) = nO(1),
where S(n) = O(log n) and T (n) = O(logi+1 n) is the
space and the time of MATM. For completeness we
briefly review this construction below.

1. On input x use (the modified) Cook’s algorithm
to compute the advice of Lemma 13, which is a
function of n = |x|.

2. M has hardwired the description of the ATM
MATM and it computes the description of a cir-
cuit Cx. In this circuit, both the input x and
the advice are hardwired using the constant 0/1
gates of the circuit.

3. The circuit gates are labelled with (α, t), where
α is the configuration of the ATM, and t is
the time, where the output gates has label
(αinitial, 0), where αinitial is the starting config-
uration. Configurations of type ∀, ∃ correspond
to gates ∧,∨, we connect gates (α, t), (β, t + 1)
if α yields β. The only exceptions to this rule
is when the time and the space becomes bigger

than T (n), S(n) in which case we hardwire the
gates to 0, and when we have configurations ac-
cessing the input in which case instead of a gate
we have an input gate.

Step (1) takes polynomial time. The construction
of the circuit in Step 3, also takes polynomial time
(2O(S(n))O(T (n))nO(1)). ¤

Derandomization of BPNC using PRGs =⇒
derandomization of BPPdL

[
2logO(1) n

]
. Theorem 6

implies, through a standard textbook argument (see
e.g. [1] the derandomization of BPPdL

[
npolylogn

]
:=

BPPdL
[
nlogO(1) n

]
using PRGs that derandomize

BPNC. For this we rely on PRGs introduced in Defi-
nition 17.

Corollary 23. Let k, i > 1. Suppose that there ex-
ists a (NCi+1, k, 1

7)-PRG. Then, BPPdL
[
2O(logi n)

]
⊆

Time
(
2O(logk n)

)
.

Hence, if there exists a k for all i’s then
BPPdL

[
npolylogn

] ⊆ Time
(
2O(logk n)

)
, whereas if k

is a function of i then BPPdL
[
npolylogn

] ⊆ QuasiP,

where BPPdL
[
npolylogn

]
:= ∪k>0BPPdL

[
2logk n

]
and

QuasiP := ∪k>0Time
(
2logk n

)
.

Remark 24. We do not know how to show, without
the use of PRGs, that the derandomization of BPNC
implies the derandomization of BPPdL

[
npolylogn

]
.

535

