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Abstract: A polynomial identity testing algorithm must determine whether an input polynomial (given for
instance by an arithmetic circuit) is identically equal to 0. In this paper, we show that a deterministic black-box
identity testing algorithm for (high-degree) univariate polynomials would imply a lower bound on the arithmetic
complexity of the permanent. The lower bounds that are known to follow from derandomization of (low-degree)
multivariate identity testing are weaker.
To obtain a lower bound for the permanent it would be sufficient to derandomize identity testing for polynomials
of a very specific norm: sums of products of sparse polynomials with sparse coefficients. This observation leads
to new versions of the Shub-Smale τ -conjecture on integer roots of univariate polynomials. In particular, we
show that a lower bound for the permanent would follow if one could give a polynomial upper bound on the
number of real roots of sums of products of sparse polynomials (Descartes’ rule of signs gives such a bound for
sparse polynomials and products thereof). In fact the same lower bound would follow even if one could only
prove a slightly superpolynomial upper bound on the number of real roots. This is a consequence of a new result
on reduction to depth 4 for arithmetic circuits which we establish in a companion paper. We also show that an
even weaker bound on the number of real roots would suffice to obtain a lower bound on the size of depth 4
circuits computing the permanent.
These results suggest the intriguing possibility that tools from real analysis might be brought to bear on a
longstanding open problem: what is the arithmetic complexity of the permanent polynomial?

Keywords: algebraic complexity, arithmetic circuits, permanent, lower bounds, polynomial identity testing,
sparse polynomials, Descarte’s rule.

1 Introduction

A polynomial identity testing algorithm must de-
termine whether an input polynomial (given for in-
stance by an arithmetic circuit) is identically equal to
0. If randomization is allowed, this problem can be
solved efficiently thanks to the well-known Schwarz-
Zippel lemma. Following Kabanets and Impagliazzo
[12], it has become increasingly clear in recent years
that efficient deterministic algorithms for polynomial
identity testing would imply strong lower bounds (the
connection between arithmetic circuit lower bounds
and derandomization of polynomial identity testing
was foreshadowed in a 30 years old paper by Heintz
and Schnorr [1]). This approach to lower bounds was
advocated in particular by Agrawal [1].
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In this paper we show that an efficient black-box
deterministic identity testing algorithm for univari-
ate polynomials of a very specific form (namely, sums
of products of sparse polynomials with sparse coeffi-
cients) would imply that the permanent does not be-
long to VP0. This is the class of polynomial fami-
lies computable by constant-free arithmetic circuits of
polynomial size and polynomially bounded formal de-
gree. It plays roughly the same role for constant-free
circuits as the class VP in Valiant’s algebraic version
of the P versus NP problem (in Valiant’s original set-
ting, arithmetic circuits can use arbitrary constants
from the underlying field [9,28]).

Compared to [1,12], one originality of the present
paper is to show that lower bound for multivariate
polynomials such as the permanent would follow from
univariate identity testing algorithms. Most of the
recent work on identity testing (surveyed in [2,25]) has
been focused on low-degree multivariate polynomials.1

Nevertheless, we believe that the univariate approach

1Two exceptions are [7,17].
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is worth exploring for at least two reasons.

First, it would lead to stronger lower bounds. In-
deed, we show that black-box derandomization of
identity testing implies a lower bound for the perma-
nent, whereas [1,Section 6.2] would only yield lower
bounds for polynomials with coefficients computable
in PSPACE (this complexity class was independently
defined in [20], where it is called VPSPACE; further re-
sults on this class and other space-bounded classes in
Valiant’s model can be found in [19,22,24]). The lower
bound obtained from [12] would be even weaker, but
could be obtained from a non-black-box identity test-
ing algorithm.

A second, possibly even more important advantage
of the univariate approach is that it leads to new
(and hopefully more tractable) versions of Shub and
Smale’s τ -conjecture. According to the τ -conjecture,
the number of integer roots of a univariate polynomial
f ∈ Z[X] should be bounded by a polynomial function
of its arithmetic circuit size (the inputs to the circuit
are the constant 1, or the variable X). It was shown
by Bürgisser [10] that the τ -conjecture implies a lower
bound for the permanent. Our main “hardness from
derandomization” result can be viewed as an improve-
ment of Bürgisser’s result. Indeed, it follows immedi-
ately from our result that to obtain a lower bound for
the permanent, one just has to bound the number of
integer roots for sums of products of sparse polynomi-
als with sparse coefficients (rather than for arbitrary
arithmetic circuits). Our strongest version of the τ -
conjecture raises the intriguing possibility that tools
from real analysis might be brought to bear on this
problem (a bound on the number of real roots of a
polynomial is a fortiori a bound on its number of in-
teger roots). It is known that this approach cannot
work for the original τ -conjecture because the num-
ber of real roots of a univariate polynomial can grow
exponentially as a function of its arithmetic circuit
size: Chebyshev polynomials provide such an exam-
ple [27]. A similar example was provided earlier by
Borodin and Cook [8] (but they did not provide an
analysis of the size of constants used by the corre-
sponding arithmetic circuit). We conjecture that this
behavior is not possible for sums of products of sparse
polynomials.

1.1 Main ideas

A hitting set H for a set F of polynomials is a (fi-
nite) set of points such that there exists for any non-
identically zero polynomial f ∈ F at least one point

a ∈ H such that f(a) 6= 0. Hitting sets are some-
times called “correct test sequences” [11]. It is well-
known that deterministic constructions of hitting sets
and black-box deterministic identity testing are two
equivalent problems: any hitting set for F yields an
obvious black-box identity testing algorithm (declare
that f ≡ 0 iff f evaluates to 0 on all the points of H);
conversely, assuming that F contains the identically
zero polynomial, the set of points queried by a black
box algorithm on the input f ≡ 0 must be a hitting
set for F .

The connection between black-box identity testing
and lower bounds is especially apparent for univariate
polynomials [11]. Namely, let H be a hitting set for
F . The polynomial

P =
∏

a∈H
(X − a) (1)

cannot belong to F since it is nonzero and vanishes
on H. The same remark applies to all nonzero multi-
ples of P . If F is viewed as some kind of “complex-
ity class”, we have therefore obtained a lower bound
against F by exhibiting a polynomial P which does
not belong to F .

In the low-degree multivariate setting the polyno-
mial which plays the same role is not given by such
a simple formula as (1). Its coefficients can be ob-
tained by solving an exponential size system of linear
equations. This can be done in PSPACE, explaining
why the lower bound in [1] would be for polynomials
with coefficients computable in PSPACE. By contrast
one can show that the coefficients in exponential-size
products such as (1) are in the counting hierarchy, a
subclass of PSPACE. This is the reason why we can ob-
tain a lower bound for a polynomial in VNP (namely,
the permanent) rather than in VPSPACE as in [1, Sec-
tion 6.2].

It remains to explain why we only have to deran-
domize identity testing for sums of products of sparse
polynomials in order to obtain a lower bound. This
class of polynomials comes into the picture thanks to
the recent depth reduction theorem of Agrawal and
Vinay [3]: any multilinear polynomial in n variables
which has an arithmetic circuit of size 2o(n) also has
a depth-4 arithmetic circuit of size 2o(n). Sums of
products of sparse polynomials are very far from being
multilinear (they are univariate polynomials of possi-
bly very high degree). They are nonetheless connected
to depth-4 circuits by a simple transformation: if we
replace the input variables in a depth-4 circuit by pow-
ers of a single variable X, we obtain a SPS polynomial
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f(X).

At this point, we should stress that we do not claim
that univariate arithmetic circuits can be efficiently
converted into SPS polynomials (this would be a kind
of high-degree analogue of Agrawal and Vinay’s depth
reduction theorem). On the contrary, we conjecture
that such a transformation is in general impossible,
and that Chebyshev polynomials provide a counterex-
ample (because, as pointed out earlier, they have too
many real roots). Nevertheless, to obtain our results
we represent efficiently (in Theorem 6) certain expo-
nential size products by sums of products of sparse
polynomials. This is possible only under the assump-
tion that the permanent is easy. This assumption (and
the resulting representation) is of course very likely to
be false, but there is no harm in making it since the
ultimate goal is a proof by contradiction that the per-
manent is hard.

1.2 Organization of the paper

In the next section we present our model of compu-
tation for the permanent (constant-free arithmetic cir-
cuits) as well as the corresponding complexity classes.
Then we recall some definitions and results about
the counting hierarchy (as explained above, this class
plays a crucial role in the derivation of a lower bound
for the permanent). Finally, we present the result
by Agrawal and Vinay on reduction to depth four for
arithmetic circuits, as well as a new result along the
same lines [15].

In Section 3 we define precisely the notion of
sum of products of sparse polynomials with sparse
coefficients, and explain the connection to depth-4
circuits.

In Section 4 we present the notion of algebraic num-
ber generator. This is basically just a sequence of ef-
ficiently computable polynomials in Z[X]. We wish
to use them to construct hitting sets, by taking the
sets of all roots of the polynomials in an initial seg-
ment of this sequence. In Section 5 we prove our main
result: if a polynomial-size initial segment provides a
hitting set against sums of products of sparse poly-
nomials with sparse coefficients, then the permanent
is not in VP0. In fact, using our new result on re-
duction to depth four [15] we can show that the same
lower bound would follow even if the hitting sets are
of slightly superpolynomial size.

In Section 6 we present three new versions of the

τ -conjecture, including a “real τ -conjecture”. A proof
of any of these conjectures would yield a lower bound
for the permanent. We show that a fairly weak ver-
sion of the real τ -conjecture would suffice to obtain a
lower bound on the size of depth 4 circuits computing
the permanent. We conclude the paper with a few
remarks on some tools that might be useful to attack
these conjectures.

2 Preliminaries

2.1 Complexity of arithmetic
computations

We recall that an arithmetic circuit contains ad-
dition, subtraction and multiplication gates. We usu-
ally assume that these gates have arity 2, except when
dealing with constant-depth circuits as in e.g. Theo-
rem 3. The input gates are labelled by variables or
constants. A circuit where the only constants are
from the set {0,−1, 1} is said to be constant-free
(in such a circuit one can even assume that −1 is
the only constant, and that there are no subtraction
gates). A constant-free circuit represents a polynomial
in Z[X1, . . . , Xn], where X1, . . . , Xn are the variables
labelling the input gates.

In this paper we investigate the complexity of com-
puting the permanent polynomial with constant-free
arithmetic circuits. This model of computation was
systematically studied by Malod [23]. In particular,
he defined a class VP0 of polynomial families that
are “easy to compute” by constant-free arithmetic cir-
cuits. First we need to recall the notion of formal
degree:

(i) The formal degree of an input gate is equal to 1.
(ii) The formal degree of an addition or subtraction

gate is the maximum of the formal degrees of
its two incoming gates, and the formal degree
of a multiplication gate is the sum of these two
formal degrees.

Finally, the formal degree of a circuit is equal to
the formal degree of its output gate. This is obviously
an upper bound on the degree of the polynomial com-
puted by the circuit.

Definition 1 A sequence (fn) of polynomials belongs
to VP0 if there exists a polynomial p(n) and a sequence
(Cn) of constant-free arithmetic circuits such that Cn

computes fn and is of size (number of gates) and for-
mal degree at most p(n).

311



P. KOIRAN

The size constraint implies in particular that fn de-
pends on polynomially many variables. The constraint
on the formal degree forbids the computation of poly-
nomials of high degree such as e.g. X2n

; it also forbids
the computation of large constants such as 22n

.

A central question in the constant-free setting is
whether the permanent family belongs to VP0. A re-
lated question is whether τ(PERn), the constant-free
arithmetic circuit of the n × n permanent, is poly-
nomially bounded in n. Obviously, if PER ∈ VP0

then τ(PERn) is polynomially bounded in n, but (as
pointed out in e.g. [9]) it is not clear whether the con-
verse holds true. In this paper we focus on the first
question (see section [7] for further comments).

Another important complexity class in the
constant-free setting is the class VNP0 of easily
definable families. It is obtained from VP0 in the
natural way:

Definition 2 A sequence (fn(X1, . . . , Xu(n))) belongs
to VNP0 if there exists a sequence (gn(X1, . . . , Xv(n)))
in VP0 such that fn(X1, . . . , Xu(n)) is equal to:

∑

ε∈{0,1}v(n)−u(n)

gn(X1, . . . , Xu(n), ε).

For instance, the permanent family is in VNP0. If this
family in fact belongs to VP0 then the same is true
of every VNP0 family up to constant multiplicative
factors. Indeed, we have the following result (Theorem
4.3 of [16]):

Theorem 1 Assume that the permanent family is in
VP0. For every family (fn) in VNP0 there exists a
polynomially bounded function p(n) such that the fam-
ily (2p(n)fn) is in VP0.

The occurence of the factor 2p(n) in this theorem
is due to the fact that the completeness proof of the
permanent uses the constant 1/2. As in [16] one could
avoid this factor by working with the Hamiltonian
polynomial instead of the permanent.

The next lemma is Valiant’s criterion. The present
formulation is basically that of [16, Theorem 2.3] but
this lemma essentially goes back to [28](see also [9,
Proposition 2.20]).

Lemma 1(Valiant’s criterion) Suppose that n 7→
p(n) is a polynomially bounded function, and that f :
N× N→ Z is such that the map 1n0j 7→ f(j, n) is in
the complexity class GapP/poly. Let fn(X1, . . . , Xp(n))

be the multilinear polynomial
∑

j∈{0,1}p(n)

f(j, n)Xj1
1 · · ·Xjp(n)

p(n) , (2)

where jk denotes the bit of j of weight 2k−1. Then
the polynomial family (fn) is in VNP0.

Note that we use a unary encoding for n but a binary
encoding for j. We recall the definition of GapP/poly
(and a few other boolean complexity classes) in Sec-
tion 2.2. In this paper we only need to apply Valiant’s
criterion to boolean-valued functions (f(j, n) ∈ {0, 1}
for all j and n) such that the map 1n0j 7→ f(j, n) is
in P/poly.

2.2 The counting hierarchy

A connection between the counting hierarchy and
algebraic complexity theory was discovered in [4].
This connection was further explored in [10] and [18].
For instance, it was shown in [10] that the polynomials∏2n

i=0(X − i) have polynomial-size circuits if the the
same is true for the permanent family.

We first recall the definition of the two counting
classes ]P and GapP.

Definition 3 The class ]P is the set of functions f :
{0, 1}∗ → N such that there exist a language A ∈ P
and a polynomial p(n) satisfying

f(x) = #{y ∈ {0, 1}p(|x|) : (x, y) ∈ A}.
A function f : {0, 1}∗ → Z is in GapP if it is the
difference of two ]P functions.

The counting hierarchy introduced in [29] is a class of
languages rather than functions. It is defined via the
majority operator C as follows.

Definition 4 If K is a complexity class, the class
C.K is the set of languages A such that there exist a
language B ∈ K and a polynomial p(n) satisfying the
following condition: x ∈ A iff

#{y ∈ {0, 1}p(|x|) : (x, y) ∈ B} > 2p(|x|)−1.

The i-th level CiP of the counting hierarchy is defined
recursively by C0P = P and Ci+1P = C.CiP. The
counting hierarchy CH is the union of the levels CiP
for all i > 0.

The counting hierarchy contains all the polynomial
hierarchy PH and is contained in PSPACE.
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The arithmetic circuit classes defined in Section 2.1
are nonuniform. As a result, we will actually work
with nonuniform versions of the counting classes de-
fined above. We use the standard Karp-Lipton nota-
tion [13]:

Definition 5 If K is a complexity class, the class
K/poly is the set of languages A such that there exist
a language B ∈ K, a polynomial p(n) and a family
(an)n>0 of words (the ”advice”) satisfying

• for all n > 0, |an| 6 p(n);
• for all word x, x ∈ A ⇐⇒ (x, a(|x|)) ∈ B.

Note that the advice only depends on the size of x.

The next lemma [10, Lemmas 2.6 and 2.13] pro-
vides a first link between arithmetic complexity and
the counting hierarchy.

Lemma 2 If the permanent family is in VP0 then
CH/poly = P/poly.

In particular, Lemma 2 was used to show that large
sums and products are computable in the counting
hierarchy [10, Theorem 3.10].

In the remainder of this section we summarize some
relevant results from [18].

Definition 6 Let (fn) be a family of polynomials in
Z[X] such that the degree of fn and the bitsize of its
coefficients are smaller than 2p(n) for some polynomial
p.

The coefficient sequence of (fn) is the (double) se-
quence of integers a(n, α) defined by the relation

fn(x) =
2p(n)−1∑

α=0

a(n, α)xα.

The coefficient sequence is said to be de-
finable in CH/poly if the language Bit(a) =
{(1n, α, j, b); the j-th bit of a(n, α) is equal to b} is
in CH/poly.

Note that in the above definition of Bit(a), the input
n is given in unary but α and j are in binary (this is
the same convention as in [18]; by contrast, in [10] all
inputs are in binary).

Definition 7 Let (fn) be a family of polynomials as in
Definition 6. We say that this family can be evaluated
in CH/poly if the language of all tuples (1n, i, j, b) such
that 0 6 i < 2p(n) and the j-th bit of fn(i) is equal to
b is in CH/poly.

The following result establishes a connection be-
tween these two definitions. It is stated (and proved)
in the proof of the main theorem (Theorem 3.5) of
[18].

Theorem 2 Let (fn) be a family of polynomials as
in Definition 6. If (fn) can be evaluated in CH/poly
at integer points, the coefficient sequence of (fn) is
definable in CH/poly.

In [18] we actually prove a multivariate version of
this result, but the univariate case will be sufficient
for our purposes.

2.3 Sums of products of dense
polynomials

Agrawal and Vinay have shown that polynomials of
degree d = O(m) in m variables which admit nontriv-
ial arithmetic circuits also admit nontrivial arithmetic
circuits of depth four [3]. Here, “nontrivial” means of
size 2o(d+d log m

d ). The resulting depth 4 circuits are∑ ∏∑ ∏
arithmetic formulas: the output gate (at

depth 4) and the gates at depth 2 are addition gates,
and the other gates are multiplication gates. This
theorem shows that for problems such as arithmetic
circuit lower bounds or black-box derandomization of
identity testing, the case of depth four circuits is in a
certain sense the general case.

We will need to apply reduction to depth four to
multilinear polynomials only. In this case their result
(Corollary 2.5 in [3]) reads as follows:

Theorem 3 (Reduction to depth four) A multilin-
ear polynomial in m variables which has an arithmetic
circuit of size 2o(m) also has a depth 4 arithmetic cir-
cuit of size 2o(m).

But what if we start from arithmetic circuits of size
smaller than 2o(m) (for instance, of size polynomial
in m) ? It is reasonable to expect that the size of
the corresponding depth four circuits will be reduced
accordingly, but such a result cannot be found in [3].
We can however prove the following result [15].

Theorem 4 Let (fn) be a VP0 family of polynomi-
als of degree dn = deg(fn). This family can be com-
puted by a family (Γn) of depth four circuits with
nO(log dn) addition gates and nO(

√
dn log dn) multiplica-

tion gates. The family (fn) can also be computed by a
family (Fn) of depth four arithmetic formulas of size
nO(

√
dn log dn). The inputs to Γn and Fn are variables
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of fn or relative integers of polynomial bit size; their
multiplication gates are of fan-in O(

√
dn).

For instance, if the permanent is in VP0 it can be
computed by depth four arithmetic formulas of size
nO(

√
n log n). Compared to [3], there are mainly two

new elements in Theorem 4:

(i) The size bounds for the depth-four circuits (Γn)
and (Fn).

(ii) The bit size bound for the inputs of these cir-
cuits.

Our main results rely on these two new elements. In
particular, we use (i) to show that constructing hitting
sets of slightly superpolynomial size will still imply
that the permanent is not in VP0. To the author’s
knowledge, an analysis of the size of constants created
in the depth-reduction procedure of [3] has not been
carried out yet.

We can formulate Theorem 4 in more traditional
mathematical language.

Corollary 1 Let (fn) be a VP0 family of polyno-
mials of degree dn = deg(fn). Each fn can be rep-
resented by an expression of the form

∑k
i=1

∏m
j=1 fij

where k = nO(
√

dn log dn) and m = O(
√

dn). The
fij are polynomials of degree O(

√
dn) and their co-

efficients are relative integers of polynomial bit size.
Moreover, the sum of the number of monomials in all
the fij is nO(

√
dn log dn), and there are only nO(log dn)

distinct fij.

Proof Sketch. Each multiplication gate at depth 1 in
the depth four circuit of Theorem 4 computes a mono-
mial. Each addition gate at depth 2 computes a fij .
A multiplication gate at depth 3 computes an expres-
sion of the form

∏
j fij . The output gate computes

the final sum.

In fact, several multiplication gates at depth 1 may
contribute to the same monomial of a fij and the
monomial will be obtained as the sum of the outputs
of these multiplication gates.2 Taking this sum pre-
serves the polynomial size bound on coefficients since
there are only nO(

√
dn log dn) multiplication gates. ¤

2This is bound to happen since as a polynomial of degree

O(
√

dn) in nO(1) variables fij can have at most nO(
√

dn) mono-
mials, but there are many more multiplication gates.

A polynomial is sparse if it has few monomials com-
pared to the maximal number of monomials possible
given its degree and number of variables (recall that
for a polynomial in n variables of degree d, this num-
ber is

(
n+d

d

)
). There is no reason for the fij to be

sparse in general (but they have few terms compared
to the maximum possible for fn). As explained in the
next section, if we replace the variables of the fij by a
quickly growing sequence of powers of a single variable
X, we obtain truly sparse univariate polynomials.

3 Sums of products of sparse
polynomials

A sums of products of sparse polynomials is an ex-
pression of the form

∑
i

∏
j fij where each fij ∈ Z[X]

is a sparse univariate polynomial. Here “sparse”
means as usual that we only represent the nonzero
monomials of each fij . As a result one can represent
concisely polynomials of very high degree. We define
the size of such an expression as the sum of the num-
ber of monomials in all the fij . Note that this measure
of size does not take into account the size of the co-
efficients of the fij , or their degrees. These relevant
parameters are taken into account in the following def-
inition.

Definition 8 We denote by SPSs,e the set of all
polynomials in Z[X] which can be represented by an
expression of the form

∑
i

∏
j fij so that:

• The size of the expression as defined above is at
most s.

• Each coefficient of each fij can be written as
the difference of two nonnegative integers with
at most s nonzero digits in their binary repre-
sentations.

• These coefficients are of absolute value at most
2e, and the fij are of degree at most e.

Remark 1 The polynomials fij in this definition
can be thought of as ”sparse polynomial with sparse
coefficients”. The integer s serves as a sparsity param-
eter for the number of monomials as well as for the
number of digits in their coefficients. A typical choice
for these parameters is s = 2o(n) and e = 2O(n), where
n represents an input size (see for instance Theorem
6 in Section 5).

We will show in Section 5 that constructing poly-
nomial size hitting sets for sums of products of sparse
polynomials implies the lower bound PER6∈VP0. Here
“polynomial size” means polynomial in s + log e. It
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is quite natural to insist on a size bound which is
polynomial in s and log e: s is an arithmetic circuit
size bound, and log e can also be interpreted as an
arithmetic cost since each power xα in an fij can be
computed from x in O(log e) operations by repeated
squaring. Likewise, we can write each coefficient of
each fij as the difference of two nonnegative integers
as in Definition 8, and each of the 6 s powers of 2 oc-
curing in a nonnegative integer can be computed from
the constant 2 in O(log e) operations. Each coefficient
can therefore be computed in O(s log e) operations.
As a result, a polynomial in SPSs,e can be evaluated
from the constant 1 and the variable X in a number of
arithmetic operations which is polynomial in s+log e.

The size of a SPS polynomial as we have defined it
is essentially the size of a depth three arithmetic cir-
cuit (or more precisely of a depth three arithmetic for-
mula) computing the polynomial. In this depth three
formula each input gate carries a monomial; each addi-
tion gate at level 1 computes a fij ; each multiplication
gate at level 2 computes a product of the form

∏
j fij ;

and the output gate at level 3 computes the final sum.

We can further refine this representation of SPS
polynomials by arithmetic formulas. Namely, instead
of viewing the monomial aXβ as an atomic object
which is fed to an input gate, we can decompose it as
a sum of terms of the form ±2αXβ ; and each term can
be further decomposed as a product of factors of the
form ±22i

and X2j

. The resulting object is a depth
four formula where each input gate carries an expres-
sion of the form ±22i

or x2j

(note the symmetry be-
tween variables and constants in this representation).
This connection between depth four formulas and SPS
polynomials plays a crucial role in our results. In par-
ticular, we will use the following result in Section 5.

Proposition 1 Let (fn(x, z)) be a VP0 family of mul-
tilinear polynomials, with x and z two tuples of vari-
ables of length c · n each (for some constant c). We
define a univariate polynomial f ′n(x) from fn by the
following substitution: f ′n(x) is equal to

fn(x20
, x21

, . . . , x2c·n−1
, 220

, . . . , 22c·n−1
). (3)

The polynomials f ′n belong to SPSs,e where s =
nO(

√
n log n) and e = 2O(n).

More precisely, each f ′n can be represented by an
expression of the form

∑k
i=1

∏m
j=1 f ′ij where k =

nO(
√

n log n) and m = O(
√

n). The f ′ij are polynomi-
als of degree 2O(n) and have at most nO(

√
n) nonzero

monomials. Each coefficient of a monomial can be

written as the difference of two non-negative integers
of bit size 2O(n) with at most nO(

√
n) nonzero digits.

Moreover, the sum of the number of monomials in all
the f ′ij is nO(

√
n log n), and there are only nO(log n) dis-

tinct f ′ij.

ProofSketch. This is a fairly straightforward con-
sequence of Corollary 1. In particular, we have at
most nO(

√
n) monomials in f ′ij because this is also an

upper bound on the number of monomials in the cor-
responding polynomials fij of Corollary 1. The effect
of multiplication by the powers of two in (3) is to shift
the coefficients of the fij without increasing their bit
size, and we need to add (and subtract) nO(

√
n) shifted

coefficients to obtain a coefficient of a f ′ij . ¤

4 Algebraic number generators

As explained in Section 1.2, we wish to construct
hitting sets by taking the sets of all roots of the poly-
nomials in an initial segment of an efficiently com-
putable sequence of polynomials. The following def-
inition makes the notion of “efficiently computable”
precise (compare with the notion of hitting set gener-
ator in [1, Section 6.2]).

Definition 9 An algebraic number generator is a
sequence (fi)i>1 of nonzero univariate polynomials
fi(X) =

∑
α a(α, i)Xα such that for some integer con-

stant c > 1:

1. The exponents α range from 0 to ic;
2. a(α, i) is a sequence of integers of absolute value

6 2ic

;
3. The language L(f) of all tuples (α, i, j, b) such

that the j-th bit of a(α, i) is equal to b is in
CH/poly.

In the above definition we work with the complexity
class CH/poly because this is the largest complexity
class for which our proofs go through. As shown in the
next example, the language L(f) can often be located
in a much smaller complexity class.

Example 1 Each of the three sequences fi = x − i,
(xi − 1) or xi − 2ix + i2 + 1 is an algebraic num-
ber generator. Notice that in these three examples we
can compute the coefficients of the fi in polynomial
time rather than in CH/poly, i.e., there is no need for
counting and the construction of the fi is uniform.

Theorem 5 Let (fi) be an algebraic number genera-
tor. From this sequence we define a family of univari-
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ate polynomials gn by the formula:

gn(x) =
2n∏

i=1

fi(x).

The coefficient sequence b(n, α) of gn, defined by
gn(x) =

∑
α b(n, α)xα, is definable in CH/poly.

Proof. The family (gn) can be evaluated in CH/poly
at integer points. This follows from the fact that in-
teger sequences definable in CH/poly are stable under
products and summations [10, Theorem 3.10]. The
result then follows from Theorem 2. ¤

We illustrate this result on two examples.

Example 2 For fi = x− i we have gn(x) =
∏2n

i=1(x−
i). This is the Pochhammer-Wilkinson polynomial of
order 2n. It was shown in [10, proof of Main Theo-
rem 1.2] that the coefficient sequence of Pochhammer-
Wilkinson polynomials is definable in CH.

Example 3 For fi = xi − 1 we have gn(x) =∏2n

i=1(x
i − 1). This product can be written as

gn(x) =
∏

ε

hn(x, ε) (4)

where the auxiliary family hn is defined by:

hn(x, ε1, . . . , εn) = x

n∏

j=1

[(1− εj) + εjx
2j−1

]− 1.

Note that the powers x2j−1
in the above formula can be

computed efficiently by repeated squaring. The family
(hn) therefore belongs to the class VP0

nb of polynomi-
als that can be evaluated in a polynomial number of
arithmetic operations in the constant-free unbounded-
degree model. It then follows from (4) that gn belongs
to the class VΠP0 (by definition, the families of this
class are obtained as in (4) from a VP0

nb family by tak-
ing an exponential-size product over a VP0

nb family).
It is shown in [18, Theorem 3.7] that the class VΠP0

would collapse to VP0
nb if VNP0 collapses to VP0. The

proof of this theorem is based on definability of coeffi-
cients in CH/poly for VΠP0 families (in our particular
example there is again no need for nonuniformity since
the family (fi) is uniform).

5 From a hitting set to a lower
bound

In this section we prove our main result: construct-
ing hitting sets for the class SPSs,e of sums of products

of sparse polynomials with sparse coefficients implies
a lower bound for the permanent (recall that the class
SPSs,e is defined in Section 3).

We begin with a lemma showing that under the as-
sumption PER ∈ VP0, polynomials with coefficients
definable in CH/poly can be efficiently represented by
sums of products of sparse polynomials. This result is
an adaptation of [18, Lemma 3.2], which was itself a
scaled up version of [10, Theorem 4.1(2)]. The main
new ingredient is reduction to depth four as presented
in Section 2.3.

Lemma 3 Let gn(x) =
∑

α a(n, α)xα where the inte-
gers α range from 0 to 2c·n−1, a(n, α) is a sequence of
integers of absolute value < 22c·n

definable in CH/poly,
and c is an integer constant (independent of n).

If PER ∈ VP0 there is a polynomially bounded
function p(n) such that 2p(n)gn ∈ SPSs,e where s =
nO(

√
n log n) and e = 2O(n).

Proof. Expand a in binary:

a(n, α) =
2c·n−1∑

i=0

ai(n, α)2i.

Let hn be the following multilinear polynomial:

hn(x1, x2, . . . , xc·n, z1, . . . , zc·n) =∑2c·n−1
i=0

∑2c·n−1
α=0 ai(n, α)z̄ īx̄ᾱ.

In this formula, z̄ īx̄ᾱ denotes the monomial
zi1
1 · · · zic·n

c·n xα1
1 xα2

2 · · ·xαc·n
c·n and the exponents ij and

αj denote the binary digits of the integers i and α.
The univariate polynomial gn(x) is then equal to:

hn(x20
, x21

, . . . , x2c·n−1
, 220

, . . . , 22c·n−1
). (5)

Assume that the permanent family is in VP0. by
Lemma 2 the nonuniform counting hierarchy collapses,
therefore computing the i-th bit ai(n, α) of a(n, α) on
input (1n, α, i) is in GapP/poly (and even in P/poly).
By Lemma 1, (hn) ∈ VNP0. By Theorem 1 there ex-
ists a polynomially bounded function p(n) such that
the family fn = 2p(n)hn is in VP0. Applying Proposi-
tion 1 to (fn) shows that the polynomials f ′n = 2p(n)gn

are in SPSs,e for s = nO(
√

n log n) and e = 2O(n). ¤

Next we we show that the product of the first 2n

polynomials of an algebraic number generator can be
represented by a sum of products of sparse polyno-
mials of subexponential size, assuming again that the
permanent is in VP0.
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Theorem 6 Let (fi) be an algebraic number gener-
ator and gn(x) =

∏2n

i=1 fi(x). If PER ∈ VP0 there
is a polynomially bounded function p(n) such that
2p(n)gn ∈ SPSs,e where s = nO(

√
n log n) and e = 2O(n).

Here SPSs,e is the class of sums of products of sparse
polynomials from Definition 8.

Proof. We wish to apply Lemma 3 to the polyno-
mial gn(x) =

∏2n

i=1 fi(X). Each polynomial fi in this
product is of degree less than 2cn (except possibly fn,
which may be of degree up to 2cn). Hence gn is of
degree less than 2(c+1)n. As to the coefficient size, we
have ||gn||1 6

∏
i ||fi||1 where ||.||1 denotes the sum of

the absolute values of the coefficients of a polynomial.
For each i we have ||fi||1 < (2cn + 1) · 22cn 6 22(c+1)n

so that ||gn||1 6 22(c+2)n

. Finally, definability of coef-
ficients in CH/poly is provided by Theorem 5. ¤

We can finally prove our main result.

Theorem 7 (Lower Bound from Hitting Sets)
Let (fi) be an algebraic number generator and Hm the
set of all roots of the polynomials fi for all i 6 m.
Let q and r be two functions such that Hq(s)+r(e) is a
hitting set for SPSs,e. The permanent is not in VP0

if r(e) = eo(1) and q satisfies the following condition:
for some constant c < 1 and s large enough, q(s) 6
2(log s)1+c

.

The conditions on q and r cover in particular the case
of hitting sets of size polynomial in s and log e. This
special case was treated in an earlier version of this
paper.3 Note also that any set of more than s · e
complex numbers is a hitting set since any polynomial
in SPSs,e is of degree at most s · e.

Proof of Theorem 7 Let gn(x) =
∏2n

i=1 fi(x) be the
polynomial of Theorem 6. Assume by contradiction
that:

(i) There exists functions q and r such that
Hq(s)+r(e) is a hitting set for SPSs,e, where q
and r satisfy the conditions in the statement of
the theorem.

(ii) The permanent family is in VP0.

From our second assumption and Theorem 6 we
know that 2p(n)gn is in SPSs,e for s = nO(

√
n log n),

e = 2O(n) and some polynomially bounded function
p(n). The conditions on q and r imply that for these
values of s and e we have q(s) + r(e) = 2o(n). Hence
by (i), for n large enough H2n is a hitting set for gn.

3http://arxiv.org/abs/1004.4960v2

This is a contradiction since gn vanishes on the hitting
set H2n but is not identically 0. ¤

6 Hitting sets from real analysis?

In this section we present our new versions of the τ -
conjecture. Each of the three conjectures implies that
the permanent is not in VP0.

Conjecture 1(τ-conjecture for SPS polynomi-
als) There is a polynomial p such that any nonzero
polynomial in SPSs,e has at most p(s + log e) integer
roots.

This conjecture implies that PER 6∈VP0 (apply Theo-
rem 7 to the algebraic number generator fi(x) = x−i).
Conjecture 1 follows from the τ -conjecture of Shub
and Smale on integer roots of polynomials [26,27]
since, as explained after Definition 8, polynomials in
SPSs,e can be evaluated by constant-free arithmetic
circuits of size polynomial in s and log e. It was al-
ready shown in [10] that the τ -conjecture implies a
lower bound for the permanent. The point of Con-
jecture 1 is that to obtain such a lower bound we no
longer have to bound the number of integer roots of
arbitrary arithmetic circuits: we need only do this for
sums of products of sparse polynomials. This looks
like a much more manageable class of circuits, but
the question is of course still wide open. Another re-
lated benefit of SPS polynomials in this context is that
techniques from real analysis might become applica-
ble. Before explaining this in more detail we formulate
a somewhat stronger conjecture. The idea is that the
parameter e in Conjecture 1 as well as the sparsity hy-
pothesis on the integer coefficients might be irrelevant.
This leads to:

Conjecture 2 (strong form of τ-conjecture for
SPS polynomials)
Consider a nonzero polynomial of the form

f(X) =
k∑

i=1

m∏

j=1

fij(X),

where each fij ∈ Z[X] has at most t monomials. The
number of integer roots of f is bounded by a polyno-
mial function of kmt.

Note that the size of f as defined in Section 3 is
bounded by kmt. Therefore, Conjecture 2 is indeed
stronger than Conjecture 1. Finally, we formulate an
even stronger conjecture.
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Conjecture 3(real τ-conjecture)
Consider a nonzero polynomial of the form

f(X) =
k∑

i=1

m∏

j=1

fij(X), (6)

where each fij ∈ R[X] has at most t monomials. The
number of real roots of f is bounded by a polynomial
function of kmt.

One could also formulate a weak version of the real τ -
conjecture where the parameters s and e would play
the same role as in Conjecture 1. Also, instead of a
bound on the number of real roots which is polyno-
mial in kmt one could seek a bound q(kmt) which is
slightly superpolynomial in the sense of Theorem 7:
for some constant c < 1 and s large enough, we have
q(s) 6 2(log s)1+c

. By Theorem 7, such a bound would
still be strong enough to conclude that the permanent
is not in VP0 (consider again the algebraic number
generator fi(x) = x − i, and the function r(e) = 1).
This goal might still be difficult to achieve, so it would
be of great interest to establish upper bounds on the
number of real roots that are even weaker but still
strong enough to imply interesting lower bounds. For
instance:

Proposition 2 Assume that for nonzero polynomials
of the form (6) the number of real roots is less than
q(kmt), where the function q satisfies the condition
q(s) = 2so(1)

. Then the permanent is not computable
by polynomial size depth 4 circuits using polynomial
size integer constants.

Proof. Assume that the permanent is computable by
polynomial size depth 4 circuits using polynomial size
integer constants. In particular, the permanent is in
VP0. By completeness of the permanent we have the
following strengthening of Theorem 1: for every fam-
ily (hn) in VNP0 there exists a polynomially bounded
function p(n) such that the family (2p(n)hn) is com-
putable by polynomial size depth 4 circuits (using
polynomial size integer constants).

We consider again the algebraic number generator
fi(x) = x− i and the polynomial gn(x) =

∏2n

i=1 fi(x)
of Theorem 6. We claim that gn can be expressed as
a SPS polynomial of size polynomial in n. This yields
a contradiction since the assumption in the statement
of the Proposition implies that gn has 2no(1)

real roots
but in reality gn has 2n integer roots.

The proof of the claim is similar to the proof of
Lemma 3 and Theorem 6. In particular, we have for gn

the same representation as in formula (5) of Lemma 3.
But now, the above-mentioned strengthening of Theo-
rem 1 shows that hn is computable by a depth 4 circuit
of polynomial size. We obtain the SPS polynomial for
gn by plugging powers of x into this circuit.

¤

At present there isn’t a lot of evidence for or against
Conjecture 3. We do know that the conjecture holds
true when k = 1: by Descartes’ rule each polynomial
f1j has at most 2t− 2 nonzero real roots, so f has at
most 2m(t− 1) + 1 real roots. Also some indirect evi-
dence is provided by the few known examples of poly-
nomials with short arithmetic circuits but many real
roots [8,27]: these examples are definitely not given
as sums of products of sparse polynomials. The case
k = 2 already looks nontrivial. In the general case we
can expand f as a sum of at most ktm monomials, so
we have at most 2ktm − 1 real roots. A refutation of
the conjecture would be interesting from the point of
view of real algebra and geometry as it would yield
examples of “sparse like” polynomials with many real
roots. Of course, a proof of the conjecture would be
even more interesting as it would yield a lower bound
for the permanent.

7 Final Remarks

We have shown that constructing hitting sets for
sums of products of sparse polynomials with sparse co-
efficients will show that PER 6∈VP0. It should be pos-
sible to obtain a variation of this result where the con-
clusion is that τ(PERn), the constant-free arithmetic
circuit complexity of the permanent, is not polynomial
in n. To obtain this stronger conclusion, a stronger
hypothesis should be necessary. It seems natural to
expect that the role payed by sparse polynomials with
sparse coefficients will now played by sparse polyno-
mials with coefficients of “small” τ -complexity (this is
a larger class of polynomials since sparse coefficients
are certainly of small τ -complexity).

Most importantly, one should try to prove or dis-
prove the real τ -conjecture. A solution in the case
k = 2 (a sum of two products of sparse polynomi-
als) would already be quite interesting. We note that
the search for good upper bounds on the number of
solutions of sparse multivariate systems is a topic of
current interest in real algebraic geometry. The the-
ory of fewnomials [14] provides finiteness results and
sometimes quantitative estimates on the number of
real roots in very general “sparse like” situations. The
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general estimates from [14], at least when applied in
a straightforward manner, do not seem strong enough
to imply the real τ -conjecture. Nevertheless, one can
hope that the methods developed in [14] as well as in
more recent work such as [5,6,21] will turn out to be
useful.
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