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We saw (the first talk) that for a function without any structure, e.g.,

k-sum problem:

Given x1, . . . , xn ∈ [q], detect whether there exist pairwise distinct a1, . . . , ak
such that xa1 + xa2 + · · ·+ xak is divisible by q.

quantum walk on the Johnson graph gives O(nk/(k+1)) queries, and this is
optimal.
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In Miklos Santha’s talk, we saw that if there is additional structure (not all
certificate positions are allowed), we can do better, e.g.:

Triangle problem:

Given xi,j ∈ {0, 1}, with 1 ≤ i < j ≤ n, detect whether there exist
1 ≤ a < b < c ≤ n such that xa,b = xa,c = xb,c = 1.

Can be done with learning graphs in O(n9/7) quantum queries.
Better than O(n3/2) that would be possible without the structure.
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Simplification II: Only consider the positions of certificates inside the
input string.
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Simplification II: Only consider the positions of certificates inside the
input string.

What if we consider the values of the variables as well?

Plus: We can pursue consistent certificates, and drop inconsistent ones,
thus, reducing the complexity.

Minus: Greater diversity makes the algorithm harder to analyze.
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Considering values, we certainly can do better:

k-threshold problem:

Given x1, . . . , xn ∈ {0, 1}, detect whether ∑n
i=1 xi ≥ k.

■ Can be easily solved in O(
√
n) queries using Grover search.
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Considering values, we certainly can do better:

k-threshold problem:

Given x1, . . . , xn ∈ {0, 1}, detect whether ∑n
i=1 xi ≥ k.

■ Can be easily solved in O(
√
n) queries using Grover search.

■ Well... it’s too simple.
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We arrive at our main problem:

k-distinctness problem:

Given x1, . . . , xn ∈ [q], detect whether there exist a1, . . . , ak, all distinct,
such that xa1 = xa2 = · · · = xak .

■ Quantum walk algorithm solving the problem in O(nk/(k+1)) queries.
■ Best known lower bound is Ω(n2/3).
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We arrive at our main problem:

k-distinctness problem:

Given x1, . . . , xn ∈ [q], detect whether there exist a1, . . . , ak, all distinct,
such that xa1 = xa2 = · · · = xak .

■ Quantum walk algorithm solving the problem in O(nk/(k+1)) queries.
■ Best known lower bound is Ω(n2/3).

■ We developed a quantum algorithm with query complexity

O
(

n1−2k−2/(2k−1)
)

= o(n3/4).
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Similarly as in Miklos Santha’s talk for Element Distinctness.

Let a1, . . . , ak be a 1-certificate in
the input.

The last k steps in the learning
graph are as on the right:

...
Load a1
Load a2
...

Load ak

Assume before that the vertices of the learning graphs (⊆ [n]) contain

r1 unique elements, r2 pairs of equal
elements, . . . , rk−1 (k − 1)-tuples of
equal elements.

(/).*-+, (/).*-+, (/).*-+,
(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,
(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,

r1 r2 r3
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Assume before that the vertices of the learning graphs (⊆ [n]) contain

(/).*-+, (/).*-+, (/).*-+,
(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,
(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,

r1 r2 r3

The complexity of loading a1, . . . , ak is O(n/
√

min{r1, . . . , rk−1}).

Proof. As for element distinctness: When ai is loaded, (i− 1)-tuple of equal
elements {a1, . . . , ai−1} is hidden among ri−1 + 1 such tuples in a vertex of
the learning graph.
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In the quantum walk on the Johnson graph algorithm, S ⊆ [n] is chosen
uniformly at random from subsets of size r.
Thus, rk−1 is very small: O(n · rk−1/nk−1).

Using the values, we can “distill” subsets containing large number of large
tuples of equal elements.
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In the quantum walk on the Johnson graph algorithm, S ⊆ [n] is chosen
uniformly at random from subsets of size r.
Thus, rk−1 is very small: O(n · rk−1/nk−1).

Using the values, we can “distill” subsets containing large number of large
tuples of equal elements.

Related Question

What is the complexity of preparing the uniform superposition over all
S ⊆ [n] of the form

(/).*-+, (/).*-+, (/).*-+,
(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,
(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,

r1 r2 r3
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Preparation of uniform superposition over all S ⊆ [n] that contain

(/).*-+, (/).*-+, (/).*-+,
(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,
(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,

r1 r2 r3

Tentative Plan

1. Start with the uniform superposition of (r1 + · · ·+ rk−1)-subsets.
2. Find r2 + · · ·+ rk−1 elements equal to elements in the current set.
3. Find r3 + · · ·+ rk−1 elements equal to two elements in the current set.

...
k − 1. Find rk−1 elements equal to k − 2 elements in the current set.
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1. Start with the uniform superposition of (r1 + · · ·+ rk−1)-subsets.
2. Find r2 + · · ·+ rk−1 elements equal to elements in the current set.
3. Find r3 + · · ·+ rk−1 elements equal to two elements in the current set.

...
k − 1. Find rk−1 elements equal to k − 2 elements in the current set.

We may assume there is unique k-tuple of equal elements in any positive
input.
We may assume there are Ω(n) (k − 1)-tuples of equal elements.
Assume also r1 > r2 > · · · > rk−1.
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1. Start with the uniform superposition of (r1 + · · ·+ rk−1)-subsets.
2. Find r2 + · · ·+ rk−1 elements equal to elements in the current set.
3. Find r3 + · · ·+ rk−1 elements equal to two elements in the current set.

...
k − 1. Find rk−1 elements equal to k − 2 elements in the current set.

We may assume there is unique k-tuple of equal elements in any positive
input.
We may assume there are Ω(n) (k − 1)-tuples of equal elements.
Assume also r1 > r2 > · · · > rk−1.
Then, complexity of preparing the state is:

r1 + r2

√

n

r1
+ r3

√

n

r2
+ · · ·+ rk−1

√

n

rk−2
.
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Assume r1 > r2 > · · · > rk−1.
Complexity of preparing the uniform superposition is:

r1 + r2

√

n

r1
+ r3

√

n

r2
+ · · ·+ rk−1

√

n

rk−2
.

Complexity of the final stage
n/

√
rk−1.

Total complexity is optimized to

O
(

n1−2k−2/(2k−1)
)

= o(n3/4).
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1. Start with the uniform superposition of (r1 + · · ·+ rk−1)-subsets.
2. Find r2 + · · ·+ rk−1 elements equal to elements in the current set.
3. Find r3 + · · ·+ rk−1 elements equal to two elements in the current set.

...
k − 1. Find rk−1 elements equal to k − 2 elements in the current set.
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1. Start with the uniform superposition of (r1 + · · ·+ rk−1)-subsets.
2. Find r2 + · · ·+ rk−1 elements equal to elements in the current set.
3. Find r3 + · · ·+ rk−1 elements equal to two elements in the current set.

...
k − 1. Find rk−1 elements equal to k − 2 elements in the current set.

This algorithm does not generate the uniform

superposition, nor a state close to it!
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(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,
(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,
(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,

Assume both states have amplitudes α.

Perform Grover search for an element making a pair with an element in S.
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(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,
(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,
(/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+, (/).*-+,

Assume both states have amplitudes α.

Perform Grover search for an element making a pair with an element in S.

Assume the Grover search works perfectly for both subsets.
Then the amplitude is subdivided into:

α/
√
2 α/

√
5

This accumulates with each step, and we get an exponential bias.
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Summary

■ We saw gains and losses of using values of the variables.
■ These problems can be solved for k-distinctness, but I will not go into the

detail.

Open Problem

■ Obtain a similar framework for these types of problems, as it was done in
the first presentation (learning graphs).

■ Prove matching lower bound for k-distinctness.



Thank you!
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