Superactivation of quantum nonlocality

Carlos Palazuelos

Instituto de Ciencias Matemáticas, Madrid

16th Workshop on Quantum Information Processing, Tsinghua University, Beijing, China; January 2013

What is quantum nonlocality?

$$
p(a b \mid x y)
$$

Figure: Alice and Bob measurements. Inputs: x and y, Outputs: a and b. $P(a, b \mid x, y)$ is the probability of obtaining the pair (a, b) when Alice and Bob measure, respectively, with the input x and y.

We deal with the "probability distributions"

$$
P=(P(a, b \mid x, y))_{x, y=1, \cdots, N}^{a, b=1, \cdots, K}
$$

What is quantum nonlocality?

- $P=\{P(a, b \mid x, y)\}_{x, y ; a, b}$ is a Classical prob. distribution $(P \in \mathcal{L})$ if it is in the convex hull of the elements of the form
$P(a, b \mid x, y)=P_{1}(a \mid x) P_{2}(b \mid y)$ for every x, y, a, b, where $P_{1}(a \mid x) \geq 0$ and $\sum_{a} P_{1}(a \mid x)=1$ for every $x\left(\right.$ similar for $\left.P_{2}\right)$.

What is quantum nonlocality?

- $P=\{P(a, b \mid x, y)\}_{x, y ; a, b}$ is a Classical prob. distribution $(P \in \mathcal{L})$ if it is in the convex hull of the elements of the form

$$
P(a, b \mid x, y)=P_{1}(a \mid x) P_{2}(b \mid y) \text { for every } x, y, a, b, \text { where }
$$

$$
P_{1}(a \mid x) \geq 0 \text { and } \sum_{a} P_{1}(a \mid x)=1 \text { for every } x\left(\text { similar for } P_{2}\right)
$$

- P is a Quantum prob. distribution $(P \in \mathcal{Q})$ if it can be written like:

$$
P(a, b \mid x, y)=\operatorname{tr}\left(E_{x}^{a} \otimes F_{y}^{b} \rho\right) \text { for every } x, y, a, b, \text { where }
$$

ρ is a bipartite quantum state and $\left\{E_{x}^{a}\right\}_{a}$ is a POVM for every x (similar for $\left.\left\{F_{y}^{b}\right\}_{b}\right)$.

What is quantum nonlocality?

- $P=\{P(a, b \mid x, y)\}_{x, y ; a, b}$ is a Classical prob. distribution $(P \in \mathcal{L})$ if it is in the convex hull of the elements of the form

$$
P(a, b \mid x, y)=P_{1}(a \mid x) P_{2}(b \mid y) \text { for every } x, y, a, b, \text { where }
$$

$$
P_{1}(a \mid x) \geq 0 \text { and } \sum_{a} P_{1}(a \mid x)=1 \text { for every } x\left(\text { similar for } P_{2}\right)
$$

- P is a Quantum prob. distribution $(P \in \mathcal{Q})$ if it can be written like:

$$
P(a, b \mid x, y)=\operatorname{tr}\left(E_{x}^{a} \otimes F_{y}^{b} \rho\right) \text { for every } x, y, a, b, \text { where }
$$

ρ is a bipartite quantum state and $\left\{E_{x}^{a}\right\}_{a}$ is a POVM for every x (similar for $\left.\left\{F_{y}^{b}\right\}_{b}\right)$.

- Quantum nonlocality: $\mathcal{L} \nsubseteq \mathcal{Q}$.

Why is quantum nonlocality interesting?

- Fundamental and fascinating phenomenon!

IDEA: THEORY $\rightsquigarrow ~ E X P E R I M E N T A L ~ D A T A ~$

Why is quantum nonlocality interesting?

- Fundamental and fascinating phenomenon!

IDEA: THEORY $\rightsquigarrow>$ EXPERIMENTAL DATA

- It has many applications:

1. Device Independent Quantum Cryptography.
2. Generation of random numbers.
3. Interactive proof systems.
... ...

How to study nonlocality? Bell inequalities

Given $M=\left\{M_{x, y}^{a, b}\right\}_{x, y ; a, b}$ and $P=\{P(a, b \mid x, y)\}_{x, y ; a, b}$, denote

$$
\langle M, P\rangle=\sum_{x, y, a, b} M_{x, y}^{a, b} P(a, b \mid x, y) \text { and } \omega(M)=\sup _{P \in \mathcal{L}}|\langle M, P\rangle| .
$$

How to study nonlocality? Bell inequalities

Given $M=\left\{M_{x, y}^{a, b}\right\}_{x, y ; a, b}$ and $P=\{P(a, b \mid x, y)\}_{x, y ; a, b}$, denote

$$
\langle M, P\rangle=\sum_{x, y, a, b} M_{x, y}^{a, b} P(a, b \mid x, y) \text { and } \omega(M)=\sup _{P \in \mathcal{L}}|\langle M, P\rangle| .
$$

- How nonlocal is $P ? \rightsquigarrow \nu(P)=\sup _{M} \frac{|\langle M, P\rangle|}{\omega(M)}$. Good measure!

How to study nonlocality? Bell inequalities

- Given $M=\left\{M_{x, y}^{a, b}\right\}_{x, y ; a, b}$ and $P=\{P(a, b \mid x, y)\}_{x, y ; a, b}$, denote

$$
\langle M, P\rangle=\sum_{x, y, a, b} M_{x, y}^{a, b} P(a, b \mid x, y) \text { and } \omega(M)=\sup _{P \in \mathcal{L}}|\langle M, P\rangle| .
$$

- How nonlocal is $P ? \rightsquigarrow \nu(P)=\sup _{M} \frac{|\langle M, P\rangle|}{\omega(M)}$. Good measure!
- How nonlocal is ρ ? Define

$$
\mathcal{Q}_{\rho}:=\left\{P=\left\{\operatorname{tr}\left(E_{x}^{a} \otimes F_{y}^{b} \rho\right)\right\}:\left\{E_{x}^{a}\right\},\left\{F_{y}^{b}\right\} \text { POVMs. }\right\}
$$

Then,

$$
L V(\rho)=\sup _{P \in \mathcal{Q}_{\rho}} \nu(P) .
$$

How to study nonlocality? Bell inequalities

- Given $M=\left\{M_{x, y}^{a, b}\right\}_{x, y ; a, b}$ and $P=\{P(a, b \mid x, y)\}_{x, y ; a, b}$, denote

$$
\langle M, P\rangle=\sum_{x, y, a, b} M_{x, y}^{a, b} P(a, b \mid x, y) \text { and } \omega(M)=\sup _{P \in \mathcal{L}}|\langle M, P\rangle| .
$$

- How nonlocal is $P ? \rightsquigarrow \nu(P)=\sup _{M} \frac{|\langle M, P\rangle|}{\omega(M)}$. Good measure!
- How nonlocal is ρ ? Define

$$
\mathcal{Q}_{\rho}:=\left\{P=\left\{\operatorname{tr}\left(E_{x}^{a} \otimes F_{y}^{b} \rho\right)\right\}:\left\{E_{x}^{a}\right\},\left\{F_{y}^{b}\right\} \text { POVMs. }\right\}
$$

Then,

$$
L V(\rho)=\sup _{P \in \mathcal{Q}_{\rho}} \nu(P) .
$$

- $L V(\rho) \geq 1$ for ever ρ. Moreover, ρ local $\Leftrightarrow \operatorname{LV}(\rho)=1$.

We are interested in:

- Behavior of $L V(\rho) \ldots$ asymptotically at least for some states...

$$
\left|\varphi_{n}\right\rangle=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}|i i\rangle
$$

We are interested in:

- Behavior of $L V(\rho) \ldots$ asymptotically at least for some states...

$$
\left|\varphi_{n}\right\rangle=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}|i i\rangle
$$

- Multiplicativity properties:

$$
L V\left(\rho_{1} \otimes \rho_{2}\right)=L V\left(\rho_{1}\right) L V\left(\rho_{2}\right) \text { or not too different? }
$$

We are interested in:

- Behavior of $L V(\rho) \ldots$ asymptotically at least for some states...

$$
\left|\varphi_{n}\right\rangle=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}|i i\rangle
$$

- Multiplicativity properties:

$$
L V\left(\rho_{1} \otimes \rho_{2}\right)=L V\left(\rho_{1}\right) L V\left(\rho_{2}\right) \text { or not too different? }
$$

- Superactivation of nonlocality:

Find a local state ρ such that $\operatorname{LV}\left(\rho^{\otimes_{k}}\right)>1$ for some k.

An upper bound for $L V(\rho)$

- Theorem: Given any pure state $|\psi\rangle=\sum_{i=1}^{n} \alpha_{i}|i i\rangle, \alpha_{i} \geq$ we have

$$
L V(|\psi\rangle) \leq U B(|\psi\rangle):=\left(\sum_{i=1}^{n} \alpha_{i}\right)^{2} .
$$

In particular, $L V(\rho) \leq n$ for every n dimensional quantum state ρ.

Note that $U B\left(\left|\varphi_{n}\right\rangle\right)=n$.

Lower bound and the Khot and Visnoi game

- In a previous work, Buhrman, Regev, Scarpa and de Wolf showed that for every n,

$$
L V\left(\left|\varphi_{n}\right\rangle\right) \geq C \frac{n}{(\log n)^{2}}
$$

That is,

Lower bound and the Khot and Visnoi game

- In a previous work, Buhrman, Regev, Scarpa and de Wolf showed that for every n,

$$
L V\left(\left|\varphi_{n}\right\rangle\right) \geq C \frac{n}{(\log n)^{2}}
$$

That is,

- There exit a Bell inequality $M(n)=\left\{M(n)_{x, y}^{a, b}\right\}_{x, y, a, b}$ and some POVMs $\left\{E(n)_{x}^{a}\right\}_{x, a},\left\{F(n)_{y}^{b}\right\}_{y, b}$ such that

$$
\frac{1}{\omega(M(n))} \sum_{x, y, a, b} M(n)_{x, y}^{a, b}\left\langle\varphi_{n}\right| E(n)_{x}^{a} \otimes F(n)_{y}^{b}\left|\varphi_{n}\right\rangle \geq C \frac{n}{(\log n)^{2}}
$$

The Bell inequality $M(n)$ is a two-prover one-round game (in particular it has positive coefficients).

Lower bound and the Khot and Visnoi game

- In a previous work, Buhrman, Regev, Scarpa and de Wolf showed that for every n,

$$
L V\left(\left|\varphi_{n}\right\rangle\right) \geq C \frac{n}{(\log n)^{2}}
$$

That is,

- There exit a Bell inequality $M(n)=\left\{M(n)_{x, y}^{a, b}\right\}_{x, y, a, b}$ and some POVMs $\left\{E(n)_{x}^{a}\right\}_{x, a},\left\{F(n)_{y}^{b}\right\}_{y, b}$ such that

$$
\frac{1}{\omega(M(n))} \sum_{x, y, a, b} M(n)_{x, y}^{a, b}\left\langle\varphi_{n}\right| E(n)_{x}^{a} \otimes F(n)_{y}^{b}\left|\varphi_{n}\right\rangle \geq C \frac{n}{(\log n)^{2}}
$$

The Bell inequality $M(n)$ is a two-prover one-round game (in particular it has positive coefficients).

- In fact,

$$
C \frac{U B(|\psi\rangle)}{(\log n)^{2}} \leq L V(|\psi\rangle) \leq U B(|\psi\rangle)
$$

for every n dimensional pure state $|\psi\rangle$ (even better!).

A tighter upper bound

- Theorem: For every n,

$$
L V\left(\left|\varphi_{n}\right\rangle\right) \leq D \frac{n}{\sqrt{\log n}}
$$

This shows

$$
C \frac{n}{(\log n)^{2}} \leq L V\left(\left|\varphi_{n}\right\rangle\right) \leq D \frac{n}{\sqrt{\log n}} .
$$

A tighter upper bound

- Theorem: For every n,

$$
L V\left(\left|\varphi_{n}\right\rangle\right) \leq D \frac{n}{\sqrt{\log n}}
$$

This shows

$$
C \frac{n}{(\log n)^{2}} \leq L V\left(\left|\varphi_{n}\right\rangle\right) \leq D \frac{n}{\sqrt{\log n}} .
$$

- We cannot use $U B(|\psi\rangle)$ as an accurate measure of $\operatorname{LV}(\rho)$.

A tighter upper bound

- Theorem: For every n,

$$
L V\left(\left|\varphi_{n}\right\rangle\right) \leq D \frac{n}{\sqrt{\log n}}
$$

This shows

$$
C \frac{n}{(\log n)^{2}} \leq L V\left(\left|\varphi_{n}\right\rangle\right) \leq D \frac{n}{\sqrt{\log n}} .
$$

- We cannot use $U B(|\psi\rangle)$ as an accurate measure of $\operatorname{LV}(\rho)$.
- We understand better the quantity $L V\left(\left|\varphi_{n}\right\rangle\right)$.

A tighter upper bound

- Theorem: For every n,

$$
L V\left(\left|\varphi_{n}\right\rangle\right) \leq D \frac{n}{\sqrt{\log n}}
$$

This shows

$$
C \frac{n}{(\log n)^{2}} \leq L V\left(\left|\varphi_{n}\right\rangle\right) \leq D \frac{n}{\sqrt{\log n}} .
$$

- We cannot use $U B(|\psi\rangle)$ as an accurate measure of $\operatorname{LV}(\rho)$.
- We understand better the quantity $L V\left(\left|\varphi_{n}\right\rangle\right)$.
- Interesting part of the result: Proof

How is this related with multiplicativity?

- An easy proof of $\frac{L V\left(\left|\varphi_{n}\right\rangle^{\otimes_{5}}\right)}{L V\left(\left|\varphi_{n}\right\rangle\right)^{5}} \geq C^{\prime} \sqrt{\log n}$:

How is this related with multiplicativity?

- An easy proof of $\frac{L V\left(\left|\varphi_{n}\right\rangle^{\otimes_{5}}\right)}{L V\left(\left|\varphi_{n}\right\rangle\right)^{5}} \geq C^{\prime} \sqrt{\log n}$:
- By the previous upper bound: $\left(L V\left(\left|\varphi_{n}\right\rangle\right)\right)^{5} \leq D^{5} \frac{n^{5}}{(\log n)^{\frac{5}{2}}}$

How is this related with multiplicativity?

- An easy proof of $\frac{L V\left(\left|\varphi_{n}\right\rangle^{\otimes_{5}}\right)}{L V\left(\left|\varphi_{n}\right\rangle\right)^{5}} \geq C^{\prime} \sqrt{\log n}$:
- By the previous upper bound: $\left(L V\left(\left|\varphi_{n}\right\rangle\right)\right)^{5} \leq D^{5} \frac{n^{5}}{(\log n)^{\frac{5}{2}}}$
- On the other hand, applying the KV game we have

$$
L V\left(\left|\varphi_{n}\right\rangle^{\otimes_{5}}\right)=L V\left(\left|\varphi_{n^{5}}\right\rangle\right) \geq C \frac{n^{5}}{\left(\log n^{5}\right)^{2}}=C \frac{n^{5}}{(5 \log n)^{2}}
$$

How is this related with multiplicativity?

- An easy proof of $\frac{L V\left(\left|\varphi_{n}\right\rangle^{\otimes_{5}}\right)}{L V\left(\left|\varphi_{n}\right\rangle\right)^{5}} \geq C^{\prime} \sqrt{\log n}$:
- By the previous upper bound: $\left(L V\left(\left|\varphi_{n}\right\rangle\right)\right)^{5} \leq D^{5} \frac{n^{5}}{(\log n)^{\frac{5}{2}}}$
- On the other hand, applying the KV game we have

$$
L V\left(\left|\varphi_{n}\right\rangle^{\otimes_{5}}\right)=L V\left(\left|\varphi_{n^{5}}\right\rangle\right) \geq C \frac{n^{5}}{\left(\log n^{5}\right)^{2}}=C \frac{n^{5}}{(5 \log n)^{2}}
$$

- Therefore,

$$
\frac{L V\left(\left|\varphi_{n}\right\rangle^{\otimes_{5}}\right)}{L V\left(\left|\varphi_{n}\right\rangle\right)^{5}} \geq \frac{C n^{5}(\log n)^{\frac{5}{2}}}{D^{5} n^{5}(5 \log n)^{2}}=C^{\prime} \sqrt{\log n}
$$

Extending the argument

- Let us consider

$$
\eta=\lambda\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|+(1-\lambda) \frac{1}{n^{2}} .
$$

Note that

$$
\eta^{\otimes_{k}}=\lambda^{k}\left|\varphi_{n^{k}}\right\rangle\left\langle\varphi_{n^{k}}\right|+\cdots \cdots
$$

Extending the argument

- Let us consider

$$
\eta=\lambda\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|+(1-\lambda) \frac{1}{n^{2}} .
$$

Note that

$$
\eta^{\otimes_{k}}=\lambda^{k}\left|\varphi_{n^{k}}\right\rangle\left\langle\varphi_{n^{k}}\right|+\cdots \cdots
$$

- Let us denote by $G_{n^{k}}$ the Khot-Visnoi game in dimension n^{k} and let us denote $\left\{E_{x}^{a}\right\}$ and $\left\{F_{x}^{a}\right\}$ the corresponding POVMs.

Extending the argument

- Let us consider

$$
\eta=\lambda\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|+(1-\lambda) \frac{1}{n^{2}} .
$$

Note that

$$
\eta^{\otimes_{k}}=\lambda^{k}\left|\varphi_{n^{k}}\right\rangle\left\langle\varphi_{n^{k}}\right|+\cdots \cdots
$$

- Let us denote by $G_{n^{k}}$ the Khot-Visnoi game in dimension n^{k} and let us denote $\left\{E_{x}^{a}\right\}$ and $\left\{F_{x}^{a}\right\}$ the corresponding POVMs.
- Then,

$$
P=\operatorname{tr}\left(E_{x}^{a} \otimes F_{y}^{a} \eta^{\otimes k}\right)=\lambda^{k} \operatorname{tr}\left(E_{x}^{a} \otimes F_{y}^{a}\left|\varphi_{n^{k}}\right\rangle\left\langle\varphi_{n^{k}}\right|\right)+\cdots \cdots
$$

Extending the argument

- Let us consider

$$
\eta=\lambda\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|+(1-\lambda) \frac{1}{n^{2}} .
$$

Note that

$$
\eta^{\otimes_{k}}=\lambda^{k}\left|\varphi_{n^{k}}\right\rangle\left\langle\varphi_{n^{k}}\right|+\cdots \cdots
$$

- Let us denote by $G_{n^{k}}$ the Khot-Visnoi game in dimension n^{k} and let us denote $\left\{E_{x}^{a}\right\}$ and $\left\{F_{x}^{a}\right\}$ the corresponding POVMs.
- Then,

$$
P=\operatorname{tr}\left(E_{x}^{a} \otimes F_{y}^{a} \eta^{\otimes k}\right)=\lambda^{k} \operatorname{tr}\left(E_{x}^{a} \otimes F_{y}^{a}\left|\varphi_{n^{k}}\right\rangle\left\langle\varphi_{n^{k}}\right|\right)+\cdots \cdots
$$

- Since $G_{n^{k}}$ has positive coefficients we know that

$$
L V\left(\eta^{\otimes k}\right) \geq \frac{1}{\omega\left(G_{n^{k}}\right)}\left\langle G_{n^{k}}, P\right\rangle \geq C \lambda^{k} \frac{n^{k}}{\left(\log n^{k}\right)^{2}}=C \frac{(\lambda n)^{k}}{k^{2}(\log n)^{2}}
$$

Consequences

- Superactivation of quantum nonlocality:
J. Barrett showed that there exist local isotropic states $\eta=\lambda\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|+(1-\lambda) \frac{1}{n^{2}}$ for $\lambda>\frac{1}{n}$. Therefore,

$$
\lim _{k} L V\left(\eta^{\otimes_{k}}\right)=\infty
$$

Consequences

- Superactivation of quantum nonlocality:
J. Barrett showed that there exist local isotropic states $\eta=\lambda\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|+(1-\lambda) \frac{1}{n^{2}}$ for $\lambda>\frac{1}{n}$. Therefore,

$$
\lim _{k} L V\left(\eta^{\otimes_{k}}\right)=\infty
$$

- Unbounded almost-superactivation of quantum nonlocality:

For every $\epsilon>$ and $\delta>0$ there exists a high enough n such that $\eta=\lambda_{n}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|+\left(1-\lambda_{n}\right) \frac{1}{n^{2}}$ verifies that

$$
L V(\eta) \leq 1+\epsilon \text { and } L V\left(\eta^{\otimes_{5}}\right) \geq \delta .
$$

Thank you very much!

