Limits on classical communication from quantum entropy power inequalities

Graeme Smith, IBM Research
(joint work with Robert Koenig)

QIP 2013
Beijing

Channel Capacity

Capacity: bits per channel use in the limit of many channels

$$
C=\max _{X} \mathrm{I}(\mathrm{X} ; \mathrm{Y})
$$

$I(X ; Y)=H(X)+H(Y)-H(X Y)$ is the mutual information

Classical Capacity of Quantum Channel

Send a classical message over a quantum message using a code

$\mathrm{m} \rightarrow \rho_{\mathrm{m}}$
such that all ρ_{m} can be distinguished at the channel output.
$\mathrm{C}(\mathcal{N})$ is the capacity

Classical Capacity of Quantum Channel

We can understand coding schemes for classical information in terms of the Holevo Information:
$\chi(\mathcal{N})=\max _{\left\{\mathrm{p}_{\mathrm{x}}, \rho_{\mathrm{x}}\right\}} \mathrm{I}(\mathrm{X} ; \mathrm{B})=\max _{\left\{\mathrm{p}_{\mathrm{x}}, \rho_{\mathrm{x}}\right\}} \mathrm{H}\left(\rho_{a v}\right)-\sum_{\mathrm{x}} \mathrm{p}_{\mathrm{x}} \mathrm{H}\left(\rho_{x}\right)$
where $I(X ; B)=H(X)+H(B)-H(X B)$ uses von Neumann entropy and is evaluated on the state $\sum_{x} \mathrm{p}_{\mathrm{x}}|\mathrm{x}\rangle\langle\mathrm{x}| \mathcal{N}\left(\rho_{\mathrm{x}}\right)$

Random coding arguments show that $\chi(\mathcal{N})$ is an achievable rate, so $\mathrm{C}(\mathcal{N}) \geq \chi(\mathcal{N})$. Furthermore,

$$
\mathrm{C}(\mathcal{N})=\lim _{\mathrm{n} \rightarrow \infty}(1 / \mathrm{n}) \chi(\mathcal{N} \ldots \mathcal{N})
$$

(see Holevo 98, Schumacher-Westmoreland 97)

χ isn't additive

- $\mathrm{C}(\mathcal{N})=\lim _{\mathrm{n} \rightarrow \infty}(1 / \mathrm{n}) \chi(\mathcal{N} \ldots \mathcal{N})$
- Hastings 2009: $\exists \mathcal{N}$ with $\chi(\mathcal{N} \mathcal{N})>2 \chi(\mathcal{N})$

Attempts at salvage / Denial:

- Surely this won't happen for "natural" channels
- Anyway, the effect is small and therefore not relevant, at least for natural channels

χ isn't additive

- $\mathrm{C}(\mathcal{N})=\lim _{\mathrm{n} \rightarrow \infty}(1 / \mathrm{n}) \chi(\mathcal{N} \ldots \mathcal{N})$
- Hastings 2009: $\exists \mathcal{N}$ with $\chi(\mathcal{N} \mathcal{N})>2 \chi(\mathcal{N})$

Attempts at salvage / Denial:

- Surely this won't happen for "natural" channels
- Anyway, the effect is small and therefore not relevant, at least for natural channels

What is "natural"? What's "small"?

Outline

- Bosonic thermal noise channel
- Bounds on capacity (old and new)
- Entropy Power Inequalities (Quantum and Classical)
- Proof Ideas
- Outlook

Bosonic Modes

- Hilbert space spanned by |n〉, $n=0 \ldots \infty$
- Raising and lower operators:

$$
\begin{gathered}
a|n\rangle=\sqrt{n}|n-1\rangle \quad a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle \\
{\left[a, a^{\dagger}\right]=1}
\end{gathered}
$$

- Quadratures:

$$
\begin{gathered}
Q=\frac{1}{\sqrt{2}}\left(a+a^{\dagger}\right) \quad P=\frac{i}{\sqrt{2}}\left(a^{\dagger}-a\right) \\
{[Q, P]=i}
\end{gathered}
$$

- Covariance matrix

$$
\begin{gathered}
{ }^{o_{i j}=} \operatorname{Tr}\left[\left(R_{i} R_{j}+R_{j} R_{i}\right)^{1 / 4}\right. \\
R=\left(P_{1} ; Q_{1} ;::: ; P_{n} ; Q_{n}\right)
\end{gathered}
$$

Gaussian Quantum Channels

- Classical Additive White Gaussian Noise:

$$
X!a X+N
$$

- Quantum Generalization:

$$
\gamma \rightarrow A \gamma A^{T}+N
$$

- Generated by quadratic interactions between input signal and vacuum environment

Additive White Gaussian Noise

Input X is a real variable (eg, component of EM field)

$$
X \rightarrow X+b N=Y
$$

N is normally distributed with variance 1 , and mean zero, so

$$
\operatorname{Pr}(y j x)=p \frac{1}{21 / 20} e^{i(x ; y)^{2}=2 b^{2}}
$$

Capacity of this channel is infinite, but makes sense if we introduce a power constraint: $E\left[X^{2}\right] \leq P$. Then the capacity becomes

$$
C=\frac{1}{2} \log (1+S N R)
$$

Where $\operatorname{SNR}=\mathrm{P} / \mathrm{b}^{2}$ is the ratio of max signal power to noise power

Gaussian Thermal Noise Channel

- Evolution: ${ }^{\circ}$! $(1 \mathrm{i},)^{\circ}+, \mathrm{N}_{\mathrm{E}} \mathrm{l}$
- Models combination of attenuation and amplification present in optical fiber

Gaussian Thermal Noise Channel

- Evolution: ${ }^{\circ}$! $(1 \mathrm{i},)^{\circ}+, \mathrm{N}_{\mathrm{E}} \mathrm{I}$
- Models combination of attenuation and amplification present in optical fiber

Outline

- Bosonic thermal noico-channol
- Bounds on capacity (old and new)
- Entropy Power Inequalities (Quantum and Classical)
- Proof Ideas
- Outlook

Lower Bound

Achievable rate: $\chi(\mathcal{N})=\max _{\left\{p_{x}, \rho_{x}\right\}} \mathrm{H}\left(\mathcal{N}\left(\rho_{a v}\right)\right)-\sum_{x} \mathrm{p}_{\mathrm{x}} \mathrm{H}\left(\mathcal{N}\left(\rho_{x}\right)\right)$
To get a lower bound, just exhibit a particular ensemble.

By letting ρ_{x} be displaced coherent states and taking a gaussian mixture, $\rho_{a v}$ is thermal and we get
$C\left(N_{s} ; N_{e} ; N\right), g\left(, N+(1 i, s) N_{E}\right) i g\left((1 i, s) N_{E}\right)$
where $g(x)=(x+1) \log (x+1) ; x \log x$
is the entropy of a thermal state with average photon number x

- Holevo 1998 (see also Gordon 1964)

Known bounds on classical capacity

transmissivity $\lambda=1 / 2, N_{E}=2$

Maximum output entropy

- $\quad \chi(\mathcal{N})=\max _{\left\{\rho_{x}, \rho_{x}\right\}} \mathrm{H}\left(\mathcal{N}\left(\rho_{a v}\right)\right)-\sum_{x} \mathrm{p}_{\mathrm{x}} \mathrm{H}\left(\mathcal{N}\left(\rho_{x}\right)\right) \leq \max _{\rho} \mathrm{H}(\mathcal{N}(\rho))=\mathrm{H}_{\text {max }}(\mathcal{N})$
- $H_{\max }\left(\mathcal{N}^{n}\right)=\mathrm{nH}_{\max }(\mathcal{N})$
- $\chi\left(\mathcal{N}^{n}\right) \leq \mathrm{n} \mathrm{H}_{\max }(\mathcal{N})$
- $\mathrm{C}(\mathcal{N})=\lim _{\mathrm{n} \rightarrow \infty} 1 / \mathrm{n} \chi\left(\mathcal{N}^{n}\right) \leq \mathrm{H}_{\max }(\mathcal{N})$

Known bounds on classical capacity

transmissivity $\lambda=1 / 2, N_{E}=2$

Bottleneck

$$
\text { Say } \rightarrow \mathcal{E} \rightarrow=\rightarrow \mathcal{E}_{1} \rightarrow \mathcal{E}_{2} \rightarrow
$$

Then $C(E ; N) \cdot C\left(E_{1} ; N\right)$

Proof:

$\xrightarrow{\text { decoder }}$

Bottleneck

$$
\text { Say } \rightarrow \mathcal{E} \rightarrow=\rightarrow \mathcal{E}_{1} \rightarrow \mathcal{E}_{2} \rightarrow
$$

Then $C(E ; N) \cdot C\left(E_{1} ; N\right)$

Proof:

Bottleneck

Say $\rightarrow \mathcal{E} \rightarrow=\rightarrow \mathcal{E}_{1}-\mathcal{E}_{2} \rightarrow$
Then $C(E ; N) \cdot C\left(E_{1} ; N\right)$

Proof:

Bottleneck

Say

Then $C(E ; N) \cdot C\left(E_{1} ; N\right)$

Known and new bounds on classical capacity transmissivity $\lambda=1 / 2, N_{E}=2$

New bounds from entropy power inequalities

alternative (often better) bounds and new proof technique!

Outline

- Bosonic thermal noice-channol
-Dounds on capacity (odd and new)
- Entropy Power Inequalities (Quantum and Classical)
- Proof Ideas
- Outlook

Additive bounds on minimum output entropy and capacity

If $f\left(, ; N_{E}\right) \cdot \frac{1}{n} H\left(N_{s}^{-} ; N_{E}(1 / 2)\right.$ for all $1 / 2 t h e n$
$C\left(N_{s} ; N_{E} ; N\right) \cdot g\left(, N+\left(1 i, N_{E}\right) i f\left(, \quad N_{E}\right)\right.$

Additive bounds on minimum output entropy and capacity

If $f\left(, ; N_{E}\right) \cdot \frac{1}{n} H\left(N_{j}^{-} ; N_{E}(1 / 2)\right.$ for all $1 / 2 t h e n$
$C\left(N_{s} ; N_{E} ; N\right) \cdot g\left(, N+\left(1 i, s N_{E}\right) i f\left(, N_{E}\right)\right.$

Proof:

$$
\hat{A}\left(N^{-n} ; n N\right)=\max _{t, 0} H\left(N_{i}^{-n} ; N_{E}^{n}(1 / q) i^{r}{ }_{x} p_{x} H\left(N^{-} ; N_{E}^{n}(1 / 2)\right)\right.
$$

- $\mathrm{nH}_{\max }\left(\mathrm{N}_{s} ; \mathrm{N}_{\mathrm{E}}\right) \quad, \mathrm{H}_{\min }\left(\mathrm{N}_{s}^{-} ; \stackrel{n}{N}_{\mathrm{N}}\right)$

Quantum Entropy Power Inequality v1

$$
, H(X)+(1 i, s) H(Y) \cdot H(X+, Y)
$$

$$
\text { for all } 1 / x-1 / 8
$$

Quantum Entropy Power Inequality v1

$$
, H(X)+(1 i, s) H(Y) \cdot H(X+, Y)
$$

$$
\text { for all } 1 / x-1 / 8
$$

Quantum Entropy Power Inequality v1

$$
, H(A)+(1 i,) H(E) \cdot H(B)
$$

$$
\text { for all } 1 / A-1 / \underline{\varepsilon}
$$

Single channel use:

Quantum Entropy Power Inequality v1

$$
, H(A)+(1 i,) H(E) \cdot H(B)
$$

for all $1 /$ A $-1 / \notin$

Single channel use:

Quantum Entropy Power Inequality v1

,$H\left(A^{n}\right)+(1 i) H,\left(E^{n}\right) \cdot H\left(B^{n}\right)$

zero
multiple channel uses:

Quantum Entropy Power Inequality v1

$$
n(1 i,) g\left(N_{E}\right) \cdot H\left(B^{n}\right)
$$

multiple channel uses:

Quantum Entropy Power Inequality v1

$$
(1 i,) g\left(N_{E}\right) \cdot \frac{1}{n} H\left(B^{n}\right)
$$

multiple channel uses:

Quantum Entropy Power Inequality v2

$$
\frac{1}{2} \exp \left(\frac{1}{n} H(X)\right)+\frac{1}{2} \exp \left(\frac{1}{n} H(Y)\right) \cdot \exp \left(\frac{1}{n} H\left(X+\frac{1}{2} Y\right)\right)
$$

for all $1 / x-1 / 8$

Outline

- Bosonic thermal noico channol
-Dounds on capacity (odd and now)
- Entropy Power Inequalities (Quantum and Classicai)
- Proof Ideas
- Outlook

Idea: Smooth out the differences

$$
t=0 \quad t=0.1 \quad t=1
$$

Idea: Smooth out the differences

$$
t=0
$$

$$
t=0.1
$$

$$
t=1
$$

At late times, satisfied
with equality

Idea: Smooth out the differences

$$
t=0
$$

$$
t=0.1
$$

$$
t=1
$$

Y_{t}

Show violations only get worse as process runs

At late times, satisfied with equality

Quantum diffusion process

$$
\begin{aligned}
& \frac{d^{1} / q}{d t}=L(1 / k)=i[P ;[P ; 1 / q]] i[Q ;[Q ; 1 / q]] \\
& 1 / q=e^{L t}(1 / 8)
\end{aligned}
$$

Quantum diffusion process

$$
\begin{aligned}
& \frac{d^{1} / q}{d t}=L(1 / k)=i[P ;[P ; 1 / q]] i[Q ;[Q ; 1 / k]] \\
& 1 / q=e^{L t}(1 / 8)
\end{aligned}
$$

Quantum de Bruijin identity

$$
\begin{gathered}
1 / q=e^{L t}(1 / 8) \\
\frac{d H(1 / q)}{d t}=J(1 / q)
\end{gathered}
$$

Quantum Fisher Information: $J\left(1 / q={ }^{\prime} \quad \varliminf_{i}^{e} S\left(1 / 2 j 1 / \mu_{i_{i}}\right)\right.$

$$
1 /{R_{i}}_{i}=e^{j \mu R_{i}=21 / 2 e^{i} i \mu R_{i}=2} \quad S\left(1 /\left\{j^{3} 3 / 4\right)=T r^{1} /\left\{\log ^{1} / 2 i \quad \log ^{3} / 4\right)\right.
$$

Quantum de Bruijin identity

$$
\begin{gathered}
1 / q=e^{L t}(1 / 0) \\
\frac{d H(1 / q)}{d t}=J(1 / q)
\end{gathered}
$$

crucial property:

$$
J(X+, Y) \cdot, J(X)+(1 i,) J(Y)
$$

Proof ingredients

$$
\pm(t)=H\left(X_{t}+, Y_{t}\right) i, H\left(X_{t}\right) i(1 i,) H\left(Y_{t}\right)
$$

Proof ingredients

$$
\begin{gathered}
\pm(t)=H\left(X_{t}+, Y_{t}\right) i, H\left(X_{t}\right) i(1 i,) H\left(Y_{t}\right) \\
H(1 / q)!g(t) \text { ast! } 1, \text { so } \pm(1)=0
\end{gathered}
$$

Proof ingredients

$$
\begin{aligned}
& \pm(t)=H\left(X_{t}+, Y_{t}\right) i, H\left(X_{t}\right) i(1 i, s) H\left(Y_{t}\right) \\
& H(1 / q)!g(t) \text { as } t!1, \text { so } \pm(1)=0 \\
& \pm^{0}(t)=J\left(X_{t}+, Y_{t}\right) i, J\left(X_{t}\right) i(1 i,) J\left(Y_{t}\right) \cdot 0
\end{aligned}
$$

Proof ingredients

$$
\begin{gathered}
\pm(t)=H\left(X_{t}+, Y_{t}\right) i, H\left(X_{t}\right) i(1 i,) H\left(Y_{t}\right) \\
H(1 / p)!g(t) \text { as! } 1, \text { so } \pm(1)=0 \\
\pm^{0}(t)=J\left(X_{t}+, Y_{t}\right) i, J\left(X_{t}\right) i(1 i,) J\left(Y_{t}\right) \cdot 0 \\
\pm(0), 0 \text { so that } \\
H(X+, Y), H(X)+(1 i,) H(Y)
\end{gathered}
$$

Outline

- Bosonie thermal noise channol
- Bounds on capacity ford and new)
- Entropy Power Inequalities
(Quantum and Classicai)
- Prooflidoas
- Outlook

Summary

- Bosonic Gaussian Channels model real systems (thermal noise, amplification)
- Lower bound to classical capacity from displaced coherent states
- Gave upper bounds that are close to this lower bound: 1) bottlenecking 2) EPIs
- Entropy power inequality controls entropy production as two states combine at a beamsplitter
- Proof of EPI uses diffusion process that smooths arbitrary state towards gaussians, de Bruijin identity and Fisher information

Questions

- Entropy photon-number inequality: we showed $\lambda E(X)$ $+(1-\lambda) E(Y) \leq E\left(X+{ }_{\lambda} Y\right)$ for $E(X)=H(X)$ and $E(X)=e^{H(X) / n}$ for $E(X)=g^{-1}(H(X))$ we would get capacity exactly
- Quantum Fisher information is not unique: is there a semigroup/EPI pair for each FI?
- Application: supports rough estimates in discrete quadrature model
- Further applications. For classical: gaussian broadcast channel, quadratic gaussian distributed source coding/CEO problem, multiple-description coding, gaussian wiretap channel, ...
- Semi-groups as proof tool: more information-theoretic problems solved by physical smoothing process?

THANK YOU

