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measurement: x
outcome: a

measurement: y 
outcome: b

a, b � p(a, b|x, y)
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output: b

a, b � p(a, b|x, y)
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Bell inequality = linear function B s.t
                 for all local strategies   .

Bell
Polytope

|B(l)|≤1

B(p) > 1

Bell Inequality Violation

l|B(l)| � 1
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input: x
output: a

input: y
output: b

a, b � p(a, b|x, y)

Communication

Communication Complexity

Cost(   ) = number of bits exchanged in protocol    �

R(p) = inf
Π simulates p

Cost(Π)

Shared randomness
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input: x
output: a

input: y
output: b

a, b � p(a, b|x, y)

Information
Shared randomness

Information Complexity [CSWY01,
BYJKS04,
BBCR10]

x, y ⇠ µ

= what Alice and Bob learn about the other input from    .ICµ(⇧) �

ICµ(p) = inf
Π simulates p

ICµ(Π)
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input: x
output: a

input: y
output: b

a, b � p(a, b|x, y)

Information
Shared randomness

Information Complexity [CSWY01,
BYJKS04,
BBCR10]

x, y ⇠ µ

ICµ(p) = inf
Π simulates p

ICµ(Π)

ICµ(�) = I(T�; X|Y ) + I(T�; Y |X)
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Shared randomness
(LHV)

input: x
output: a or

input: y
output: b or

Output    

No
communication

 Efficiency (detection loophole)

? ?

�

�
a, b if a �= � and b �= �
� otherwise

x, y ⇠ µ
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Shared randomness
(LHV)

input: x
output: a or

input: y
output: b or

Output    

No
communication

 Efficiency (detection loophole)

? ?

�

efficiency   :� �(x, y), � = P�[�(x, y) �= �]

�
a, b if a �= � and b �= �
� otherwise

x, y ⇠ µ
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Shared randomness
(LHV)

input: x
output: a or

input: y
output: b or

Output    

No
communication

 Efficiency (detection loophole)

? ?

�

efficiency   :

correct :

� �(x, y), � = P�[�(x, y) �= �]

�
a, b if a �= � and b �= �
� otherwise

P(x,y)�µ,�[�(x, y) = a, b|�(x, y) �= �] = p(a, b|x, y)

x, y ⇠ µ
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Shared randomness
(LHV)

input: x
output: a or

input: y
output: b or

Output    

No
communication

 Efficiency (detection loophole)

? ?

�

efficiency   :

correct :

� �(x, y), � = P�[�(x, y) �= �]

�
a, b if a �= � and b �= �
� otherwise

P(x,y)�µ,�[�(x, y) = a, b|�(x, y) �= �] = p(a, b|x, y)

x, y ⇠ µ

Def: If � is the maximum e�ciency achieved by local protocol
which computes p; then e�(p) = 1

�
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Detection Loophole resistant 
Bell inequalities

The efficiency bound is the optimal value of a linear program.

Dual: maximal Bell inequality violation

max{B(p) : B(l) � 1, �l � L�}

Local strategies where 
players can abort

min{1/� : �l � L� �}
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Exponential violation

one way case

Thm[JPPG+10]: For any p which can be simulated
using an n-dimensional shared quantum state and
for any B s.t. |B(l)| � 1, �l � L then B(p) � O(n).

but there exists such p, B and C s.t.

B(l) � 1, �l � L�A and B(p) � 2

�
n�1
2C

n

[LLR12]

p
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Efficiency lower bound on CC
Theorem: [M01, BHMR03]

Given a protocol    using c bits of communication for p, we can 
construct a local protocol for p with efficiency          .

Using shared randomness, pick a 
random conversation M

M on x if M is consistent with x;
otherwise

M on y if M is consistent with y;
otherwise

2 {0, 1}c

? ?

Proof:

efficiency =        independent of (x,y)
correctness = conditioned on non aborting, same as �

2�c

 
                                                                

       x                                                              y         

� = 2�c
�
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Efficiency lower bound on CC

 
                                                                

       x                                                              y         

Using shared randomness, pick a 
random conversation M

M on x if M is consistent with x;
otherwise

M on y if M is consistent with y;
otherwise

2 {0, 1}c

? ?

Proof:

efficiency =        independent of (x,y)
correctness = conditioned on non aborting, same as �

2�c

Def: If � is the maximum e�ciency achieved by a local protocol
which computes p; then e�(p) = 1

� .

Thm: log(e�(p)) � R(p)
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Information
complexity

Partition 

Randomized
CC

Smooth
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= ?

=eff
eff

Def: relaxed efficiency = min{1/η : ∃l ∈ L⊥ ηxy
∀xy, (1− ε)η ≤ ηxy ≤ η}

Efficiency lower bound on IC
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Using shared randomness, pick a 
random conversation M

M on x if M is consistent with x;
otherwise

M on y if M is consistent with y;
otherwise

2 {0, 1}c

? ?

Proof:

efficiency =        independent of (x,y)
correctness = conditioned on non aborting, same as �

2�c

Efficiency lower bound on IC
Def: If � is the maximum e�ciency achieved by a local protocol
which computes p; then e�(p) = 1
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       x                                                              y         Proof:

� = 2�O(IC(p))

O(IC(p))

Efficiency lower bound on IC

Using sampling from [BW12]

but IC can be much 
smaller so more difficult 
to lower bound.
The proof uses 
sophisticated correlated 
rejection sampling 
techniques

Def: If � is the maximum e�ciency achieved by a local protocol
which computes p; then e�(p) = 1

� .

Thm: log(e�(p)) � R(p)
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Application: exponential separation 
between quantum CC and classical IC

[Bra12]

where the last equality holds with probability > 1� �. We note that we measure the information
revealed by ⇡ only against the distribution µ, whereas ⇡ will perform correctly on all four possible
pairs of inputs. This is important to achieve a contradiction, since computing x ^ y correctly on
inputs in the support of µ is trivial, as the function is identically 0 on this set.

It remains to show that a protocol that reveals almost no information over the distribution µ
cannot be computing x ^ y correctly. This part is very similar to previous proofs of the communi-
cation lower bounds for disjointness, and we omit the details here.

8 Directions and open problems

In this section we outline some open problems surrounding the interactive information complexity.
We group these problems by topic. Some of the problems are very concrete, while others take the
form of a potential research direction.

8.1 Properties of the interactive information complexity

The first set of problems has to do with the properties of IC (f, "), and its relationship with other
communication complexity measures. First and foremost, we would like to know whether interactive
computation can be compressed. In other words, whether the interactive information complexity
is equal to the communication complexity of any function:

Problem 1. Is it true that for all f , IC (f, ") = ⌦(R(f, "))?

Note that we know that IC (f, ")  R(f, "). An a�rmative answer to Problem 1 would prove a
strong direct sum theorem for communication complexity. If would also mean that it is impossible
to solve problems that have high communication complexity without violating the (information-
theoretic) privacy of the participants’ inputs. A negative answer to Problem 1 would give an
example of a problem that violate the direct sum conjecture for randomized communication com-
plexity [BR10]. The only general result in the direction of Problem 1 that we have is Theorem 5.3,
and it only gives a lower bound of the form IC (f, "/2) = ⌦(logR(f, ")) for constant " > 0.

A less ambitious problem is compressing communication to the external information cost of the
problem:

Problem 2. Is it true that for all f , ICext (f, ") = ⌦(R(f, "))?

As has been observed in [BBCR10], compressing a protocol to the external information cost
can be much easier than compressing to the internal information cost. While an a�rmative answer
to Problem 2 would have no direct-sum implications, it would still mean that any protocol for a
distribute function f that has high communication complexity must reveal a lot of information to
an observer, and thus cannot be information-theoretically secure.

Also of interest is the relationship between IC (f, ") and other quantities related to the com-
munication complexity of f . One notable problem here is the relationship between the quantum
communication complexity Q(f, ") and IC (f, "). While we know that there is an exponential gap
between R(f, ") and Q(f, ") [Raz99, KR11], it is not clear whether it carries over to the information
complexity.

Problem 3. What is the relationship between Q(f, ") and IC (f, ")? In particular are there problems
for which Q(f, ") = O(polylog(IC (f, ")))?

35
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Application: exponential separation 
between quantum CC and classical IC

[Bra12]

[KR11,KLLRX12]
e�(V SPn) = �(exp(n

1
3 ))

So, IC(V SPn) � log(e�(V SPn)) = �(n
1
3 )
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Shared randomness

input: x
output: a or

input: y
output: b or

Output    

No
communication

 Zero communication protocol

? ?

�
x, y ⇠ µ

efficiency :

correct :

�

�(x, y), � = P�[�(x, y) �= �]

�
a, b if a �= � and b �= �
� otherwise

P(x,y)�µ,�[�(x, y) = a, b|�(x, y) �= �] = p(a, b|x, y)

Shared quantum state

� Q�

Def: 

Thm: 

eff*

Quantum CC

�(p) = min{1/� : �q � Q� �}
Q(p) � log( �(p)) � log(�2(p))
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max{B(p) : B(q) � 1, �q � Q�}

Q�(p) � O(log( ��(p))) + log(log(1/�))

- Dual Formulation: Maximal Tsirelson inequality violation
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Summary

• Efficiency bound is a strong lower bound for CC
• New strong lower bound for quantum CC
• New strong lower bound for IC
• Exponential separation between classical CC and 

quantum IC
• Efficiency equivalent to Detection Loophole 

resistant Bell (Tsirelson) inequality violation
• Exponential Detection Loophole Bell Inequality 

Violation
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Open Questions

• Does IC = CC?
• Does eff = CC? Does eff* = QCC?
• New quantum CC lower bound using eff*? 

• Direct sum for eff?
• Other exponential Bell Inequality Violations?
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Thank you
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