Bell tests and applications to communication and information complexity

I.Kerenidis, S. Laplante, <u>V. Lerays</u>, J. Roland, D. Xiao

Bell Polytope [Bell69]

Bob

Local Hidden Variable

measurement: x measurement: y outcome: a No outcome: b communication

s.t $a, b \sim p(a, b|x, y)$

Alice

Bell Polytope [Bell69]

Shared Randomness

input: x

Alice

No input: y output: a communication output: b

s.t $a, b \sim p(a, b|x, y)$

Bell inequality = linear function B s.t $|B(l)| \leq 1$ for all local strategies l.

Communication Complexity

input: x output: a Shared randomness Communication

s.t $a, b \sim p(a, b|x, y)$

Bob

 $Cost(\Pi)$ = number of bits exchanged in protocol

$$R(p) = \inf_{\Pi \text{ simulates } p} Cost(\Pi)$$

 $IC_{\mu}(\Pi)$ = what Alice and Bob learn about the other input from Π .

$$IC_{\mu}(p) = \inf_{\Pi \text{ simulates } p} IC_{\mu}(\Pi)$$

$$IC_{\mu}(\Pi) = I(T_{\Pi}; X|Y) + I(T_{\Pi}; Y|X)$$

$$IC_{\mu}(p) = \inf_{\Pi \text{ simulates } p} IC_{\mu}(\Pi)$$

mardi 22 janvier 13

Detection Loophole resistant Bell inequalities

The efficiency bound is the optimal value of a linear program.

 $\min\{1/\eta: \exists l \in \mathcal{L}^{\perp} \text{ for p with efficiency } \eta\}$

Dual: maximal Bell inequality violation

 $\max\{B(p): B(l) \le 1, \forall l \in \mathcal{L}^{\perp}\}$

Local strategies where players can abort

Exponential violation

Thm[JPPG+10]: For any p which can be simulated using an n-dimensional shared quantum state and for any B s.t. $|B(l)| \leq 1, \forall l \in \mathcal{L}$ then $B(p) \leq O(n)$.

Efficiency lower bound on CC

<u>Theorem</u>: [M01, BHMR03] Given a protocol Π using c bits of communication for p, we can construct a local protocol for p with efficiency $\eta = 2^{-c}$.

M on x if M is consistent with x; \perp otherwise

M on y if M is consistent with y; $_$ otherwise

efficiency = 2^{-c} independent of (x,y) correctness = conditioned on non aborting, same as Π

Efficiency lower bound on CC

<u>Def</u>: If η is the maximum efficiency achieved by a local protocol which computes p; then $eff(p) = \frac{1}{\eta}$. <u>Thm</u>: $\log(eff(p)) \leq R(p)$

M on x if M is consistent with x; \perp otherwise

M on y if M is consistent with y; \perp otherwise

efficiency = 2^{-c} independent of (x,y) correctness = conditioned on non aborting, same as Π

Communication lower bounds

Communication lower bounds

Efficiency lower bound on IC Randomized CC Partition = eff CKW12]...complexity Smooth rectangle

Efficiency lower bound on IC

<u>**Def:</u> relaxed efficiency = \min\{1/\eta : \exists l \in \mathcal{L}^{\perp} \text{ computing p with efficiency } \eta_{xy} \\ \text{s.t } \forall xy, (1-\epsilon)\eta \leq \eta_{xy} \leq \eta\}</u>**

Efficiency lower bound on IC

<u>Def</u>: If η is the maximum efficiency achieved by a local protocol which computes p; then $eff(p) = \frac{1}{\eta}$. <u>Thm</u>: $\log(eff(p)) \leq R(p)$

M on x if M is consistent with x; \perp otherwise M on y if M is consistent with y; \perp otherwise

efficiency = 2^{-c} independent of (x,y) correctness = conditioned on non aborting, same as Π

Efficiency lower bound on IC

<u>Def</u>: If η is the maximum efficiency achieved by a local protocol which computes p; then $eff(p) = \frac{1}{\eta}$. <u>Thm</u>: $\log(eff(p)) \leq R(p) O(IC(p))$

Application: exponential separation between quantum CC and classical IC

Problem 3. What is the relationship between $Q(f, \varepsilon)$ and $\mathsf{IC}(f, \varepsilon)$? In particular are there problems for which $Q(f, \varepsilon) = O(\operatorname{polylog}(\mathsf{IC}(f, \varepsilon)))$? [Bral2]

Application: exponential separation between quantum CC and classical IC

Problem 3. What is the relationship between $Q(f, \varepsilon)$ and $\mathsf{IC}(f, \varepsilon)$? In particular are there problems for which $Q(f, \varepsilon) = O(\operatorname{polylog}(\mathsf{IC}(f, \varepsilon)))$? [Bral2]

> [KR11, KLLRX12] $\overline{eff}(VSP_n) = \Omega(exp(n^{\frac{1}{3}}))$ So, $IC(VSP_n) \ge \log(\overline{eff}(VSP_n)) = \Omega(n^{\frac{1}{3}})$

Application: exponential separation between quantum CC and classical IC

Problem 3. What is the relationship between $Q(f, \varepsilon)$ and $\mathsf{IC}(f, \varepsilon)$? In particular are there problems for which $Q(f, \varepsilon) = O(\operatorname{polylog}(\mathsf{IC}(f, \varepsilon)))$? [Bral2]

 $IC(VSP_n) = \Omega(n^{\frac{1}{3}})$ $Q^{\rightarrow}(VSP_n) = O(\log(n))$

[Raz99]

Def: eff^{*}(
$$p$$
) = min{ $1/\eta$: $\exists q \in Q^{\perp}$ for p with efficiency η }
Thm: $Q(p) \ge \log(eff^{*}(p)) \ge \log(\gamma_{2}(p))$
Quantum CC

ett*

Quantum efficiency bound Def: eff*(p) = min{ $1/\eta : \exists q \in Q^{\perp}$ for p with efficiency η } <u>Thm:</u> $Q(p) \ge \log(eff^{*}(p)) \ge \log(\gamma_{2}(p))$

eff*

$\begin{array}{ll} \text{Quantum} \\ \text{efficiency} \\ \text{bound} \\ \hline \text{Def:} \text{ eff}^*(p) = \min\{1/\eta : \exists q \in Q^{\perp} \text{ for p with efficiency } \eta\} \\ \hline \text{Thm:} \quad Q(p) \geq \log(\text{eff}^*(p)) \geq \log(\gamma_2(p)) \end{array}$

- One-way variant is tight (up to small error): only Alice can abort.

<u>Thm</u>: $Q^{\rightarrow}(p) \le O(\log(eff^{*\rightarrow}(p))) + \log(\log(1/\epsilon))$

$\begin{array}{l} \text{Quantum} \\ \text{efficiency} \\ \text{bound} \end{array} \begin{array}{l} \underline{\text{Def:}} \ \text{eff}^*(p) = \min\{1/\eta : \exists q \in Q^{\perp} \ \text{for p with efficiency η} \\ \underline{\text{Thm:}} \quad Q(p) \geq \log(\text{eff}^*(p)) \geq \log(\gamma_2(p)) \end{array}$

- One-way variant is tight (up to small error): only Alice can abort.

Thm:
$$Q^{\rightarrow}(p) \le O(\log(eff^{*\rightarrow}(p))) + \log(\log(1/\epsilon))$$

- Dual Formulation: Maximal Tsirelson inequality violation

$$eff^*(\mathbf{p}) = \max\{B(p) : B(q) \le 1, \forall q \in Q^{\perp}\}$$

Summary

- Efficiency bound is a strong lower bound for CC
- New strong lower bound for quantum CC
- New strong lower bound for IC
- Exponential separation between classical CC and quantum IC
- Efficiency equivalent to Detection Loophole resistant Bell (Tsirelson) inequality violation
- Exponential Detection Loophole Bell Inequality Violation

Open Questions

- Does IC = CC?
- Does eff = CC? Does eff* = QCC?
- New quantum CC lower bound using eff*?
- Direct sum for eff?
- Other exponential Bell Inequality Violations?

Thank you

Laplante, Lerays, Roland "Classical and quantum partition bound and detector inefficiency", ICALP 2012. quant-ph 1203.4155

Kerenidis, Laplante, Lerays, Roland, Xiao "Lower bounds on information complexity via zero-communication protocols an applications", FOCS 2012.quant-ph 1204.1505