Bell tests and applications to communication and

 information complexityI.Kerenidis, S. Laplante, V. Lerays, J. Roland, D. Xiao

Quantifying non locality

Information
Complexity
Bell Inequality
Violation

Quantifying non locality

Bell Inequality
Violation

Bell Inequality Violation

$$
B(p)>1
$$

Bell inequality $=$ linear function B s.t $|B(l)| \leq 1$ for all local strategies l.

Quantifying non locality

Bell Inequality Violation

Noise

resistance

Communication Complexity

$\operatorname{Cost}(\Pi)=$ number of bits exchanged in protocol

$$
R(p)=\inf _{\Pi \text { simulates } n} \operatorname{Cost}(\Pi)
$$

Quantifying non locality

Communication

 Complexity [Mau92]

Bell Inequality Violation
Information
Complexity

Information Complexity

$$
x, y \sim \mu
$$

s.t $a, b \sim p(a, b \mid x, y)$
input: y output: b
$I C_{\mu}(\Pi)=$ what Alice and Bob learn about the other input from Π.

$$
I C_{\mu}(p)=\inf _{\Pi \text { simulates } \mathrm{p}} I C_{\mu}(\Pi)
$$

Information Complexity

$$
x, y \sim \mu
$$

s.t $a, b \sim p(a, b \mid x, y)$
input: y output: b Information
input: x output: a

Shared randomness

Alice
$x, y \sim \mu$

$$
I C_{\mu}(\Pi)=I\left(T_{\Pi} ; X \mid Y\right)+I\left(T_{\Pi} ; Y \mid X\right)
$$

$$
I C_{\mu}(p)=\inf _{\Pi \text { simulates p }} I C_{\mu}(\Pi)
$$

Quantifying non locality

Communication Complexity [Mau92]

Bell Inequality

 Violation

Efficiency (detection loophole)

Output $\begin{cases}a, b & \text { if } a \neq \perp \text { and } b \neq \perp \\ \perp & \text { otherwise }\end{cases}$

Efficiency (detection loophole)

Output $\begin{cases}a, b & \text { if } a \neq \perp \text { and } b \neq \perp \\ \perp & \text { otherwise }\end{cases}$
efficiency η :

$$
\forall(x, y), \eta=\mathbb{P}_{\lambda}[\Pi(x, y) \neq \perp]
$$

Efficiency (detection loophole)

Shared randomness λ
(LHV)

communication

Output $\begin{cases}a, b & \text { if } a \neq \perp \text { and } b \neq \perp \\ \perp & \text { otherwise }\end{cases}$
efficiency η :

$$
\forall(x, y), \eta=\mathbb{P}_{\lambda}[\Pi(x, y) \neq \perp]
$$

correct : $\mathbb{P}_{(x, y) \sim \mu, \lambda}[\Pi(x, y)=a, b \mid \Pi(x, y) \neq \perp]=p(a, b \mid x, y)$

Efficiency (detection loophole)

Output $\begin{cases}a, b & \text { if } a \neq \perp \text { and } b \neq \perp \\ \perp & \text { otherwise }\end{cases}$
efficiency η :

$$
\forall(x, y), \eta=\mathbb{P}_{\lambda}[\Pi(x, y) \neq \perp]
$$

correct : $\mathbb{P}_{(x, y) \sim \mu, \lambda}[\Pi(x, y)=a, b \mid \Pi(x, y) \neq \perp]=p(a, b \mid x, y)$

Def: If η is the maximum efficiency achieved by local protocol which computes p; then $\operatorname{eff}(p)=\frac{1}{\eta}$

Quantifying non locality

Quantifying non locality

Detection Loophole resistant Bell inequalities

The efficiency bound is the optimal value of a linear program.

$$
\min \left\{1 / \eta: \exists l \in \mathcal{L}^{\perp} \text { for } \mathrm{p} \text { with efficiency } \eta\right\}
$$

Dual: maximal Bell inequality violation

$$
\max \left\{B(p): B(l) \leq 1, \forall l \in \mathcal{L}^{\perp}\right\}
$$

Local strategies where players can abort

Exponential violation

Thm[JPPG+10]: For any p which can be simulated using an n-dimensional shared quantum state and for any B s.t. $|B(l)| \leq 1, \forall l \in \mathcal{L}$ then $B(p) \leq O(n)$.
but there exists such p, B and C s.t. $B(l) \leq 1, \forall l \in \mathcal{L}^{\perp_{A}}$ and $B(p) \geq \frac{2 \frac{\sqrt{n-1}}{2 C}}{n}$ [LLR 12$]$
one way case
p is based on Hidden Matching [BJK04,BRSdW11]

Quantifying non locality

Quantifying non locality

Bell Inequality

Efficiency lower bound on CC

Theorem: [MOI, BHMR03]

Given a protocol Π using c bits of communication for p, we can construct a local protocol for p with efficiency $\eta=2^{-c}$.

M on x if M is consistent with x; \perp otherwise
M on y if M is consistent with y; \perp otherwise
efficiency $=2^{-c}$ independent of (\mathbf{x}, y)
correctness $=$ conditioned on non aborting, same as Π

Efficiency lower bound on CC

Def: If η is the maximum efficiency achieved by a local protocol which computes p; then $\operatorname{eff}(p)=\frac{1}{\eta}$.
 Thm: $\log (\operatorname{eff}(p)) \leq R(p)$

Proof:

X

Using shared randomness, pick a random conversation $\mathrm{M} \in\{0,1\}^{c}$

M on x if M is consistent with x;
\perp otherwise

M on y if M is consistent with y; \perp otherwise
efficiency $=2^{-c}$ independent of (\mathbf{x}, y)
correctness $=$ conditioned on non aborting, same as Π

Communication lower bounds

Communication lower bounds

Quantifying non locality

Efficiency lower bound on IC

Efficiency lower bound on IC

Efficiency lower bound on IC

Def: relaxed efficiency $=\min \left\{1 / \eta: \exists l \in \mathcal{L}^{\perp}\right.$ computing p with efficiency $\eta_{x y}$

$$
\text { s.t } \left.\forall x y,(1-\epsilon) \eta \leq \eta_{x y} \leq \eta\right\}
$$

Efficiency lower bound on IC

Def: If η is the maximum efficiency achieved by a local protocol which computes p; then $\operatorname{eff}(p)=\frac{1}{\eta}$.
 Thm: $\log (\operatorname{eff}(p)) \leq R(p)$

Proof:

X
M on x if M is consistent with x;
\perp otherwise

M on y if M is consistent with y; \perp otherwise
efficiency $=2^{-c}$ independent of (\mathbf{x}, \mathbf{y})
correctness $=$ conditioned on non aborting, same as Π

Efficiency lower bound on IC

Def: If η is the maximum efficiency achieved by a local protocol which computes p; then $\operatorname{eff}(p)=\frac{1}{\eta}$. Thm: $\log (\mathrm{eff}(p)) \leq R(p) O(I C(p))$

Proof:

but IC can be much smaller so more difficult to lower bound. The proof uses sophisticated correlated rejection sampling techniques

Using sampling from [BWI2]

Application: exponential separation between quantum CC and classical IC

Problem 3. What is the relationship between $Q(f, \varepsilon)$ and $\mathrm{IC}(f, \varepsilon)$?
In particular are there problems for which $Q(f, \varepsilon)=O(\operatorname{polylog}(\mathrm{IC}(f, \varepsilon)))$?
[Bral2]

Application: exponential separation between quantum CC and classical IC

Problem 3. What is the relationship between $Q(f, \varepsilon)$ and $\mathrm{IC}(f, \varepsilon)$?
In particular are there problems for which $Q(f, \varepsilon)=O(\operatorname{polylog}(\operatorname{IC}(f, \varepsilon)))$?
[Bral2]

```
[KR11,KLLRX12]
\(\overline{\mathrm{eff}}\left(V S P_{n}\right)=\Omega\left(\exp \left(n^{\frac{1}{3}}\right)\right)\)
So, \(I C\left(V S P_{n}\right) \geq \log \left(\overline{\operatorname{eff}}\left(V S P_{n}\right)\right)=\Omega\left(n^{\frac{1}{3}}\right)\)
```


Application: exponential separation between quantum CC and classical IC

Problem 3. What is the relationship between $Q(f, \varepsilon)$ and $\mathrm{IC}(f, \varepsilon)$? In particular are there problems for which $Q(f, \varepsilon)=O(\operatorname{polylog}(\operatorname{IC}(f, \varepsilon)))$? [Bral2]

$$
\begin{gathered}
I C\left(V S P_{n}\right)=\Omega\left(n^{\frac{1}{3}}\right) \\
Q^{\rightarrow}\left(V S P_{n}\right)=O(\log (n))
\end{gathered}
$$

[Raz99]

Quantifying non locality

Quantum Extension

Noise resistance

Quantum Extension

eff*

Def: $\operatorname{eff}^{*}(p)=\min \left\{1 / \eta: \exists q \in Q^{\perp}\right.$ for p with efficiency $\left.\eta\right\}$
Thm:

eff*

Def: $\operatorname{eff}^{*}(p)=\min \left\{1 / \eta: \exists q \in Q^{\perp}\right.$ for p with efficiency $\left.\eta\right\}$ Thm: $\quad Q(p) \geq \log \left(\operatorname{eff}^{*}(p)\right) \geq \log \left(\gamma_{2}(p)\right)$

eff*

Def: eff $^{*}(p)=\min \left\{1 / \eta: \exists q \in Q^{\perp}\right.$ for p with efficiency $\left.\eta\right\}$ Thm: $\quad Q(p) \geq \log \left(\mathrm{eff}^{*}(p)\right) \geq \log \left(\gamma_{2}(p)\right)$

- One-way variant is tight (up to small error): only Alice can abort.

Thm:

$$
Q^{\rightarrow}(p) \leq O\left(\log \left(\operatorname{eff}^{* \rightarrow}(p)\right)\right)+\log (\log (1 / \epsilon))
$$

eff*

Def: eff $^{*}(p)=\min \left\{1 / \eta: \exists q \in Q^{\perp}\right.$ for p with efficiency $\left.\eta\right\}$ Thm: $\quad Q(p) \geq \log \left(\operatorname{eff}^{*}(p)\right) \geq \log \left(\gamma_{2}(p)\right)$

- One-way variant is tight (up to small error): only Alice can abort.

Thm:

$$
Q^{\rightarrow}(p) \leq O\left(\log \left(\mathrm{eff}^{* \rightarrow}(p)\right)\right)+\log (\log (1 / \epsilon))
$$

- Dual Formulation: Maximal Tsirelson inequality violation

$$
\operatorname{eff}^{*}(\mathrm{p})=\max \left\{B(p): B(q) \leq 1, \forall q \in Q^{\perp}\right\}
$$

Summary

- Efficiency bound is a strong lower bound for CC
- New strong lower bound for quantum CC
- New strong lower bound for IC
- Exponential separation between classical CC and quantum IC
- Efficiency equivalent to Detection Loophole resistant Bell (Tsirelson) inequality violation
- Exponential Detection Loophole Bell Inequality Violation

Open Questions

- Does IC = CC?
- Does eff = CC? Does eff* = QCC?
- New quantum CC lower bound using eff*?
- Direct sum for eff?
- Other exponential Bell Inequality Violations?

Thank you

Laplante, Lerays, Roland "Classical and quantum partition bound and detector inefficiency", ICALP 2012. quant-ph I203.4I55
Kerenidis, Laplante, Lerays, Roland, Xiao
"Lower bounds on information complexity via zero-communication protocols an applications", FOCS 2012.quant-ph I204.I505

