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We introduce the tools of Log-Sobolev inequalities in the setting of quantum information
theory [1]. The appropriate framework for thinking about Log-Sobolev inequalities is iden-
tified for quantum system, which allows us to rederive or generalize many of the classical
results in the field [2]. Our work can be seen on the one hand as an extension/restriction to fi-
nite dimensional systems of [3], where non-commutative Log-Sobolev inequalities were first
considered. On the other hand, it can be seen as a generalization to quantum systems of the
semial work of Diaconis and Saloff-Coste [4], where Log-Sobolev inequalities were applied
to analyze the mixing times of finite Markov chains. We furthermore resolve the notion of
L,-regularity, which is the main technical difficulty which separates the quantum from the
classical theory, and we show that several important classes (unital and thermal) of quantum
processes are well behaved in this special sense. Finally, we consider the mixing times of
some specific examples, such as quantum expander maps.

Our analysis is restricted to finite dimentional state spaces. Therefore, by quantum Markov
process, we simply mean a cpt map (quantum channel) with identical input and output
space. We will restrict ourselves to cpt maps which form a one-parameter semigroup, and
perform the analysis at the level of the semigroup. Furthermore, we restrict ourselves to
primitive semigroups (i.e. ones with a unique full-rank stationary state) and to reversible
semigroups (i.e. those whose generator is Hermitian with respect to the inner product
(f.9), = tr [Vafiog)).

The e-mixing time of a primitive semigroup is the minimum time after which one can
certify that the output state is e close to the stationary state in trace norm, starting from any
initial state. If we denote o be the stationary state of a semigroup generated by the quantum
dynamical master equation d;p; = L(p;), where L is the Liouvillian. Then, the mixing time
is defined as

Tmiz(€) = min {t ||| ps — ||+ < e for all input states pg } (D

Hence, if one can find a systematic way of upper bounding ||p; — || by a monotonically
decreasing function in ¢, then we have a way of estimating the mixing time of the semigroup.
It turns our that such a function can always be found and has the form

lpe — o]y < Ae™" )

In particular, if one chooses b > A, where A is the spectral gap of £ - i.e. the smallest non-
zero magnitude of the real part of the spectrum of £ - then there always exists a ¢ independent
constant A satisfying the above bound. In [5], a systematic method was provided for choosing
the constant A when b = A (note that this is not always possible if the semigroup is not
reversible). One gets that for any state p,
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where x%(p,0) = tr [(p — o)I'; 1 (p — o)] is the x?-divergence, and oy, is the minimum
eigenvalue of the stationary state o. It is worth noting that 1/o ., is typically polynomial



in the dimention of the system, and hence for lattice systems is exponential in the number of
spins. This translates to a polynomial contribution of the prefactor to the mixing time.

The question which naturally arises is whether one can improve this bound in any system-
atic way. It turns out that Log-Sobolev inequalities provide exactly that. We show that the
following holds

lpe = o} < 25(pllo)e " < 21og [——e~, @
Omin
where S(pl||o) is the relative entropy, and « is a Log-Sobolev constant.

We can provide good estimates of o, for the two situations which are of particular in-
terest to us: primitive unital semigroups, and thermal semigroups. For primitive unital semi-
groups of a d-dimensional system, 0 = 1/d, and hence 1/0,;,, = d. For thermal semigroups
of an N-qubit system with Hamiltonian H at temperature (3, the stationary state will be given
by o5 = e P /tr [e7PH]. Itis a straightforward calculation to see that we have the bound

< PN (H) =N (1) )
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Provided that the Hamiltonian is locally bounded and has only a polynomial number of terms,
we get that for some positive constant ¢ € R, o1, < eV = O(ploy(d)).

This implies that for both of our cases of interest, the pre-factor in the Log-Sobolev bound
grows at most as log(d). Hence, its contribution the the mixing time is of the order of
log(log(d)). This indicates that the Log-Sobolev constant gives a very strong estimate on

the mixing time.

The majority of the work in [1] is devoted to characterising the constant « (in fact, a
one-parameter family of Log-Sobolev constants is identified). We review here, without any
technical detail, some of the results from [1].

Just as for the spectral gap, the Log-Sobolev constant is characterized variationally. Im-
portantly, the variational form (Dirichlet form) for the spectral gap and for the Log-Sobolev
constant are very similar, and hence one can sometimes mimic bounding methods on the spec-
tral gap to obtain bounds on the Log-Sobolev constant. The natural language for the analysis
of both x? and Log-Sobolev inequalities is the so-called non-commutative L, spaces [6]. We
present these tools in a self contained way.

One of our main results is that, for reversible semigroups, o < A, hence the mixing time
bounds are consistent. In applications, it is especially interesting when « and A are not of the
same order, because it indicates that the full spectrum of the channel contributes to the mixing
time behavior. Another important result, is that the Log-Sobolev inequalities are essentially
equivalent to the Hypercontractivity of the semigroup. Intuitively, this correspondance can
be understood by the fact that the Log-Sobolev inequalities are an infinitesimal formulation
of the global convergence behavior characterized by Hypercontractivity of the semigroup.
As the Hypercontractive inequalities sweep through an entire family of operator norms, they
provide a very complete characterization of contraction of the semigroup, which is why the
mixing time bound based on the Log-Sobolev constant is often more accurate than the one
based on the spectral gap alone. See [7] for a recent review of applications of Hypercontrac-
tivity to problems in quantum information theory.

As applications, we consider reversible unital channels, and thermal channels. Using the
methods introduced in [1], we show that the Log Sobolev constant of the random unitary
channel Try(p) = ZJD:l U;pU JT , where each Uj is chosen randomly according to the
Haar measure can be bounded as
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Although T’rys is not a semigroup, using an elementary correspondence between channels and
semigroups, we are able to make sense of the notion of a Log-Sobolev constant for a channel.
It is important to note that the Log-Sobolev constant of the random unitary channel (quantum
expander [8]) is upper and lower bounded by expressions which scale as 1/logd. Hence,
this provides very strong evidence that the “randomness production” of quantum expanders
cannot be faster that O(log d) in general.

Finally, we mention a very appealing operational interpretation of the Log-Sobolev in-
equality of thermal semigroups[? ]; i.e. semigroups which drive any inital state into the
Gibbs state of some Hamiltonian H at temperature 5. Then we can show that Log-Sobolev
constant is simply the wheighted entropy production [10], or equivalently,

on = inf 9, log[F(p:) — F(pp)]le=o. @)

where F'(p) = tr [pH] — %S (p) is the Free-Energy of state p, and pg is the Gibbs staet of H.
In other words, for thermal maps, the Log-Sobolev constant can be interpreted as the minimal
normalized rate of change of the free energy of the system.

To conclude, we briefly discuss potential further application of the framework introduced
in [1]. We have to point out, that we have to a large extent only discussed the formal setting of
Log-Sobolev inequalities, and that many relevant applications remain to be worked out. In the
classical setting, Log-Sobolev inequalities and hypercontractivity have been extremely useful
tools. One area where they have proved to be paramount is in analyzing the mixing properties
of spin systems on a lattice under Glauber dynamics. Several authors have been able to
show a number of very tight mixing results [11], in particular relating spacial and temporal
mixing in a one-to-one fashion. It would be very desirable to generalize these results to the
quantum setting. More generally, a number of methods, including block renormalization
transformations and comparison theorems, have been developed in the classical setting in
order to explicitly calculate the Log-Sobolev constant for specific systems.

Most importantly perhaps, the Log-Sobolev constant (and not the spectral gap) of a Li-
ouvillian £ is the natural open systems analogue of the gap of the Hamiltonian for closed
systems for many statements in the many body theory of lattice systems. For instance, a
systems size independant Log-Sobolev constant of a local Liouvillian is expected to imply i)
clustering of correlations in the stationary state, ii) and Area Law (with logarithmic correc-
tions), and iii) stability of stationary states [12].
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