Merged Talk:

A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks

Marco Tomamichel*, Masahito Hayashi ${ }^{\dagger *}$ arXiv: 1208.1478

Second Order Asymptotics for Quantum Hypothesis Testing

Ke Li*
arXiv: 1208.1400
*CQT, National University of Singapore
${ }^{\dagger}$ Graduate School of Mathematics, Nagoya University

Beijing, January 25, QIP 2013

Quantum Hypothesis Testing

Theory A
(Established Theory)
Null Hypothesis

Theory B
(New Theory)
Alternate Hypothesis

Theory A predicts that System is in state ρ.

Theory B predicts that System is in state σ.

Quantum Hypothesis Testing

Null Hypothesis: ρ; Alternate Hypothesis: σ.

- Devise a test, a POVM $\{Q, 1-Q\}$ with $0 \leq Q \leq 1$.
- If Q clicks, you accept the null hypothesis.

Quantum Hypothesis Testing

Null Hypothesis: ρ; Alternate Hypothesis: σ.

- Devise a test, a POVM $\{Q, 1-Q\}$ with $0 \leq Q \leq 1$.
- If Q clicks, you accept the null hypothesis.
- Define the error of the first and second kind,

$$
\alpha(Q)=\operatorname{tr}(\rho(1-Q)) \quad \text { and } \quad \beta(Q)=\operatorname{tr}(\sigma Q) .
$$

Quantum Hypothesis Testing

Null Hypothesis: ρ; Alternate Hypothesis: σ.

- Devise a test, a POVM $\{Q, 1-Q\}$ with $0 \leq Q \leq 1$.
- If Q clicks, you accept the null hypothesis.
- Define the error of the first and second kind,

$$
\alpha(Q)=\operatorname{tr}(\rho(1-Q)) \quad \text { and } \quad \beta(Q)=\operatorname{tr}(\sigma Q) .
$$

- The error of the second kind, β, validates the null hypothesis even though the alternate hypothesis is correct. This is undesirable - you will reject the theory and not write a paper.

Quantum Hypothesis Testing

Null Hypothesis: ρ; Alternate Hypothesis: σ.

- Devise a test, a POVM $\{Q, 1-Q\}$ with $0 \leq Q \leq 1$.
- If Q clicks, you accept the null hypothesis.
- Define the error of the first and second kind,

$$
\alpha(Q)=\operatorname{tr}(\rho(1-Q)) \quad \text { and } \quad \beta(Q)=\operatorname{tr}(\sigma Q)
$$

- The error of the second kind, β, validates the null hypothesis even though the alternate hypothesis is correct. This is undesirable - you will reject the theory and not write a paper.
- The error of the first kind, α, validates the alternate hypothesis even though the null hypothesis is correct. This is fatal - you will write a crackpot paper!

Quantum Hypothesis Testing

- We are interested in the minimal β that can be achieved if α is required to be smaller than a given constant, ε, i.e. the SDP

$$
\beta_{\rho, \sigma}^{\varepsilon}:=\min _{\substack{0 \leq Q \leq 1 \\ \alpha(Q) \leq \varepsilon}} \beta(Q)=\min _{\substack{0 \leq Q \leq 1 \\ \operatorname{tr}(\rho Q) \geq 1-\varepsilon}} \operatorname{tr}(\sigma Q) .
$$

Quantum Hypothesis Testing

- We are interested in the minimal β that can be achieved if α is required to be smaller than a given constant, ε, i.e. the SDP

$$
\beta_{\rho, \sigma}^{\varepsilon}:=\min _{\substack{0 \leq Q \leq 1 \\ \alpha(Q) \leq \varepsilon}} \beta(Q)=\min _{\substack{0 \leq Q \leq 1 \\ \operatorname{tr}(\rho Q) \geq 1-\varepsilon}} \operatorname{tr}(\sigma Q) .
$$

- Alternatively, one may consider the exponent of β, the divergence

$$
D_{h}^{\varepsilon}(\rho \| \sigma):=-\log \left(\frac{\beta_{\rho, \sigma}^{\varepsilon}}{1-\varepsilon}\right), \quad 0<\varepsilon<1
$$

Quantum Hypothesis Testing

- We are interested in the minimal β that can be achieved if α is required to be smaller than a given constant, ε, i.e. the SDP

$$
\beta_{\rho, \sigma}^{\varepsilon}:=\min _{\substack{0 \leq Q \leq 1 \\ \alpha(Q) \leq \varepsilon}} \beta(Q)=\min _{\substack{0 \leq Q \leq 1 \\ \operatorname{tr}(\rho Q) \geq 1-\varepsilon}} \operatorname{tr}(\sigma Q) .
$$

- Alternatively, one may consider the exponent of β, the divergence

$$
D_{h}^{\varepsilon}(\rho \| \sigma):=-\log \left(\frac{\beta_{\rho, \sigma}^{\varepsilon}}{1-\varepsilon}\right), \quad 0<\varepsilon<1
$$

- The additive normalization $\log (1-\varepsilon)$ ensures (Dupuis+'12)

$$
D_{h}^{\varepsilon}(\rho \| \sigma) \geq 0 \quad \text { and } \quad D_{h}^{\varepsilon}(\rho \| \sigma)=0 \Longleftrightarrow \rho=\sigma .
$$

- It also satisfies data-processing, $D_{h}^{\varepsilon}(\rho \| \sigma) \geq D_{h}^{\varepsilon}(\mathcal{E}(\rho) \| \mathcal{E}(\sigma))$.

I.i.d. Asymptotic Expansion of D_{h}^{ϵ}

- We consider n independent repetitions of the experiment, i.e. the states $\rho^{\otimes n}$ and $\sigma^{\otimes n}$.

I.i.d. Asymptotic Expansion of D_{h}^{ε}

- We consider n independent repetitions of the experiment, i.e. the states $\rho^{\otimes n}$ and $\sigma^{\otimes n}$.
- A quantum generalization of Stein's Lemma (Hiai\&Petz'91) and its strong converse (Ogawa\&Nagaoka'00) imply

$$
D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right)=n D(\rho \| \sigma)+o(n)
$$

I.i.d. Asymptotic Expansion of D_{h}^{ε}

- We consider n independent repetitions of the experiment, i.e. the states $\rho^{\otimes n}$ and $\sigma^{\otimes n}$.
- A quantum generalization of Stein's Lemma (Hiai\&Petz'91) and its strong converse (Ogawa\&Nagaoka'00) imply

$$
D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right)=n D(\rho \| \sigma)+o(n)
$$

- This was recently improved (Audenaert,Mosonyi\&Verstraete'12)

$$
\begin{aligned}
& D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right) \leq n D(\rho \| \sigma)+O(\sqrt{n}) \quad \text { and } \\
& D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right) \geq n D(\rho \| \sigma)-O(\sqrt{n})
\end{aligned}
$$

by giving explicit upper and lower bounds. However, the terms proportional to \sqrt{n} in the upper and lower bounds are different.
(They do not have the same sign!)

I.i.d. Asymptotic Expansion of D_{h}^{ε}

- We consider n independent repetitions of the experiment, i.e. the states $\rho^{\otimes n}$ and $\sigma^{\otimes n}$.
- A quantum generalization of Stein's Lemma (Hiai\&Petz'91) and its strong converse (Ogawa\&Nagaoka'00) imply

$$
D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right)=n D(\rho \| \sigma)+o(n)
$$

- This was recently improved (Audenaert,Mosonyi\&Verstraete'12)

$$
\begin{aligned}
& D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right) \leq n D(\rho \| \sigma)+O(\sqrt{n}) \quad \text { and } \\
& D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right) \geq n D(\rho \| \sigma)-O(\sqrt{n})
\end{aligned}
$$

by giving explicit upper and lower bounds. However, the terms proportional to \sqrt{n} in the upper and lower bounds are different.
(They do not have the same sign!)

- Our goal is to investigate the second order term, $O(\sqrt{n})$.

Main Result

Theorem

For two states ρ, σ with $\operatorname{supp}\{\sigma\} \supseteq \operatorname{supp}\{\rho\}$, and $0<\varepsilon<1$, we find

$$
\begin{aligned}
& D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right) \leq n D(\rho \| \sigma)+\sqrt{n V(\rho \| \sigma)} \Phi^{-1}(\varepsilon)+2 \log n+O(1), \quad \text { and } \\
& D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right) \geq n D(\rho \| \sigma)+\sqrt{n V(\rho \| \sigma)} \Phi^{-1}(\varepsilon)-O(1)
\end{aligned}
$$

- D and V are the mean and variance of $\log \rho-\log \sigma$ under ρ, i.e.

$$
V(\rho \| \sigma):=\operatorname{tr}\left(\rho(\log \rho-\log \sigma-D(\rho \| \sigma))^{2}\right)
$$

- Φ is the cumulative normal distribution function, and $\Phi^{-1}(\varepsilon)$ is

Main Result

Theorem

For two states ρ, σ with $\operatorname{supp}\{\sigma\} \supseteq \operatorname{supp}\{\rho\}$, and $0<\varepsilon<1$, we find

$$
\begin{aligned}
& D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right) \leq n D(\rho \| \sigma)+\sqrt{n V(\rho \| \sigma)} \Phi^{-1}(\varepsilon)+2 \log n+O(1), \quad \text { and } \\
& D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right) \geq n D(\rho \| \sigma)+\sqrt{n V(\rho \| \sigma)} \Phi^{-1}(\varepsilon)-O(1)
\end{aligned}
$$

- We also have bounds on the constant terms, enabling us to calculate upper and lower bounds on $D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right)$ for finite n.

Main Result

Theorem

For two states ρ, σ with $\operatorname{supp}\{\sigma\} \supseteq \operatorname{supp}\{\rho\}$, and $0<\varepsilon<1$, we find

$$
\begin{aligned}
& D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right) \leq n D(\rho \| \sigma)+\sqrt{n V(\rho \| \sigma)} \Phi^{-1}(\varepsilon)+2 \log n+O(1), \quad \text { and } \\
& D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right) \geq n D(\rho \| \sigma)+\sqrt{n V(\rho \| \sigma)} \Phi^{-1}(\varepsilon)-O(1)
\end{aligned}
$$

- We also have bounds on the constant terms, enabling us to calculate upper and lower bounds on $D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right)$ for finite n.
- Classically, the result is known to hold with both logarithmic terms equal to $\frac{1}{2} \log n$ (e.g. Strassen'62,Polyanskiy,Poor\&Verdú'10).

Main Result

Theorem

For two states ρ, σ with $\operatorname{supp}\{\sigma\} \supseteq \operatorname{supp}\{\rho\}$, and $0<\varepsilon<1$, we find

$$
\begin{aligned}
& D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right) \leq n D(\rho \| \sigma)+\sqrt{n V(\rho \| \sigma)} \Phi^{-1}(\varepsilon)+2 \log n+O(1), \quad \text { and } \\
& D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right) \geq n D(\rho \| \sigma)+\sqrt{n V(\rho \| \sigma)} \Phi^{-1}(\varepsilon)-O(1) .
\end{aligned}
$$

- We also have bounds on the constant terms, enabling us to calculate upper and lower bounds on $D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right)$ for finite n.
- Classically, the result is known to hold with both logarithmic terms equal to $\frac{1}{2} \log n$ (e.g. Strassen'62,Polyanskiy,Poor\&Verdú'10).
- One ingredient of both proof is the Berry-Essèen theorem, which quantizes the convergence of the distribution of a sum of i.i.d. random variables to a normal distribution.
- Intuitively, our results can be seen as a quantum, entropic formulation of the central limit theorem.

Smooth Entropies

- We also investigate the smooth min-entropy (Renner'05), where it was known (T,Colbeck\&Renner'09) that

$$
\begin{aligned}
& H_{\min }^{\varepsilon}\left(A^{n} \mid B^{n}\right)_{\rho^{\otimes n}} \leq n H(A \mid B)_{\rho}+O(\sqrt{n}), \quad \text { and } \\
& H_{\min }^{\varepsilon}\left(A^{n} \mid B^{n}\right)_{\rho^{\otimes n}} \geq n H(A \mid B)_{\rho}-O(\sqrt{n})
\end{aligned}
$$

Smooth Entropies

- We also investigate the smooth min-entropy (Renner'05), where it was known (T,Colbeck\&Renner'09) that

$$
\begin{aligned}
& H_{\min }^{\varepsilon}\left(A^{n} \mid B^{n}\right)_{\rho^{\otimes n}} \leq n H(A \mid B)_{\rho}+O(\sqrt{n}), \quad \text { and } \\
& H_{\min }^{\varepsilon}\left(A^{n} \mid B^{n}\right)_{\rho^{\otimes n}} \geq n H(A \mid B)_{\rho}-O(\sqrt{n}) .
\end{aligned}
$$

- We derive the following expansion

$$
\begin{aligned}
& H_{\text {min }}^{\varepsilon}\left(A^{n} \mid B^{n}\right)_{\rho^{\otimes n}} \leq n H(A \mid B)_{\rho}+\sqrt{n V(A \mid B)_{\rho}} \Phi^{-1}\left(\varepsilon^{2}\right)+O(\log n), \\
& H_{\text {min }}^{\varepsilon}\left(A^{n} \mid B^{n}\right)_{\rho^{\otimes n}} \geq n H(A \mid B)_{\rho}+\sqrt{n V(A \mid B)_{\rho}} \Phi^{-1}\left(\varepsilon^{2}\right)-O(\log n),
\end{aligned}
$$

where $H(A \mid B)_{\rho}=D\left(\rho_{A B} \| 1_{A} \otimes \rho_{B}\right)$ and $V(A \mid B)_{\rho}=V\left(\rho_{A B} \| 1_{A} \otimes \rho_{B}\right)$.

Smooth Entropies

- We also investigate the smooth min-entropy (Renner'05), where it was known (T,Colbeck\&Renner'09) that

$$
\begin{aligned}
& H_{\text {min }}^{\varepsilon}\left(A^{n} \mid B^{n}\right)_{\rho^{\otimes n}} \leq n H(A \mid B)_{\rho}+O(\sqrt{n}), \quad \text { and } \\
& H_{\text {min }}^{\varepsilon}\left(A^{n} \mid B^{n}\right)_{\rho^{\otimes n}} \geq n H(A \mid B)_{\rho}-O(\sqrt{n})
\end{aligned}
$$

- We derive the following expansion

$$
\begin{aligned}
& H_{\text {min }}^{\varepsilon}\left(A^{n} \mid B^{n}\right)_{\rho^{\otimes n}} \leq n H(A \mid B)_{\rho}+\sqrt{n V(A \mid B)_{\rho}} \Phi^{-1}\left(\varepsilon^{2}\right)+O(\log n), \\
& H_{\text {min }}^{\varepsilon}\left(A^{n} \mid B^{n}\right)_{\rho^{\otimes n}} \geq n H(A \mid B)_{\rho}+\sqrt{n V(A \mid B)_{\rho}} \Phi^{-1}\left(\varepsilon^{2}\right)-O(\log n),
\end{aligned}
$$

where $H(A \mid B)_{\rho}=D\left(\rho_{A B} \| 1_{A} \otimes \rho_{B}\right)$ and $V(A \mid B)_{\rho}=V\left(\rho_{A B} \| 1_{A} \otimes \rho_{B}\right)$.

- Both hypothesis testing and smooth entropies have various applications in information theory, some of which we explore next.

Randomness Extraction against Side Information

- Consider a CQ random source that outputs states

$$
\rho_{X E}=\sum_{x} p_{x}|x\rangle\langle x| \otimes \rho_{E}^{x} .
$$

- Investigate the amount of randomness that can be extracted from X such that it is independent of E and the random seed, S.

Randomness Extraction against Side Information

- Consider a CQ random source that outputs states

$$
\rho_{X E}=\sum_{x} p_{x}|x\rangle\langle x| \otimes \rho_{E}^{x} .
$$

- Investigate the amount of randomness that can be extracted from X such that it is independent of E and the random seed, S.
- A protocol $\mathcal{P}: X S \rightarrow Z S$ extracts a random number Z from X, producing a state $\tau_{Z E S}$ when applied to $\rho_{X E} \otimes \rho_{S}$.

Randomness Extraction against Side Information

- Consider a CQ random source that outputs states

$$
\rho_{X E}=\sum_{x} p_{x}|x\rangle\langle x| \otimes \rho_{E}^{\times} .
$$

- Investigate the amount of randomness that can be extracted from X such that it is independent of E and the random seed, S.
- A protocol $\mathcal{P}: X S \rightarrow Z S$ extracts a random number Z from X, producing a state $\tau_{Z E S}$ when applied to $\rho_{X E} \otimes \rho_{S}$.
- For any $0 \leq \varepsilon<1$ and $\rho_{X E}$ a CQ state, we define

$$
\ell^{\varepsilon}(X \mid E):=\max \left\{\ell \in \mathbb{N}\left|\exists \mathcal{P}, \sigma_{E}:|Z|=2^{\ell} \wedge \tau_{Z E S} \approx^{\varepsilon} 2^{-\ell} 1_{Z} \otimes \sigma_{E} \otimes \tau_{S}\right\}\right.
$$

Randomness Extraction against Side Information

- Consider a CQ random source that outputs states $\rho_{X E}=\sum_{x} p_{x}|x\rangle\langle x| \otimes \rho_{E}^{x}$.
- Investigate the amount of randomness that can be extracted from X such that it is independent of E and the random seed, S.
- A protocol $\mathcal{P}: X S \rightarrow Z S$ extracts a random number Z from X, producing a state $\tau_{Z E S}$ when applied to $\rho_{X E} \otimes \rho_{S}$.
- For any $0 \leq \varepsilon<1$ and $\rho_{X E}$ a CQ state, we define

$$
\ell^{\varepsilon}(X \mid E):=\max \left\{\ell \in \mathbb{N}\left|\exists \mathcal{P}, \sigma_{E}:|Z|=2^{\ell} \wedge \tau_{Z E S} \approx^{\varepsilon} 2^{-\ell} 1_{Z} \otimes \sigma_{E} \otimes \tau_{S}\right\}\right.
$$

- This quantity can be characterized in terms of the smooth min-entropy (Renner'05). We tighten this and show

Theorem

Consider an i.i.d. source $\rho_{X^{n} E^{n}}=\rho_{X E}^{\otimes n}$ and $0<\varepsilon<1$. Then,

$$
\ell^{\varepsilon}\left(X^{n} \mid E^{n}\right)=n H(X \mid E)+\sqrt{n V(X \mid E)} \Phi^{-1}\left(\varepsilon^{2}\right) \pm O(\log n)
$$

Data Compression with Side Information

- Consider a CQ random source that outputs states

$$
\rho_{X B}=\sum_{x} p_{x}|x\rangle\langle x| \otimes \rho_{B}^{\times} .
$$

- Find the minimum compression length of X if quantum side information B is available at the decoder.

Data Compression with Side Information

- Consider a CQ random source that outputs states

$$
\rho_{X B}=\sum_{x} p_{x}|x\rangle\langle x| \otimes \rho_{B}^{\times} .
$$

- Find the minimum compression length of X if quantum side information B is available at the decoder.
- A protocol \mathcal{P} encodes X into M and then produces an estimate X^{\prime} of X from B and M.

Data Compression with Side Information

- Consider a CQ random source that outputs states

$$
\rho_{X B}=\sum_{x} p_{x}|x\rangle\langle x| \otimes \rho_{B}^{\times} .
$$

- Find the minimum compression length of X if quantum side information B is available at the decoder.
- A protocol \mathcal{P} encodes X into M and then produces an estimate X^{\prime} of X from B and M.
- For any $0 \leq \varepsilon<1$ and $\rho_{X B}$ a CQ state, we define

$$
m^{\varepsilon}(X \mid B)_{\rho}:=\min \left\{m \in \mathbb{N}\left|\exists \mathcal{P}:|M|=2^{m} \wedge P\left[X \neq X^{\prime}\right] \leq \varepsilon\right\}\right.
$$

Data Compression with Side Information

- Consider a CQ random source that outputs states $\rho_{X B}=\sum_{x} p_{x}|x\rangle\langle x| \otimes \rho_{B}^{\chi}$.
- Find the minimum compression length of X if quantum side information B is available at the decoder.
- A protocol \mathcal{P} encodes X into M and then produces an estimate X^{\prime} of X from B and M.
- For any $0 \leq \varepsilon<1$ and $\rho_{X B}$ a CQ state, we define

$$
m^{\varepsilon}(X \mid B)_{\rho}:=\min \left\{m \in \mathbb{N}\left|\exists \mathcal{P}:|M|=2^{m} \wedge P\left[X \neq X^{\prime}\right] \leq \varepsilon\right\}\right.
$$

- This quantity can be characterized using hypothesis testing (H\&Nagaoka'04). We tighten this and show

Theorem

Consider an i.i.d. source $\rho_{X^{n} B^{n}}=\rho_{X B}^{\otimes n}$ and $0<\varepsilon<1$. Then,

$$
m^{\varepsilon}\left(X^{n} \mid B^{n}\right)=n H(X \mid B)-\sqrt{n V(X \mid B)} \Phi^{-1}(\varepsilon) \pm O(\log n)
$$

Example of Second Order Asymptotics

- Consider transmission of $|0\rangle,|1\rangle$ through a Pauli channel to B (phase and bit flip independent) with environment E. This yields the states

$$
\begin{aligned}
& \rho_{X B}=\frac{1}{2} \sum|x\rangle\langle x| \otimes((1-p)|x\rangle\langle x|+p|1-x\rangle\langle 1-x|) \\
& \rho_{X E}=\frac{1}{2} \sum|x\rangle\langle x| \otimes\left|\phi^{x}\right\rangle\left\langle\phi^{x}\right|, \quad\left|\phi^{x}\right\rangle=\sqrt{p}|0\rangle+(-1)^{x} \sqrt{1-p}|1\rangle
\end{aligned}
$$

Example of Second Order Asymptotics

- Consider transmission of $|0\rangle,|1\rangle$ through a Pauli channel to B (phase and bit flip independent) with environment E. This yields the states

$$
\begin{aligned}
& \rho_{X B}=\frac{1}{2} \sum|x\rangle\langle x| \otimes((1-p)|x\rangle\langle x|+p|1-x\rangle\langle 1-x|), \\
& \rho_{X E}=\frac{1}{2} \sum|x\rangle\langle x| \otimes\left|\phi^{x}\right\rangle\left\langle\phi^{x}\right|, \quad\left|\phi^{x}\right\rangle=\sqrt{p}|0\rangle+(-1)^{x} \sqrt{1-p}|1\rangle .
\end{aligned}
$$

- Plot of first and second order asymptotic approximation of $\frac{1}{n} \ell^{\varepsilon}(X \mid E)$ and $\frac{1}{n} m^{\varepsilon}(X \mid B)$ for $p=0.05$ and $\varepsilon=10^{-6}$.

Example of Finite Block Length Bounds

Different Layers of Approximation

Class	Role	Quantities	
Class 1	Optimal performance of protocol. Calculation is very difficult.	$m^{\varepsilon}(X \mid B)_{\rho}$ $\ell^{\varepsilon}(X \mid B)_{\rho}$,	
Class 2	One-shot bound for general source. SDP tractable for small systems.	$H_{h}^{\varepsilon}(A \mid B)_{\rho}$, $H_{\min }^{\varepsilon}(A \mid B)_{\rho}$	
Class 3	Quantum information spectrum.	$D_{s}^{\varepsilon}(\rho \\| \sigma)$	
Class 4	Classical information spectrum. Approximately possible for i.i.d.	$D_{s}^{\varepsilon}\left(P_{0, \rho, \sigma} \\| P_{1, \rho, \sigma}\right)$	
Class 5	Second order asymptotics. Calculation is easy for large n.	$n H(X \mid B)+$	
$\sqrt{n} s(X \mid B) \Phi^{-1}(\varepsilon)$			

Classes	Difference	Method
$1 \rightarrow 2$	$O(\log n)$	Random coding and monotonicity.
$2 \rightarrow 4$	$O(\log n)$	Relations between entropies.
$4 \rightarrow 5$	$O(1)$	Berry-Essèen Theorem.

Different Layers of Approximation

Class	Role	Quantities	
Class 1	Optimal performance of protocol. Calculation is very difficult.	$m^{\varepsilon}(X \mid B)_{\rho}$ $\ell^{\varepsilon}(X \mid B)_{\rho}$,	
Class 2	One-shot bound for general source. SDP tractable for small systems.	$H_{h}^{\varepsilon}(A \mid B)_{\rho}$, $H_{\min }^{\varepsilon}(A \mid B)_{\rho}$	
Class 3	Quantum information spectrum.	$D_{s}^{\varepsilon}(\rho \\| \sigma)$	
Class 4	Classical information spectrum. Approximately possible for i.i.d.	$D_{s}^{\varepsilon}\left(P_{0, \rho, \sigma} \\| P_{1, \rho, \sigma}\right)$	
Class 5	Second order asymptotics. Calculation is easy for large n.	$n H(X \mid B)+$	
$\sqrt{n} s(X \mid B) \Phi^{-1}(\varepsilon)$			

Classes	Difference	Method
$1 \rightarrow 2$	$O(\log n)$	Random coding and monotonicity.
$2 \rightarrow 4$	$O(\log n)$	Relations between entropies.
$4 \rightarrow 5$	$O(1)$	Berry-Essèen Theorem.

Different Layers of Approximation

Class	Role	Quantities	
Class 1	Optimal performance of protocol. Calculation is very difficult.	$m^{\varepsilon}(X \mid B)_{\rho}$ $\ell^{\varepsilon}(X \mid B)_{\rho}$,	
Class 2	One-shot bound for general source. SDP tractable for small systems.	$H_{h}^{\varepsilon}(A \mid B)_{\rho}$, $H_{\min }^{\varepsilon}(A \mid B)_{\rho}$	
Class 3	Quantum information spectrum.	$D_{s}^{\varepsilon}(\rho \\| \sigma)$	
Class 4	Classical information spectrum. Approximately possible for i.i.d.	$D_{s}^{\varepsilon}\left(P_{0, \rho, \sigma} \\| P_{1, \rho, \sigma}\right)$	
Class 5	Second order asymptotics. Calculation is easy for large n.	$n H(X \mid B)+$	
$\sqrt{n} s(X \mid B) \Phi^{-1}(\varepsilon)$			

Classes	Difference	Method
$1 \rightarrow 2$	$O(\log n)$	Random coding and monotonicity.
$2 \rightarrow 4$	$O(\log n)$	Relations between entropies.
$4 \rightarrow 5$	$O(1)$	Berry-Essèen Theorem.

Conclusion / Differences \& Overlap

- The methods employed in the two papers are conceptually different.
- The approach employed by Li is more direct, leads to tighter bounds for finite n and better coefficients for the logarithmic term.
- The approach of T\&H is more general.

Result	T\&H	Li
2nd order asymptotics for hypothesis testing	\checkmark	\checkmark
Finite n bounds for hypothesis testing	\checkmark	\checkmark
2nd order asymptotics of smooth min-entropy	\checkmark	
Application to data compression and randomness extraction with quantum side information	\checkmark	
Hierarchy of information quantities, linking operational quantities, one-shot entropies and asymptotic analysis of quantum tasks	\checkmark	

Open Questions

- There is a difference of $2 \log n$ between the current upper and lower bounds on $D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right)$. Is this fundamental, i.e. do there exist ρ and σ for which these bounds are tight? Or can this be further improved? (Classically, the upper and lower bounds only differ in the constant.)

Open Questions

- There is a difference of $2 \log n$ between the current upper and lower bounds on $D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right)$. Is this fundamental, i.e. do there exist ρ and σ for which these bounds are tight? Or can this be further improved? (Classically, the upper and lower bounds only differ in the constant.)
- What about more general states, e.g. if only one state is i.i.d. or permutation symmetric states?

Open Questions

- There is a difference of $2 \log n$ between the current upper and lower bounds on $D_{h}^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right)$. Is this fundamental, i.e. do there exist ρ and σ for which these bounds are tight? Or can this be further improved? (Classically, the upper and lower bounds only differ in the constant.)
- What about more general states, e.g. if only one state is i.i.d. or permutation symmetric states?

Thank you for your attention.

