Finite blocklength converse bounds for quantum channels (arXiv:1210.4722)

Will Matthews (University of Cambridge) Stephanie Wehner (National University of Singapore)

Introduction: Codes

Classical data over quantum channels.

Introduction: Codes

Classical data over quantum channels.
Entanglement-assisted (EA) code \mathcal{Z} of size M :

Introduction: Codes

Classical data over quantum channels.
Entanglement-assisted (EA) code \mathcal{Z} of size M :

For uniform source $\mathcal{S}_{M}\left(\operatorname{Pr}\left(W=w \mid \mathcal{S}_{M}\right)=1 / M\right)$:
Average input $\rho_{\mathrm{A}}=\frac{1}{M} \sum_{w=1}^{M} \rho(w)_{\mathrm{A}}$.

Introduction: Codes

Classical data over quantum channels.
Entanglement-assisted (EA) code \mathcal{Z} of size M :

For uniform source $\mathcal{S}_{M}\left(\operatorname{Pr}\left(W=w \mid \mathcal{S}_{M}\right)=1 / M\right)$:
Average input $\rho_{\mathrm{A}}=\frac{1}{M} \sum_{w=1}^{M} \rho(w)_{\mathrm{A}}$.
Error probability $\epsilon=\operatorname{Pr}\left(\hat{W} \neq W \mid \mathcal{E}, \mathcal{Z}, \mathcal{S}_{M}\right)$.

Introduction: Code performance and capacities

- $M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$ denotes largest size of entanglement-assisted code with average input ρ and error probability ϵ for \mathcal{E}.

Introduction: Code performance and capacities

- $M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$ denotes largest size of entanglement-assisted code with average input ρ and error probability ϵ for \mathcal{E}.
- $M_{\epsilon}^{\mathrm{E}}(\mathcal{E})=\max _{\rho} M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$

Introduction: Code performance and capacities

- $M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$ denotes largest size of entanglement-assisted code with average input ρ and error probability ϵ for \mathcal{E}.
- $M_{\epsilon}^{\mathrm{E}}(\mathcal{E})=\max _{\rho} M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$
- $M_{\epsilon}(\rho, \mathcal{E})$ and $M_{\epsilon}(\mathcal{E})$ denote the corresponding quantities for unassisted codes ($\eta_{\mathrm{A}_{\mathrm{E}} \mathrm{B}_{\mathrm{E}}}$ separable).

Introduction: Code performance and capacities

- $M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$ denotes largest size of entanglement-assisted code with average input ρ and error probability ϵ for \mathcal{E}.
- $M_{\epsilon}^{\mathrm{E}}(\mathcal{E})=\max _{\rho} M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$
- $M_{\epsilon}(\rho, \mathcal{E})$ and $M_{\epsilon}(\mathcal{E})$ denote the corresponding quantities for unassisted codes ($\eta_{\mathrm{A}_{\mathrm{E}} \mathrm{B}_{\mathrm{E}}}$ separable).
- For a channel $\mathcal{E}=\left(\mathcal{E}^{n}\right)_{n \in \mathbb{N}}$, where \mathcal{E}^{n} is CPTP map for n channel uses (taking states of A^{n} to states of B^{n}): $C^{\mathrm{E}}(\mathcal{E}):=\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{1}{n} \log M_{\epsilon}^{\mathrm{E}}\left(\mathcal{E}^{n}\right)$

Introduction: Code performance and capacities

- $M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$ denotes largest size of entanglement-assisted code with average input ρ and error probability ϵ for \mathcal{E}.
- $M_{\epsilon}^{\mathrm{E}}(\mathcal{E})=\max _{\rho} M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$
- $M_{\epsilon}(\rho, \mathcal{E})$ and $M_{\epsilon}(\mathcal{E})$ denote the corresponding quantities for unassisted codes ($\eta_{\mathrm{A}_{\mathrm{E}} \mathrm{B}_{\mathrm{E}}}$ separable).
- For a channel $\mathcal{E}=\left(\mathcal{E}^{n}\right)_{n \in \mathbb{N}}$, where \mathcal{E}^{n} is CPTP map for n channel uses (taking states of A^{n} to states of B^{n}): $C^{\mathrm{E}}(\mathcal{E}):=\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{1}{n} \log M_{\epsilon}^{\mathrm{E}}\left(\mathcal{E}^{n}\right)$
- Asymptotics: For channels with i.i.d. uses $\mathcal{E}^{n}=\mathcal{E}^{\otimes n}$:

Introduction: Code performance and capacities

- $M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$ denotes largest size of entanglement-assisted code with average input ρ and error probability ϵ for \mathcal{E}.
- $M_{\epsilon}^{\mathrm{E}}(\mathcal{E})=\max _{\rho} M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$
- $M_{\epsilon}(\rho, \mathcal{E})$ and $M_{\epsilon}(\mathcal{E})$ denote the corresponding quantities for unassisted codes ($\eta_{\mathrm{A}_{\mathrm{E}} \mathrm{B}_{\mathrm{E}}}$ separable).
- For a channel $\mathcal{E}=\left(\mathcal{E}^{n}\right)_{n \in \mathbb{N}}$, where \mathcal{E}^{n} is CPTP map for n channel uses (taking states of A^{n} to states of B^{n}): $C^{\mathrm{E}}(\mathcal{E}):=\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{1}{n} \log M_{\epsilon}^{\mathrm{E}}\left(\mathcal{E}^{n}\right)$
- Asymptotics: For channels with i.i.d. uses $\mathcal{E}^{n}=\mathcal{E}^{\otimes n}$:
- $C^{\mathrm{E}}(\mathcal{E})$ has single letter BSST formula (arXiv:quant-ph/0106052).

Introduction: Code performance and capacities

- $M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$ denotes largest size of entanglement-assisted code with average input ρ and error probability ϵ for \mathcal{E}.
- $M_{\epsilon}^{\mathrm{E}}(\mathcal{E})=\max _{\rho} M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$
- $M_{\epsilon}(\rho, \mathcal{E})$ and $M_{\epsilon}(\mathcal{E})$ denote the corresponding quantities for unassisted codes ($\eta_{\mathrm{A}_{\mathrm{E}} \mathrm{B}_{\mathrm{E}}}$ separable).
- For a channel $\mathcal{E}=\left(\mathcal{E}^{n}\right)_{n \in \mathbb{N}}$, where \mathcal{E}^{n} is CPTP map for n channel uses (taking states of A^{n} to states of B^{n}):
$C^{\mathrm{E}}(\mathcal{E}):=\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{1}{n} \log M_{\epsilon}^{\mathrm{E}}\left(\mathcal{E}^{n}\right)$
- Asymptotics: For channels with i.i.d. uses $\mathcal{E}^{n}=\mathcal{E}^{\otimes n}$:
- $C^{\mathrm{E}}(\mathcal{E})$ has single letter BSST formula (arXiv:quant-ph/0106052).
- $C(\mathcal{E})$ is regularised Holevo bound.

Introduction: Code performance and capacities

- $M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$ denotes largest size of entanglement-assisted code with average input ρ and error probability ϵ for \mathcal{E}.
- $M_{\epsilon}^{\mathrm{E}}(\mathcal{E})=\max _{\rho} M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$
- $M_{\epsilon}(\rho, \mathcal{E})$ and $M_{\epsilon}(\mathcal{E})$ denote the corresponding quantities for unassisted codes ($\eta_{\mathrm{A}_{\mathrm{E}} \mathrm{B}_{\mathrm{E}}}$ separable).
- For a channel $\mathcal{E}=\left(\mathcal{E}^{n}\right)_{n \in \mathbb{N}}$, where \mathcal{E}^{n} is CPTP map for n channel uses (taking states of A^{n} to states of B^{n}):
$C^{\mathrm{E}}(\mathcal{E}):=\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{1}{n} \log M_{\epsilon}^{\mathrm{E}}\left(\mathcal{E}^{n}\right)$
- Asymptotics: For channels with i.i.d. uses $\mathcal{E}^{n}=\mathcal{E}^{\otimes n}$:
- $C^{\mathrm{E}}(\mathcal{E})$ has single letter BSST formula (arXiv:quant-ph/0106052).
- $C(\mathcal{E})$ is regularised Holevo bound.
- Both reduce to Shannon capacity formula for classical channels.

Background and motivation

Converse and achievability bounds ${ }^{1}$ on the rate $\frac{1}{n} \log M_{\epsilon}\left(\mathcal{E}^{n}\right)$ when $\epsilon=1 / 1000$ and \mathcal{E} is the BSC with $\operatorname{Pr}($ bit flip $)=0.11$.

${ }^{1}$ Polyanskiy, Poor, Verdú. IEEE Trans. Inf. T., 56, 2307-2359

Background and motivation

- Datta \& Hsieh (arXiv:1105.3321) give converse (and achievability) for $M_{\epsilon}^{\mathrm{E}}(\mathcal{E})$, but it has some disadvantages (diverges as $\epsilon \rightarrow 0$; not clear how to compute).

Background and motivation

- Datta \& Hsieh (arXiv:1105.3321) give converse (and achievability) for $M_{\epsilon}^{\mathrm{E}}(\mathcal{E})$, but it has some disadvantages (diverges as $\epsilon \rightarrow 0$; not clear how to compute).
- Polyanskiy-Poor-Verdú gives a classical converse which relates coding to hypothesis testing. It is simple, and powerful enough to derive many important classical converse bounds, so we want a quantum generalisation.

Background and motivation

- Datta \& Hsieh (arXiv:1105.3321) give converse (and achievability) for $M_{\epsilon}^{\mathrm{E}}(\mathcal{E})$, but it has some disadvantages (diverges as $\epsilon \rightarrow 0$; not clear how to compute).
- Polyanskiy-Poor-Verdú gives a classical converse which relates coding to hypothesis testing. It is simple, and powerful enough to derive many important classical converse bounds, so we want a quantum generalisation.
- The converse in Wang \& Renner (arXiv:1007.5456) for $M_{\epsilon}(\mathcal{E})$ is almost such a generalisation for unassisted codes (see also Hayashi's book).

Background and motivation

- Datta \& Hsieh (arXiv:1105.3321) give converse (and achievability) for $M_{\epsilon}^{\mathrm{E}}(\mathcal{E})$, but it has some disadvantages (diverges as $\epsilon \rightarrow 0$; not clear how to compute).
- Polyanskiy-Poor-Verdú gives a classical converse which relates coding to hypothesis testing. It is simple, and powerful enough to derive many important classical converse bounds, so we want a quantum generalisation.
- The converse in Wang \& Renner (arXiv:1007.5456) for $M_{\epsilon}(\mathcal{E})$ is almost such a generalisation for unassisted codes (see also Hayashi's book).
- We obtain a hierarchy of bounds based on quantum hypothesis testing of a bipartite system with restricted measurements, including a novel converse for EA codes, and a generalisation of Wang-Renner converse for unassisted codes.

Background: Quantum hypothesis testing

H_{0} : State is $\tau_{0} . H_{1}$: State is τ_{1}.

Test T for H_{0} : The element of a binary POVM $\{T, \mathbb{1}-T\}$ for the outcome "accept H_{0} "

Background: Quantum hypothesis testing

H_{0} : State is $\tau_{0} . H_{1}$: State is τ_{1}.

Test T for H_{0} : The element of a binary POVM $\{T, \mathbb{1}-T\}$ for the outcome "accept H_{0} ".

For a class of tests Ω we define

Background: Quantum hypothesis testing

H_{0} : State is $\tau_{0} . H_{1}$: State is τ_{1}.

Test T for H_{0} : The element of a binary POVM $\{T, \mathbb{1}-T\}$ for the outcome "accept H_{0} ".

$$
\begin{aligned}
\alpha(T) & :=\operatorname{Pr}\left(\text { reject } H_{0} \mid T, H_{0}\right)=1-\operatorname{Tr} \tau_{0} T \\
\beta(T) & :=\operatorname{Pr}(\text { false negative) }, \\
\left.H_{0} \mid T, H_{1}\right)=\operatorname{Tr} \tau_{1} T & \text { (false positive). }
\end{aligned}
$$

Background: Quantum hypothesis testing

H_{0} : State is $\tau_{0} . H_{1}$: State is τ_{1}.

Test T for H_{0} : The element of a binary POVM $\{T, \mathbb{1}-T\}$ for the outcome "accept H_{0} ".

$$
\begin{aligned}
\alpha(T) & :=\operatorname{Pr}\left(\text { reject } H_{0} \mid T, H_{0}\right)=1-\operatorname{Tr} \tau_{0} T \\
\beta(T) & :=\operatorname{Pr}(\text { false negative) }, \\
\left.H_{0} \mid T, H_{1}\right)=\operatorname{Tr} \tau_{1} T & \text { (false positive). }
\end{aligned}
$$

For a class of tests Ω we define

$$
\beta_{\epsilon}^{\boldsymbol{\Omega}}\left(\tau_{0}, \tau_{1}\right):=\min _{T \in \boldsymbol{\Omega}} \beta\left(T, \tau_{1}\right), \text { subject to } \alpha\left(T, \tau_{0}\right) \leq \epsilon
$$

Background: Classes of test for bipartite system

- L: Local tests - Test on joint outcome of local measurements (coordinated only by shared randomness).

LC1: One-way communication from Alice to Bob.

Background: Classes of test for bipartite system

- L: Local tests - Test on joint outcome of local measurements (coordinated only by shared randomness).

Background: Classes of test for bipartite system

- L: Local tests - Test on joint outcome of local measurements (coordinated only by shared randomness).
- LC1: One-way communication from Alice to Bob.
- ALL: All tests. Symbol omitted e.g. $\beta_{\epsilon}=\beta_{\epsilon}^{\text {ALL }}$

Background: Classes of test for bipartite system

- L: Local tests - Test on joint outcome of local measurements (coordinated only by shared randomness).
- LC1: One-way communication from Alice to Bob.
- PPT: $0 \leq \Gamma_{\mathrm{B}}\left[T_{\tilde{\mathrm{A} B}}\right] \leq \mathbb{1}$.

Background: Classes of test for bipartite system

- L: Local tests - Test on joint outcome of local measurements (coordinated only by shared randomness).
- LC1: One-way communication from Alice to Bob.
- PPT: $0 \leq \Gamma_{\mathrm{B}}\left[T_{\tilde{\mathrm{A} B}}\right] \leq \mathbb{1}$.
- ALL: All tests. Symbol omitted e.g. $\beta_{\epsilon}=\beta_{\epsilon}^{\text {ALL }}$.

Background: Classes of test for bipartite system

- L: Local tests - Test on joint outcome of local measurements (coordinated only by shared randomness).
- LC1: One-way communication from Alice to Bob.
- PPT: $0 \leq \Gamma_{\mathrm{B}}\left[T_{\tilde{\mathrm{A} B}}\right] \leq \mathbb{1}$.
- ALL: All tests. Symbol omitted e.g. $\beta_{\epsilon}=\beta_{\epsilon}^{\text {ALL }}$.

$$
\mathbf{L} \subset \mathbf{L C} 1 \subset \mathbf{P P T} \subset \mathbf{A L L}
$$

Main idea: Codes to tests

From a CPTP map \mathcal{E} and an EA code with average input state ρ_{A} and error ϵ when used with \mathcal{E} we construct:

Main idea: Codes to tests

From a CPTP map \mathcal{E} and an EA code with average input state ρ_{A} and error ϵ when used with \mathcal{E} we construct:

The state $\{\rho ; \mathcal{E}\}_{\tilde{A} B}:=\mathcal{E}_{\mathrm{B} \mid \mathrm{A}}\left[\psi_{\tilde{\mathrm{A} A}}\right]$ given by \mathcal{E} acting on a certain purification of $\rho: \psi_{\tilde{\mathrm{A} A}}:=\rho_{\mathrm{A}}^{\frac{1}{2}} \tilde{\Phi}_{\mathrm{A} \tilde{\mathrm{A}}} \rho_{\mathrm{A}}^{\frac{1}{2}}, \quad\left(\tilde{\Phi}_{\mathrm{A} \tilde{\mathrm{A}}}:=\sum_{i j}|i\rangle_{\tilde{\mathrm{A}}}|i\rangle_{\mathrm{A}}\left\langle\left. j\right|_{\tilde{\mathrm{A}}}\left\langle\left. j\right|_{\mathrm{A}}\right)\right.\right.$.

Main idea: Codes to tests

From a CPTP map \mathcal{E} and an EA code with average input state ρ_{A} and error ϵ when used with \mathcal{E} we construct:

The state $\{\rho ; \mathcal{E}\}_{\tilde{A} B}:=\mathcal{E}_{\mathrm{B} \mid \mathrm{A}}\left[\psi_{\tilde{\mathrm{A} A}}\right]$ given by \mathcal{E} acting on a certain purification of $\rho: \psi_{\tilde{\mathrm{A} A}}:=\rho_{\mathrm{A}}^{\frac{1}{2}} \tilde{\Phi}_{\mathrm{A} \tilde{\mathrm{A}}} \rho_{\mathrm{A}}^{\frac{1}{2}}, \quad\left(\tilde{\Phi}_{\mathrm{A} \tilde{\mathrm{A}}}:=\sum_{i j}|i\rangle_{\tilde{\mathrm{A}}}|i\rangle_{\mathrm{A}}\left\langle\left. j\right|_{\tilde{\mathrm{A}}}\left\langle\left. j\right|_{\mathrm{A}}\right)\right.\right.$.

A test $T_{\tilde{A} B}$ such that $\operatorname{Tr}\{\rho ; \mathcal{E}\}_{\tilde{A} B} T_{\tilde{A} B}=1-\epsilon$.

Main idea: Codes to tests

From a CPTP map \mathcal{E} and an EA code with average input state ρ_{A} and error ϵ when used with \mathcal{E} we construct:

The state $\{\rho ; \mathcal{E}\}_{\tilde{A} B}:=\mathcal{E}_{\mathrm{B} \mid \mathrm{A}}\left[\psi_{\tilde{\mathrm{A} A}}\right]$ given by \mathcal{E} acting on a certain purification of $\rho: \psi_{\tilde{\mathrm{A} A}}:=\rho_{\mathrm{A}}^{\frac{1}{2}} \tilde{\Phi}_{\mathrm{A} \tilde{\mathrm{A}}} \rho_{\mathrm{A}}^{\frac{1}{2}}, \quad\left(\tilde{\Phi}_{\mathrm{A} \tilde{\mathrm{A}}}:=\sum_{i j}|i\rangle_{\tilde{\mathrm{A}}}|i\rangle_{\mathrm{A}}\left\langle\left. j\right|_{\tilde{\mathrm{A}}}\left\langle\left. j\right|_{\mathrm{A}}\right)\right.\right.$.

A test $T_{\tilde{A} B}$ such that $\operatorname{Tr}\{\rho ; \mathcal{E}\}_{\tilde{A} B} T_{\tilde{A} B}=1-\epsilon$.

Unassisted codes map to local tests.

Suppose there exists a code of size M, average input ρ, with error ϵ for \mathcal{E}, which maps to a test $T_{\tilde{A} B}$ in class Ω.

Suppose there exists a code of size M, average input ρ, with error ϵ for \mathcal{E}, which maps to a test $T_{\tilde{A} B}$ in class Ω.

$$
H_{0}: \text { State is }\{\rho ; \mathcal{E}\}_{\tilde{A} B}
$$

Suppose there exists a code of size M, average input ρ, with error ϵ for \mathcal{E}, which maps to a test $T_{\tilde{A} B}$ in class Ω.

H_{1} : State is $\rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}$

Suppose there exists a code of size M, average input ρ, with error ϵ for \mathcal{E}, which maps to a test $T_{\tilde{A} B}$ in class Ω.

H_{1} : State is $\rho_{\mathrm{A}}^{*} \sigma_{\mathrm{B}}$

- $\alpha\left(T_{\tilde{A} B}\right)=1-\operatorname{Tr}\{\rho ; \mathcal{E}\}_{\tilde{A} B} T_{\tilde{A} B}=\epsilon$.

Suppose there exists a code of size M, average input ρ, with error ϵ for \mathcal{E}, which maps to a test $T_{\tilde{A} B}$ in class Ω.

H_{1} : State is $\rho_{\mathrm{A}}^{*} \sigma_{\mathrm{B}}$

- $\alpha\left(T_{\tilde{\mathrm{A} B}}\right)=1-\operatorname{Tr}\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}} T_{\tilde{\mathrm{A}} \mathrm{B}}=\epsilon$.

For a CPTP map \mathcal{F} with constant output σ_{B} the success probability is $1 / M$, so

- $\beta\left(T_{\tilde{\mathrm{A}} \mathrm{B}}\right)=\operatorname{Tr} \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}} T_{\tilde{\mathrm{A}} \mathrm{B}}=1 / M$.

Suppose there exists a code of size M, average input ρ, with error ϵ for \mathcal{E}, which maps to a test $T_{\tilde{A} B}$ in class Ω.

H_{1} : State is $\rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}$

- $\alpha\left(T_{\tilde{\mathrm{A} B}}\right)=1-\operatorname{Tr}\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}} T_{\tilde{\mathrm{A}} \mathrm{B}}=\epsilon$.

For a CPTP map \mathcal{F} with constant output σ_{B} the success probability is $1 / M$, so

- $\beta\left(T_{\tilde{\mathrm{A}} \mathrm{B}}\right)=\operatorname{Tr} \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}} T_{\tilde{\mathrm{A}} \mathrm{B}}=1 / M$.

Therefore $\forall \sigma_{\mathrm{B}}: \beta_{\epsilon}^{\Omega}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right) \leq 1 / M$,

Suppose there exists a code of size M, average input ρ, with error ϵ for \mathcal{E}, which maps to a test $T_{\tilde{A} B}$ in class Ω.
H_{0} : State is $\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A}} \mathrm{B}}$

$$
\psi_{\tilde{A} \mathrm{~A}} \rho_{\mathrm{A}}
$$

H_{1} : State is $\rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}$

- $\alpha\left(T_{\tilde{\mathrm{A} B}}\right)=1-\operatorname{Tr}\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}} T_{\tilde{\mathrm{A}} \mathrm{B}}=\epsilon$.

For a CPTP map \mathcal{F} with constant output σ_{B} the success probability is $1 / M$, so

- $\beta\left(T_{\tilde{\mathrm{A}} \mathrm{B}}\right)=\operatorname{Tr} \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}} T_{\tilde{\mathrm{A}} \mathrm{B}}=1 / M$.

Therefore $\forall \sigma_{\mathrm{B}}: \beta_{\epsilon}^{\boldsymbol{\Omega}}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right) \leq 1 / M$, or

$$
M \leq B_{\epsilon}^{\boldsymbol{\Omega}}(\rho, \mathcal{E}):=\left(\max _{\sigma} \beta_{\epsilon}^{\boldsymbol{\Omega}}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)\right)^{-1}
$$

The main bounds

$$
B_{\epsilon}^{\Omega}(\rho, \mathcal{E}):=\left(\max _{\sigma} \beta_{\epsilon}^{\Omega}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A}}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)\right)^{-1}
$$

Defining $B_{\epsilon}^{\Omega}(\mathcal{E}):=\max _{\rho} B^{\Omega}(\rho, \mathcal{E})$ we have:
For entanglement-assisted codes: $M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E}) \leq B_{\epsilon}(\rho, \mathcal{E})$, and

$$
M_{\epsilon}^{\mathrm{E}}(\mathcal{E}) \leq B_{\epsilon}(\mathcal{E}) ;
$$

The main bounds

$$
B_{\epsilon}^{\Omega}(\rho, \mathcal{E}):=\left(\max _{\sigma} \beta_{\epsilon}^{\Omega}\left(\{\rho ; \mathcal{E}\}_{\tilde{A} B}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)\right)^{-1}
$$

Defining $B_{\epsilon}^{\Omega}(\mathcal{E}):=\max _{\rho} B^{\Omega}(\rho, \mathcal{E})$ we have:
For entanglement-assisted codes: $M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E}) \leq B_{\epsilon}(\rho, \mathcal{E})$, and

$$
M_{\epsilon}^{\mathrm{E}}(\mathcal{E}) \leq B_{\epsilon}(\mathcal{E}) ;
$$

For unassisted codes: Since these map to local tests, for any class
$\boldsymbol{\Omega}$ containing $\mathbf{L}, M_{\epsilon}(\rho, \mathcal{E}) \leq B_{\epsilon}^{\boldsymbol{\Omega}}(\rho, \mathcal{E})$, and

$$
M_{\epsilon}(\mathcal{E}) \leq B_{\epsilon}^{\Omega}(\mathcal{E}) .
$$

Constructing the test

Constructing the test

Constructing the test

Constructing the test

$$
\rho_{\mathrm{A}}=\frac{1}{M} \sum_{w} \operatorname{Tr}_{\mathrm{G}} U(w)_{\mathrm{GA}} \psi_{\mathrm{GA}} U(w)_{\mathrm{GA}}^{\dagger} \quad \vdots \quad A \quad \vdots \quad \nu=A \mu A^{\dagger}
$$

Constructing the test

$$
\rho_{\mathrm{A}}=\frac{1}{M} \sum_{w} \operatorname{Tr}_{\mathrm{G}} U(w)_{\mathrm{GA}} \psi_{\mathrm{GA}} U(w)_{\mathrm{GA}}^{\dagger} \quad \vdots \quad A \text { 立 } \quad \nu=A \mu A^{\dagger}
$$

Constructing the test

Constructing the test

$$
\rho_{\mathrm{A}}=\frac{1}{M} \sum_{w} \operatorname{Tr}_{\mathrm{G}} U(w)_{\mathrm{GA}} \psi_{\mathrm{GA}} U(w)_{\mathrm{GA}}^{\dagger} \quad \vdots A A \frac{\vdots}{\nu} \quad \nu=A \mu A^{\dagger}
$$

$1-\epsilon=\operatorname{Tr}\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}} T_{\tilde{\mathrm{A}} \mathrm{B}}$ where, with $K(w)_{\mathrm{GA}}:=U(w)_{\mathrm{GA}} \psi_{\mathrm{GA}}^{\frac{1}{2}}$,

Constructing the test

$$
\rho_{\mathrm{A}}=\frac{1}{M} \sum_{w} \operatorname{Tr}_{\mathrm{G}} U(w)_{\mathrm{GA}} \psi_{\mathrm{GA}} U(w)_{\mathrm{GA}}^{\dagger} \quad \mu \quad A \quad \nu=A \mu A^{\dagger} .
$$

$1-\epsilon=\operatorname{Tr}\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}} T_{\tilde{\mathrm{A}} \mathrm{B}}$ where, with $K(w)_{\mathrm{GA}}:=U(w)_{\mathrm{GA}} \psi_{\mathrm{GA}}^{\frac{1}{2}}$, $T_{\tilde{\mathrm{A} B}}=\frac{1}{M} \sum_{w=1}^{M} \rho_{\tilde{\mathrm{A}}}^{-\frac{1}{2} *}\left(\operatorname{Tr}_{\tilde{\mathrm{G}}} K(w)_{\tilde{\mathrm{G}} \tilde{\mathrm{A}}}^{*} D(w)_{\tilde{\mathrm{G}} \tilde{\mathrm{A} B}} K(w)_{\tilde{\mathrm{G}} \tilde{\mathrm{A}}}^{\mathrm{T}}\right) \rho_{\tilde{\mathrm{A}}}^{-\frac{1}{2} *}$

Properties of the bounds

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:

Properties of the bounds

- They reduce to the PPV converse for classical channels.

Properties of the bounds

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:

Properties of the bounds

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
- Can recover converse part of BSST.

Properties of the bounds

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
- Can recover converse part of BSST.
- $B_{\epsilon}(\mathcal{E})^{-1}$ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)

Properties of the bounds

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
- Can recover converse part of BSST.
- $B_{\epsilon}(\mathcal{E})^{-1}$ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)
- Bounds for unassisted codes:

Properties of the bounds

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
- Can recover converse part of BSST.
- $B_{\epsilon}(\mathcal{E})^{-1}$ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)
- Bounds for unassisted codes:
- The upper bound for $M_{\epsilon}(\mathcal{E})$ in Wang-Renner (arXiv:1007.5456) is equivalent to $\boldsymbol{\Omega}=\mathbf{L C} 1$ and fixing $\sigma=\mathcal{E}[\rho]$, which is no stronger than $B_{\epsilon}^{\mathrm{LC} \mathbf{C}}(\mathcal{E})$ and can be worse.

Properties of the bounds

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
- Can recover converse part of BSST.
- $B_{\epsilon}(\mathcal{E})^{-1}$ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)
- Bounds for unassisted codes:
- The upper bound for $M_{\epsilon}(\mathcal{E})$ in Wang-Renner (arXiv:1007.5456) is equivalent to $\boldsymbol{\Omega}=\mathbf{L C} 1$ and fixing $\sigma=\mathcal{E}[\rho]$, which is no stronger than $B_{\epsilon}^{\mathrm{LC} 1}(\mathcal{E})$ and can be worse.
- L bound can be stronger (but less nice in other ways).

Properties of the bounds

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
- Can recover converse part of BSST.
- $B_{\epsilon}(\mathcal{E})^{-1}$ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)
- Bounds for unassisted codes:
- The upper bound for $M_{\epsilon}(\mathcal{E})$ in Wang-Renner (arXiv:1007.5456) is equivalent to $\boldsymbol{\Omega}=\mathbf{L C 1}$ and fixing $\sigma=\mathcal{E}[\rho]$, which is no stronger than $B_{\epsilon}^{\mathrm{LC} 1}(\mathcal{E})$ and can be worse.
- \mathbf{L} bound can be stronger (but less nice in other ways).
- $B_{\epsilon}^{\mathrm{LC} 1}(\mathcal{E})$, and hence $B_{\epsilon}^{\mathrm{L}}(\mathcal{E})$ can recover Holevo bound (see WR).

Properties of the bounds

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
- Can recover converse part of BSST.
- $B_{\epsilon}(\mathcal{E})^{-1}$ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)
- Bounds for unassisted codes:
- The upper bound for $M_{\epsilon}(\mathcal{E})$ in Wang-Renner (arXiv:1007.5456) is equivalent to $\boldsymbol{\Omega}=\mathbf{L C 1}$ and fixing $\sigma=\mathcal{E}[\rho]$, which is no stronger than $B_{\epsilon}^{\mathrm{LC} 1}(\mathcal{E})$ and can be worse.
- \mathbf{L} bound can be stronger (but less nice in other ways).
- $B_{\epsilon}^{\mathrm{LC} 1}(\mathcal{E})$, and hence $B_{\epsilon}^{\mathrm{L}}(\mathcal{E})$ can recover Holevo bound (see WR).
- $B_{\epsilon}^{\mathrm{PPT}}(\mathcal{E})^{-1}$ is given by a semidefinite program (SDP).

Properties of the bounds ${ }^{2}$

$$
B_{\epsilon}^{\boldsymbol{\Omega}}(\mathcal{E})=\left(\min _{\rho} \max _{\sigma} \beta_{\epsilon}^{\boldsymbol{\Omega}}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)\right)^{-1}
$$

${ }^{2}$ See Y. Polyanskiy's study of classical bound on his website. To appear in IEEE Trans. Inf. T.

Properties of the bounds ${ }^{2}$

$$
B_{\epsilon}^{\Omega}(\mathcal{E})=\left(\min _{\rho} \max _{\sigma} \beta_{\epsilon}^{\Omega}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{AB}}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)\right)^{-1}
$$

- $\beta_{\epsilon}^{\Omega}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A}} \mathrm{B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)$ is
- Concave in σ.
${ }^{2}$ See Y. Polyanskiy's study of classical bound on his website. To appear in IEEE Trans. Inf. T.

Properties of the bounds ${ }^{2}$

$$
B_{\epsilon}^{\boldsymbol{\Omega}}(\mathcal{E})=\left(\min _{\rho} \max _{\sigma} \beta_{\epsilon}^{\boldsymbol{\Omega}}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)\right)^{-1}
$$

- $\beta_{\epsilon}^{\boldsymbol{\Omega}}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A}} \mathrm{B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)$ is
- Concave in σ.
- Convex in ρ if $\mathbf{L C 1} \subseteq \boldsymbol{\Omega}$.
${ }^{2}$ See Y. Polyanskiy's study of classical bound on his website. To appear in IEEE Trans. Inf. T.

Properties of the bounds ${ }^{2}$

$$
B_{\epsilon}^{\Omega}(\mathcal{E})=\left(\min _{\rho} \max _{\sigma} \beta_{\epsilon}^{\Omega}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)\right)^{-1}
$$

- $\beta_{\epsilon}^{\boldsymbol{\Omega}}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A}} \mathrm{B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)$ is
- Concave in σ.
- Convex in ρ if $\mathbf{L C 1} \subseteq \boldsymbol{\Omega}$.
$-\max _{\sigma} \beta_{\epsilon}^{\Omega}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)$ is also convex in ρ.
${ }^{2}$ See Y. Polyanskiy's study of classical bound on his website. To appear in IEEE Trans. Inf. T.

Properties of the bounds ${ }^{2}$

$$
B_{\epsilon}^{\Omega}(\mathcal{E})=\left(\min _{\rho} \max _{\sigma} \beta_{\epsilon}^{\Omega}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{AB}}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)\right)^{-1}
$$

- $\beta_{\epsilon}^{\boldsymbol{\Omega}}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)$ is
- Concave in σ.
- Convex in ρ if $\mathbf{L C 1} \subseteq \boldsymbol{\Omega}$.
$-\max _{\sigma} \beta_{\epsilon}^{\boldsymbol{\Omega}}\left(\{\rho ; \mathcal{E}\}_{\tilde{A} \mathrm{~B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)$ is also convex in ρ.
These properties allow simplification given symmetry:
${ }^{2}$ See Y. Polyanskiy's study of classical bound on his website. To appear in IEEE Trans. Inf. T.

Properties of the bounds ${ }^{2}$

$$
B_{\epsilon}^{\Omega}(\mathcal{E})=\left(\min _{\rho} \max _{\sigma} \beta_{\epsilon}^{\Omega}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{AB}}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)\right)^{-1}
$$

- $\beta_{\epsilon}^{\boldsymbol{\Omega}}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)$ is
- Concave in σ.
- Convex in ρ if $\mathbf{L C 1} \subseteq \boldsymbol{\Omega}$.
$-\max _{\sigma} \beta_{\epsilon}^{\boldsymbol{\Omega}}\left(\{\rho ; \mathcal{E}\}_{\tilde{A} \mathrm{~B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)$ is also convex in ρ.
These properties allow simplification given symmetry:
- For a group covariant map $\forall g \in G: \mathcal{E}\left[U_{g} \rho U_{g}^{\dagger}\right]=V_{g} \mathcal{E}[\rho] V_{g}^{\dagger}$, we can restrict to group invariant ρ and σ in the optimisations.
converse ($\boldsymbol{\Omega}=\mathbf{A L L}$).
${ }^{2}$ See Y. Polyanskiy's study of classical bound on his website. To appear in IEEE Trans. Inf. T.

Properties of the bounds ${ }^{2}$

$$
B_{\epsilon}^{\Omega}(\mathcal{E})=\left(\min _{\rho} \max _{\sigma} \beta_{\epsilon}^{\Omega}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)\right)^{-1}
$$

- $\beta_{\epsilon}^{\boldsymbol{\Omega}}\left(\{\rho ; \mathcal{E}\}_{\tilde{\mathrm{A} B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)$ is
- Concave in σ.
- Convex in ρ if $\mathbf{L C 1} \subseteq \boldsymbol{\Omega}$.
$-\max _{\sigma} \beta_{\epsilon}^{\boldsymbol{\Omega}}\left(\{\rho ; \mathcal{E}\}_{\tilde{A} \mathrm{~B}}, \rho_{\tilde{\mathrm{A}}}^{*} \sigma_{\mathrm{B}}\right)$ is also convex in ρ.
These properties allow simplification given symmetry:
- For a group covariant map $\forall g \in G: \mathcal{E}\left[U_{g} \rho U_{g}^{\dagger}\right]=V_{g} \mathcal{E}[\rho] V_{g}^{\dagger}$, we can restrict to group invariant ρ and σ in the optimisations.
- For permutation covariant channels: $\operatorname{Poly}(n)$ size SDP for EA converse ($\boldsymbol{\Omega}=\mathbf{A L L}$).

[^0]
Example: EA coding over the depolarising channel

- d-dimensional depolarising channel:
$\mathcal{D}[\tau]=(1-p) \tau+p \operatorname{Tr}(\tau) \mu$, where $\mu=\mathbb{1} / d$ is the maximally mixed state.

Example: EA coding over the depolarising channel

- d-dimensional depolarising channel:
$\mathcal{D}[\tau]=(1-p) \tau+p \operatorname{Tr}(\tau) \mu$,
where $\mu=\mathbb{1} / d$ is the maximally mixed state.
- $\mathcal{D}^{\otimes n}$ has the covariance group $S_{n} \ltimes \mathrm{U}(d)^{\times n}$

Example: EA coding over the depolarising channel

- d-dimensional depolarising channel:
$\mathcal{D}[\tau]=(1-p) \tau+p \operatorname{Tr}(\tau) \mu$,
where $\mu=\mathbb{1} / d$ is the maximally mixed state.
- $\mathcal{D}^{\otimes n}$ has the covariance group $S_{n} \ltimes \mathrm{U}(d)^{\times n}$
- Only G invariant ρ and σ are the maximally mixed states.

Example: EA coding over the depolarising channel

- d-dimensional depolarising channel:
$\mathcal{D}[\tau]=(1-p) \tau+p \operatorname{Tr}(\tau) \mu$,
where $\mu=\mathbb{1} / d$ is the maximally mixed state.
- $\mathcal{D}^{\otimes n}$ has the covariance group $S_{n} \ltimes \mathrm{U}(d)^{\times n}$
- Only G invariant ρ and σ are the maximally mixed states.
- $\left\{\mu^{\otimes n} ; \mathcal{D}^{\otimes n}\right\}=\phi(p)^{\otimes n}$ where $\phi(p):=(1-p) \phi_{\tilde{A} B}+p \mu_{\tilde{A}} \mu_{\mathrm{B}}$, where ϕ is the $U \otimes U^{*}$ invariant maximally entangled state.

Example: EA coding over the depolarising channel

- d-dimensional depolarising channel:
$\mathcal{D}[\tau]=(1-p) \tau+p \operatorname{Tr}(\tau) \mu$,
where $\mu=\mathbb{1} / d$ is the maximally mixed state.
- $\mathcal{D}^{\otimes n}$ has the covariance group $S_{n} \ltimes \mathrm{U}(d)^{\times n}$
- Only G invariant ρ and σ are the maximally mixed states.
- $\left\{\mu^{\otimes n} ; \mathcal{D}^{\otimes n}\right\}=\phi(p)^{\otimes n}$ where $\phi(p):=(1-p) \phi_{\tilde{A} B}+p \mu_{\tilde{A}} \mu_{\mathrm{B}}$, where ϕ is the $U \otimes U^{*}$ invariant maximally entangled state.
- $M_{\epsilon}^{\mathrm{E}}\left(\mathcal{D}^{\otimes n}\right) \leq B_{\epsilon}(\mathcal{E})=\beta_{\epsilon}\left(\left(\phi(p)^{\otimes n}\right)_{\tilde{\mathrm{A}}^{n} \mathrm{~B}^{n}} \|\left(\mu^{\otimes n}\right)_{\tilde{\mathrm{A}}^{n}}\left(\mu^{\otimes n}\right)_{\mathrm{B}^{n}}\right)^{-1}$

Example: EA coding over the depolarising channel

- d-dimensional depolarising channel:
$\mathcal{D}[\tau]=(1-p) \tau+p \operatorname{Tr}(\tau) \mu$,
where $\mu=\mathbb{1} / d$ is the maximally mixed state.
- $\mathcal{D}^{\otimes n}$ has the covariance group $S_{n} \ltimes \mathrm{U}(d)^{\times n}$
- Only G invariant ρ and σ are the maximally mixed states.
- $\left\{\mu^{\otimes n} ; \mathcal{D}^{\otimes n}\right\}=\phi(p)^{\otimes n}$ where $\phi(p):=(1-p) \phi_{\tilde{A} B}+p \mu_{\tilde{A}} \mu_{\mathrm{B}}$, where ϕ is the $U \otimes U^{*}$ invariant maximally entangled state.
- $M_{\epsilon}^{\mathrm{E}}\left(\mathcal{D}^{\otimes n}\right) \leq B_{\epsilon}(\mathcal{E})=\beta_{\epsilon}\left(\left(\phi(p)^{\otimes n}\right)_{\tilde{\mathrm{A}}^{n} \mathrm{~B}^{n}} \|\left(\mu^{\otimes n}\right)_{\tilde{\mathrm{A}}^{n}}\left(\mu^{\otimes n}\right)_{\mathrm{B}^{n}}\right)^{-1}$
- Since the arguments commute, and there are only two distinct eigenvalues (eigenprojectors ϕ and $\mathbb{1}-\phi$), the problem is equivalent to classical hypothesis testing between two differently biased coins, based on n tosses.

Example: EA coding over the depolarising channel

Figure: The upper bound on the rate for entanglement assisted codes over the $\mathrm{p}=0.15$ depolarising channel for three different error probabilities.

Summary and outlook

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.

Summary and outlook

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.
- Application to proving security in the noisy-storage model of quantum cryptography (see paper).

Summary and outlook

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.
- Application to proving security in the noisy-storage model of quantum cryptography (see paper).
- Almost closed form expressions for other simple channels?

Summary and outlook

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.
- Application to proving security in the noisy-storage model of quantum cryptography (see paper).
- Almost closed form expressions for other simple channels?
- Relationship to Datta-Hsieh bound?

Summary and outlook

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.
- Application to proving security in the noisy-storage model of quantum cryptography (see paper).
- Almost closed form expressions for other simple channels?
- Relationship to Datta-Hsieh bound?
- Investigate PPT bound for unassisted codes.

Summary and outlook

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.
- Application to proving security in the noisy-storage model of quantum cryptography (see paper).
- Almost closed form expressions for other simple channels?
- Relationship to Datta-Hsieh bound?
- Investigate PPT bound for unassisted codes.
- "Matching" achievability bounds?

Summary and outlook

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.
- Application to proving security in the noisy-storage model of quantum cryptography (see paper).
- Almost closed form expressions for other simple channels?
- Relationship to Datta-Hsieh bound?
- Investigate PPT bound for unassisted codes.
- "Matching" achievability bounds?
- Second order asymptotics for EA coding over i.i.d. channels (converse part of Strassen-like result) using results of next talk?

Summary and outlook

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.
- Application to proving security in the noisy-storage model of quantum cryptography (see paper).
- Almost closed form expressions for other simple channels?
- Relationship to Datta-Hsieh bound?
- Investigate PPT bound for unassisted codes.
- "Matching" achievability bounds?
- Second order asymptotics for EA coding over i.i.d. channels (converse part of Strassen-like result) using results of next talk?

[^0]: ${ }^{2}$ See Y. Polyanskiy's study of classical bound on his website. To appear in IEEE Trans. Inf. T.

