Finite blocklength converse bounds for quantum channels (arXiv:1210.4722)

Will Matthews (University of Cambridge) Stephanie Wehner (National University of Singapore)

Classical data over quantum channels.

Entanglement-assisted (EA) code \mathcal{Z} of size M:

For uniform source S_M ($\Pr(W = w | S_M) = 1/M$): Average input $\rho_A = \frac{1}{M} \sum_{w=1}^M \rho(w)_A$. Error probability $\epsilon = \Pr(\hat{W} \neq W | \mathcal{E}, \mathcal{Z}, S_M)$.

Classical data over quantum channels.

Entanglement-assisted (EA) code \mathcal{Z} of size M:

For uniform source S_M ($\Pr(W = w | S_M) = 1/M$): Average input $\rho_A = \frac{1}{M} \sum_{w=1}^M \rho(w)_A$. Error probability $\epsilon = \Pr(\hat{W} \neq W | \mathcal{E}, \mathcal{Z}, S_M)$.

Classical data over quantum channels.

Entanglement-assisted (EA) code Z of size M:

For uniform source S_M ($\Pr(W = w | S_M) = 1/M$): Average input $\rho_A = \frac{1}{M} \sum_{w=1}^M \rho(w)_A$. Error probability $\epsilon = \Pr(W \neq W | \mathcal{E}, \mathcal{Z}, S_M)$.

Classical data over quantum channels.

Entanglement-assisted (EA) code Z of size M:

For uniform source S_M ($\Pr(W = w | S_M) = 1/M$): Average input $\rho_A = \frac{1}{M} \sum_{w=1}^M \rho(w)_A$. Error probability $\epsilon = \Pr(\hat{W} \neq W | \mathcal{E}, \mathcal{Z}, \mathcal{S}_M)$.

- $M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$ denotes largest size of entanglement-assisted code with average input ρ and error probability ϵ for \mathcal{E} .
- $\blacktriangleright M_{\epsilon}^{\mathrm{E}}(\mathcal{E}) = \max_{\rho} M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$
- ► $M_{\epsilon}(\rho, \mathcal{E})$ and $M_{\epsilon}(\mathcal{E})$ denote the corresponding quantities for *unassisted* codes ($\eta_{A_EB_E}$ separable).
- For a channel *E* = (*Eⁿ*)_{n∈ℕ}, where *Eⁿ* is CPTP map for *n* channel uses (taking states of Aⁿ to states of Bⁿ): *C*^E(*E*) := lim_{ε→0} lim_{n→∞} ¹/_n log M^E_ε(*Eⁿ*)
- Asymptotics: For channels with i.i.d. uses $\mathcal{E}^n = \mathcal{E}^{\otimes n}$:
 - ► C^E(*E*) has single letter BSST formula (arXiv:quant-ph/0106052).
 - $C(\mathcal{E})$ is regularised Holevo bound.
 - Both reduce to Shannon capacity formula for classical channels.

$$\blacktriangleright \ M_{\epsilon}^{\mathrm{E}}(\mathcal{E}) = \max_{\rho} M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$$

- ► $M_{\epsilon}(\rho, \mathcal{E})$ and $M_{\epsilon}(\mathcal{E})$ denote the corresponding quantities for *unassisted* codes ($\eta_{A_EB_E}$ separable).
- For a channel *E* = (*Eⁿ*)_{n∈ℕ}, where *Eⁿ* is CPTP map for *n* channel uses (taking states of Aⁿ to states of Bⁿ): *C*^E(*E*) := lim_{ϵ→0} lim_{n→∞} ¹/_n log *M*^E_ϵ(*Eⁿ*)
- Asymptotics: For channels with i.i.d. uses $\mathcal{E}^n = \mathcal{E}^{\otimes n}$:
 - ► C^E(*E*) has single letter BSST formula (arXiv:quant-ph/0106052).
 - $C(\mathcal{E})$ is regularised Holevo bound.
 - Both reduce to Shannon capacity formula for classical channels.

- $M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$ denotes largest size of entanglement-assisted code with average input ρ and error probability ϵ for \mathcal{E} .
- $\blacktriangleright \ M_{\epsilon}^{\rm E}(\mathcal{E}) = \max_{\rho} M_{\epsilon}^{\rm E}(\rho, \mathcal{E})$
- ► $M_{\epsilon}(\rho, \mathcal{E})$ and $M_{\epsilon}(\mathcal{E})$ denote the corresponding quantities for *unassisted* codes ($\eta_{A_EB_E}$ separable).
- For a channel *E* = (*Eⁿ*)_{n∈ℕ}, where *Eⁿ* is CPTP map for *n* channel uses (taking states of Aⁿ to states of Bⁿ): *C*^E(*E*) := lim_{ϵ→0} lim_{n→∞} ¹/_n log *M*^E_ϵ(*Eⁿ*)
- Asymptotics: For channels with i.i.d. uses $\mathcal{E}^n = \mathcal{E}^{\otimes n}$:
 - ► C^E(*E*) has single letter BSST formula (arXiv:quant-ph/0106052).
 - $C(\mathcal{E})$ is regularised Holevo bound.
 - Both reduce to Shannon capacity formula for classical channels.

• $M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$ denotes largest size of entanglement-assisted code with average input ρ and error probability ϵ for \mathcal{E} .

$$\blacktriangleright \ M_{\epsilon}^{\mathrm{E}}(\mathcal{E}) = \max_{\rho} M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$$

- $M_{\epsilon}(\rho, \mathcal{E})$ and $M_{\epsilon}(\mathcal{E})$ denote the corresponding quantities for *unassisted* codes ($\eta_{A_EB_E}$ separable).
- For a channel *E* = (*Eⁿ*)_{n∈ℕ}, where *Eⁿ* is CPTP map for *n* channel uses (taking states of Aⁿ to states of Bⁿ): C^E(*E*) := lim_{ϵ→0} lim_{n→∞} ¹/_n log M^E_ϵ(*Eⁿ*)

Asymptotics: For channels with i.i.d. uses $\mathcal{E}^n = \mathcal{E}^{\otimes n}$:

- ► C^E(*E*) has single letter BSST formula (arXiv:quant-ph/0106052).
- $C(\mathcal{E})$ is regularised Holevo bound.
- Both reduce to Shannon capacity formula for classical channels.

M^E_ϵ(ρ, ε) denotes largest size of entanglement-assisted code with average input ρ and error probability ϵ for ε.

$$\blacktriangleright \ M_{\epsilon}^{\mathrm{E}}(\mathcal{E}) = \max_{\rho} M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$$

- $M_{\epsilon}(\rho, \mathcal{E})$ and $M_{\epsilon}(\mathcal{E})$ denote the corresponding quantities for *unassisted* codes ($\eta_{A_EB_E}$ separable).
- For a channel *E* = (*Eⁿ*)_{n∈ℕ}, where *Eⁿ* is CPTP map for *n* channel uses (taking states of Aⁿ to states of Bⁿ): C^E(*E*) := lim_{ϵ→0} lim_{n→∞} ¹/_n log M^E_ϵ(*Eⁿ*)
- Asymptotics: For channels with i.i.d. uses $\mathcal{E}^n = \mathcal{E}^{\otimes n}$:
 - ► C^E(*E*) has single letter BSST formula (arXiv:quant-ph/0106052).
 - $C(\mathcal{E})$ is regularised Holevo bound.
 - Both reduce to Shannon capacity formula for classical channels.

$$\blacktriangleright \ M_{\epsilon}^{\mathrm{E}}(\mathcal{E}) = \max_{\rho} M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$$

- ► $M_{\epsilon}(\rho, \mathcal{E})$ and $M_{\epsilon}(\mathcal{E})$ denote the corresponding quantities for *unassisted* codes ($\eta_{A_EB_E}$ separable).
- For a channel *E* = (*Eⁿ*)_{n∈ℕ}, where *Eⁿ* is CPTP map for *n* channel uses (taking states of Aⁿ to states of Bⁿ): *C*^E(*E*) := lim_{ϵ→0} lim_{n→∞} ¹/_n log *M*^E_ϵ(*Eⁿ*)
- Asymptotics: For channels with i.i.d. uses $\mathcal{E}^n = \mathcal{E}^{\otimes n}$:
 - C^E(𝔅) has single letter BSST formula (arXiv:quant-ph/0106052).
 - $C(\mathcal{E})$ is regularised Holevo bound.
 - Both reduce to Shannon capacity formula for classical channels.

$$\blacktriangleright \ M_{\epsilon}^{\mathrm{E}}(\mathcal{E}) = \max_{\rho} M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E})$$

- ► $M_{\epsilon}(\rho, \mathcal{E})$ and $M_{\epsilon}(\mathcal{E})$ denote the corresponding quantities for *unassisted* codes ($\eta_{A_EB_E}$ separable).
- For a channel *E* = (*Eⁿ*)_{n∈ℕ}, where *Eⁿ* is CPTP map for n channel uses (taking states of Aⁿ to states of Bⁿ): C^E(*E*) := lim_{ϵ→0} lim_{n→∞} ¹/_n log M^E_ϵ(*Eⁿ*)
- Asymptotics: For channels with i.i.d. uses $\mathcal{E}^n = \mathcal{E}^{\otimes n}$:
 - C^E(*E*) has single letter BSST formula (arXiv:quant-ph/0106052).
 - $C(\mathcal{E})$ is regularised Holevo bound.
 - Both reduce to Shannon capacity formula for classical channels.

$$\blacktriangleright \ M_{\epsilon}^{\rm E}(\mathcal{E}) = \max_{\rho} M_{\epsilon}^{\rm E}(\rho, \mathcal{E})$$

- $M_{\epsilon}(\rho, \mathcal{E})$ and $M_{\epsilon}(\mathcal{E})$ denote the corresponding quantities for *unassisted* codes ($\eta_{A_EB_E}$ separable).
- For a channel *E* = (*Eⁿ*)_{n∈ℕ}, where *Eⁿ* is CPTP map for n channel uses (taking states of Aⁿ to states of Bⁿ): C^E(*E*) := lim_{ϵ→0} lim_{n→∞} ¹/_n log M^E_ϵ(*Eⁿ*)
- Asymptotics: For channels with i.i.d. uses $\mathcal{E}^n = \mathcal{E}^{\otimes n}$:
 - ► C^E(*E*) has single letter BSST formula (arXiv:quant-ph/0106052).
 - $C(\mathcal{E})$ is regularised Holevo bound.
 - Both reduce to Shannon capacity formula for classical channels.

Converse and achievability bounds¹ on the rate $\frac{1}{n} \log M_{\epsilon}(\mathcal{E}^n)$ when $\epsilon = 1/1000$ and \mathcal{E} is the BSC with $\Pr(\text{bit flip}) = 0.11$.

¹Polyanskiy, Poor, Verdú. IEEE Trans. Inf. T., 56, 2307-2359

- Datta & Hsieh (arXiv:1105.3321) give converse (and achievability) for M_ϵ^E(E), but it has some disadvantages (diverges as ϵ → 0; not clear how to compute).
- Polyanskiy–Poor–Verdú gives a classical converse which relates coding to hypothesis testing. It is simple, and powerful enough to derive many important classical converse bounds, so we want a quantum generalisation.
- ► The converse in Wang & Renner (arXiv:1007.5456) for M_ϵ(E) is almost such a generalisation for unassisted codes (see also Hayashi's book).
- We obtain a hierarchy of bounds based on quantum hypothesis testing of a bipartite system with restricted measurements, including a novel converse for EA codes, and a generalisation of Wang-Renner converse for unassisted codes.

- Datta & Hsieh (arXiv:1105.3321) give converse (and achievability) for M_e^E(E), but it has some disadvantages (diverges as e → 0; not clear how to compute).
- Polyanskiy–Poor–Verdú gives a classical converse which relates coding to hypothesis testing. It is simple, and powerful enough to derive many important classical converse bounds, so we want a quantum generalisation.
- ► The converse in Wang & Renner (arXiv:1007.5456) for M_ϵ(E) is almost such a generalisation for unassisted codes (see also Hayashi's book).
- We obtain a hierarchy of bounds based on quantum hypothesis testing of a bipartite system with restricted measurements, including a novel converse for EA codes, and a generalisation of Wang-Renner converse for unassisted codes.

- Datta & Hsieh (arXiv:1105.3321) give converse (and achievability) for M_e^E(E), but it has some disadvantages (diverges as e → 0; not clear how to compute).
- Polyanskiy–Poor–Verdú gives a classical converse which relates coding to hypothesis testing. It is simple, and powerful enough to derive many important classical converse bounds, so we want a quantum generalisation.
- ► The converse in Wang & Renner (arXiv:1007.5456) for M_e(E) is almost such a generalisation for unassisted codes (see also Hayashi's book).
- We obtain a hierarchy of bounds based on quantum hypothesis testing of a bipartite system with restricted measurements, including a novel converse for EA codes, and a generalisation of Wang-Renner converse for unassisted codes.

- Datta & Hsieh (arXiv:1105.3321) give converse (and achievability) for M_ϵ^E(E), but it has some disadvantages (diverges as ϵ → 0; not clear how to compute).
- Polyanskiy–Poor–Verdú gives a classical converse which relates coding to hypothesis testing. It is simple, and powerful enough to derive many important classical converse bounds, so we want a quantum generalisation.
- ► The converse in Wang & Renner (arXiv:1007.5456) for M_e(E) is almost such a generalisation for unassisted codes (see also Hayashi's book).
- We obtain a hierarchy of bounds based on quantum hypothesis testing of a bipartite system with restricted measurements, including a novel converse for EA codes, and a generalisation of Wang-Renner converse for unassisted codes.

H_0 : State is τ_0 . H_1 : State is τ_1 .

Test T for H_0 : The element of a binary POVM $\{T, \mathbb{1} - T\}$ for the outcome "accept H_0 ".

$$\begin{split} &\alpha(T):=\Pr(\text{reject }H_0|T,H_0)=1-\mathrm{Tr}\tau_0T \quad \text{(false negative)},\\ &\beta(T):=\Pr(\text{accept }H_0|T,H_1)=\mathrm{Tr}\tau_1T \quad \text{(false positive)}. \end{split}$$

For a class of tests Ω we define

 $\beta_{\epsilon}^{\Omega}(\tau_0,\tau_1) := \min_{T \in \Omega} \beta(T,\tau_1), \text{ subject to } \alpha(T,\tau_0) \le \epsilon.$

 H_0 : State is τ_0 . H_1 : State is τ_1 .

Test T for H_0 : The element of a binary POVM $\{T, \mathbb{1} - T\}$ for the outcome "accept H_0 ".

$$\begin{split} \alpha(T) &:= \Pr(\text{reject } H_0 | T, H_0) = 1 - \text{Tr} \tau_0 T \quad \text{(false negative)}, \\ \beta(T) &:= \Pr(\text{accept } H_0 | T, H_1) = \text{Tr} \tau_1 T \quad \text{(false positive)}. \end{split}$$

For a class of tests Ω we define

 $\beta_{\epsilon}^{\Omega}(\tau_0,\tau_1) := \min_{T \in \Omega} \beta(T,\tau_1), \text{ subject to } \alpha(T,\tau_0) \le \epsilon.$

 H_0 : State is τ_0 . H_1 : State is τ_1 .

Test T for H_0 : The element of a binary POVM $\{T, \mathbb{1} - T\}$ for the outcome "accept H_0 ".

$$\begin{split} &\alpha(T):= \Pr(\text{reject } H_0|T,H_0) = 1 - \text{Tr}\tau_0 T \quad \text{(false negative)}, \\ &\beta(T):= \Pr(\text{accept } H_0|T,H_1) = \text{Tr}\tau_1 T \quad \text{(false positive)}. \end{split}$$

For a class of tests Ω we define

 $\beta_{\epsilon}^{\Omega}(\tau_0,\tau_1) := \min_{T \in \Omega} \beta(T,\tau_1), \text{ subject to } \alpha(T,\tau_0) \le \epsilon.$

 H_0 : State is τ_0 . H_1 : State is τ_1 .

Test T for H_0 : The element of a binary POVM $\{T, \mathbb{1} - T\}$ for the outcome "accept H_0 ".

$$\begin{split} &\alpha(T) := \Pr(\text{reject } H_0 | T, H_0) = 1 - \text{Tr}\tau_0 T \quad \text{(false negative)}, \\ &\beta(T) := \Pr(\text{accept } H_0 | T, H_1) = \text{Tr}\tau_1 T \quad \text{(false positive)}. \end{split}$$

For a class of tests Ω we define

$$\beta_{\epsilon}^{\Omega}(\tau_0,\tau_1) := \min_{T \in \Omega} \beta(T,\tau_1), \text{ subject to } \alpha(T,\tau_0) \le \epsilon.$$

- L: Local tests Test on joint outcome of local measurements (coordinated only by shared randomness).
- ▶ LC1: One-way communication from Alice to Bob.
- **PPT**: $0 \leq \Gamma_{\rm B}[T_{\rm \widetilde{A}B}] \leq 1$.
- **ALL**: All tests. Symbol omitted e.g. $\beta_{\epsilon} = \beta_{\epsilon}^{\text{ALL}}$.

 $\mathbf{L} \subset \mathbf{LC1} \subset \mathbf{PPT} \subset \mathbf{ALL}.$

- L: Local tests Test on joint outcome of local measurements (coordinated only by shared randomness).
- ▶ LC1: One-way communication from Alice to Bob.
- ► **PPT**: $0 \leq \Gamma_{\rm B}[T_{\rm \widetilde{A}B}] \leq 1$.
- ALL: All tests. Symbol omitted e.g. $\beta_{\epsilon} = \beta_{\epsilon}^{\text{ALL}}$

 $\mathbf{L} \subset \mathbf{L}\mathbf{C}\mathbf{1} \subset \mathbf{PPT} \subset \mathbf{ALL}.$

- L: Local tests Test on joint outcome of local measurements (coordinated only by shared randomness).
- ▶ LC1: One-way communication from Alice to Bob.
- ► **PPT**: $0 \leq \Gamma_{\rm B}[T_{\rm \widetilde{A}B}] \leq 1$.
- ▶ ALL: All tests. Symbol omitted e.g. $\beta_{\epsilon} = \beta_{\epsilon}^{\text{ALL}}$

 $L \subset LC1 \subset PPT \subset ALL.$

- L: Local tests Test on joint outcome of local measurements (coordinated only by shared randomness).
- ▶ LC1: One-way communication from Alice to Bob.
- **PPT**: $0 \leq \Gamma_{\mathrm{B}}[T_{\mathrm{\widetilde{A}B}}] \leq \mathbb{1}$.
- ▶ ALL: All tests. Symbol omitted e.g. $\beta_{\epsilon} = \beta_{\epsilon}^{ALL}$.

 $\mathbf{L} \subset \mathbf{LC1} \subset \mathbf{PPT} \subset \mathbf{ALL}.$

- L: Local tests Test on joint outcome of local measurements (coordinated only by shared randomness).
- ▶ LC1: One-way communication from Alice to Bob.
- ► **PPT**: $0 \leq \Gamma_{\rm B}[T_{\rm \widetilde{A}B}] \leq \mathbb{1}$.
- ALL: All tests. Symbol omitted e.g. $\beta_{\epsilon} = \beta_{\epsilon}^{\text{ALL}}$.

 $L \subset LC1 \subset PPT \subset ALL.$

- L: Local tests Test on joint outcome of local measurements (coordinated only by shared randomness).
- ▶ LC1: One-way communication from Alice to Bob.
- ► **PPT**: $0 \leq \Gamma_{\rm B}[T_{\rm \widetilde{A}B}] \leq \mathbb{1}$.
- ▶ ALL: All tests. Symbol omitted e.g. $\beta_{\epsilon} = \beta_{\epsilon}^{\text{ALL}}$.

 $\mathbf{L} \subset \mathbf{L}\mathbf{C}\mathbf{1} \subset \mathbf{PPT} \subset \mathbf{ALL}.$

From a **CPTP map** \mathcal{E} and an **EA code** with average input state ρ_A and error ϵ when used with \mathcal{E} we construct:

The state $\{\rho; \mathcal{E}\}_{\tilde{A}B} := \mathcal{E}_{B|A}[\psi_{\tilde{A}A}]$ given by \mathcal{E} acting on a certain purification of ρ : $\psi_{\tilde{A}A} := \rho_{A}^{\frac{1}{2}} \tilde{\Phi}_{A\tilde{A}} \rho_{A}^{\frac{1}{2}}$, $(\tilde{\Phi}_{A\tilde{A}} := \sum_{ij} |i\rangle_{A} \langle j|_{\tilde{A}} \langle j|_{A})$.

A test $T_{\tilde{A}B}$ such that $\operatorname{Tr}\{\rho; \mathcal{E}\}_{\tilde{A}B} T_{\tilde{A}B} = 1 - \epsilon$.

From a **CPTP map** \mathcal{E} and an **EA code** with average input state ρ_A and error ϵ when used with \mathcal{E} we construct:

The state $\{\rho; \mathcal{E}\}_{\tilde{A}B} := \mathcal{E}_{B|A}[\psi_{\tilde{A}A}]$ given by \mathcal{E} acting on a certain purification of ρ : $\psi_{\tilde{A}A} := \rho_A^{\frac{1}{2}} \tilde{\Phi}_{A\tilde{A}} \rho_A^{\frac{1}{2}}$, $(\tilde{\Phi}_{A\tilde{A}} := \sum_{ij} |i\rangle_{\tilde{A}} |i\rangle_A \langle j|_{\tilde{A}} \langle j|_A)$.

A test $T_{\tilde{A}B}$ such that $\operatorname{Tr}\{\rho; \mathcal{E}\}_{\tilde{A}B} T_{\tilde{A}B} = 1 - \epsilon$.

From a **CPTP map** \mathcal{E} and an **EA code** with average input state ρ_A and error ϵ when used with \mathcal{E} we construct:

The state $\{\rho; \mathcal{E}\}_{\tilde{A}B} := \mathcal{E}_{B|A}[\psi_{\tilde{A}A}]$ given by \mathcal{E} acting on a certain purification of ρ : $\psi_{\tilde{A}A} := \rho_A^{\frac{1}{2}} \tilde{\Phi}_{A\tilde{A}} \rho_A^{\frac{1}{2}}$, $(\tilde{\Phi}_{A\tilde{A}} := \sum_{ij} |i\rangle_{\tilde{A}} |i\rangle_A \langle j|_{\tilde{A}} \langle j|_A)$.

A test $T_{\tilde{A}B}$ such that $\operatorname{Tr}\{\rho; \mathcal{E}\}_{\tilde{A}B} T_{\tilde{A}B} = 1 - \epsilon$.

From a **CPTP map** \mathcal{E} and an **EA code** with average input state ρ_A and error ϵ when used with \mathcal{E} we construct:

The state $\{\rho; \mathcal{E}\}_{\tilde{A}B} := \mathcal{E}_{B|A}[\psi_{\tilde{A}A}]$ given by \mathcal{E} acting on a certain purification of ρ : $\psi_{\tilde{A}A} := \rho_A^{\frac{1}{2}} \tilde{\Phi}_{A\tilde{A}} \rho_A^{\frac{1}{2}}$, $(\tilde{\Phi}_{A\tilde{A}} := \sum_{ij} |i\rangle_{\tilde{A}} |i\rangle_A \langle j|_{\tilde{A}} \langle j|_A)$.

A test $T_{\tilde{A}B}$ such that $\operatorname{Tr}\{\rho; \mathcal{E}\}_{\tilde{A}B} T_{\tilde{A}B} = 1 - \epsilon.$

• $\alpha(T_{\tilde{A}B}) = 1 - \text{Tr}\{\rho; \mathcal{E}\}_{\tilde{A}B} T_{\tilde{A}B} = \epsilon.$ For a CPTP map \mathcal{F} with constant output σ_B the success probability is 1/M, so • $\beta(T_{\tilde{A}B}) = \text{Tr}\rho_{\tilde{A}}^* \sigma_B T_{\tilde{A}B} = 1/M.$

> Therefore $\forall \sigma_{\mathrm{B}} : \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}\mathrm{B}}, \rho_{\tilde{A}}^{*}\sigma_{\mathrm{B}}) \leq 1/M$, or $M \leq B_{\epsilon}^{\Omega}(\rho, \mathcal{E}) := \left(\max_{\sigma} \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}\mathrm{B}}, \rho_{\tilde{A}}^{*}\sigma_{\mathrm{B}})\right)^{-1}$

• $\alpha(T_{\tilde{A}B}) = 1 - \text{Tr}\{\rho; \mathcal{E}\}_{\tilde{A}B} T_{\tilde{A}B} = \epsilon.$ For a CPTP map \mathcal{F} with constant output σ_B the success probability is 1/M, so • $\beta(T_{\tilde{A}B}) = \text{Tr}\rho_{\tilde{A}}^*\sigma_B T_{\tilde{A}B} = 1/M.$

> Therefore $\forall \sigma_{\mathbf{B}} : \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}\mathbf{B}}, \rho_{\tilde{A}}^* \sigma_{\mathbf{B}}) \leq 1/M$, or $M \leq B_{\epsilon}^{\Omega}(\rho, \mathcal{E}) := \left(\max_{\sigma} \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}\mathbf{B}}, \rho_{\tilde{A}}^* \sigma_{\mathbf{B}})\right)^{-1}$

• $\alpha(T_{\tilde{A}B}) = 1 - \text{Tr}\{\rho; \mathcal{E}\}_{\tilde{A}B} T_{\tilde{A}B} = \epsilon.$ For a CPTP map \mathcal{F} with constant output σ_B the success probability is 1/M, so • $\beta(T_{\tilde{A}B}) = \text{Tr}\rho_{\tilde{A}}^*\sigma_B T_{\tilde{A}B} = 1/M.$

> Therefore $\forall \sigma_{\mathbf{B}} : \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}\mathbf{B}}, \rho_{\tilde{A}}^* \sigma_{\mathbf{B}}) \leq 1/M$, or $M \leq B_{\epsilon}^{\Omega}(\rho, \mathcal{E}) := \left(\max_{\sigma} \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}\mathbf{B}}, \rho_{\tilde{A}}^* \sigma_{\mathbf{B}})\right)^{-1}$

• $\alpha(T_{\tilde{A}B}) = 1 - \text{Tr}\{\rho; \mathcal{E}\}_{\tilde{A}B}T_{\tilde{A}B} = \epsilon.$ For a CPTP map \mathcal{F} with constant output σ_B the success probability is 1/M, so • $\beta(T_{\tilde{A}B}) = \text{Tr}\rho_{\tilde{A}}^*\sigma_B T_{\tilde{A}B} = 1/M.$

> Therefore $\forall \sigma_{\mathrm{B}} : \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}\mathrm{B}}, \rho_{\tilde{A}}^{*}\sigma_{\mathrm{B}}) \leq 1/M$, or $M \leq B_{\epsilon}^{\Omega}(\rho, \mathcal{E}) := \left(\max_{\sigma} \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}\mathrm{B}}, \rho_{\tilde{A}}^{*}\sigma_{\mathrm{B}})\right)^{-1}$
Suppose there exists a code of size M, average input ρ , with error ϵ for \mathcal{E} , which maps to a test $T_{\tilde{A}B}$ in class Ω .

•
$$\alpha(T_{\tilde{A}B}) = 1 - \text{Tr}\{\rho; \mathcal{E}\}_{\tilde{A}B}T_{\tilde{A}B} = \epsilon.$$

For a CPTP map \mathcal{F} with constant output σ_B the success probability is $1/M$, so

•
$$\beta(T_{\tilde{A}B}) = \text{Tr}\rho_{\tilde{A}}^*\sigma_B T_{\tilde{A}B} = 1/M.$$

Therefore $\forall \sigma_{\mathbf{B}} : \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}\mathbf{B}}, \rho_{\tilde{A}}^* \sigma_{\mathbf{B}}) \leq 1/M$, or $M \leq B_{\epsilon}^{\Omega}(\rho, \mathcal{E}) := \left(\max_{\sigma} \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}\mathbf{B}}, \rho_{\tilde{A}}^* \sigma_{\mathbf{B}})\right)^{-1}$ Suppose there exists a code of size M, average input ρ , with error ϵ for \mathcal{E} , which maps to a test $T_{\tilde{A}B}$ in class Ω .

•
$$\alpha(T_{\tilde{A}B}) = 1 - \text{Tr}\{\rho; \mathcal{E}\}_{\tilde{A}B}T_{\tilde{A}B} = \epsilon$$
.
For a CPTP map \mathcal{F} with constant output σ_B the success probability is $1/M$, so

•
$$\beta(T_{\tilde{A}B}) = \text{Tr}\rho_{\tilde{A}}^*\sigma_B T_{\tilde{A}B} = 1/M.$$

Therefore
$$\forall \sigma_{\mathrm{B}} : \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{\mathrm{A}}\mathrm{B}}, \rho_{\tilde{\mathrm{A}}}^*\sigma_{\mathrm{B}}) \leq 1/M$$
, or

Suppose there exists a code of size M, average input ρ , with error ϵ for \mathcal{E} , which maps to a test $T_{\tilde{A}B}$ in class Ω .

•
$$\alpha(T_{\tilde{A}B}) = 1 - \text{Tr}\{\rho; \mathcal{E}\}_{\tilde{A}B}T_{\tilde{A}B} = \epsilon.$$

For a CPTP map \mathcal{F} with constant output σ_B
the success probability is $1/M$, so

•
$$\beta(T_{\tilde{A}B}) = \text{Tr}\rho_{\tilde{A}}^*\sigma_B T_{\tilde{A}B} = 1/M.$$

Therefore
$$\forall \sigma_{\mathrm{B}} : \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{\mathrm{A}}\mathrm{B}}, \rho_{\tilde{\mathrm{A}}}^{*}\sigma_{\mathrm{B}}) \leq 1/M$$
, or
$$M \leq B_{\epsilon}^{\Omega}(\rho, \mathcal{E}) := \left(\max_{\sigma} \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{\mathrm{A}}\mathrm{B}}, \rho_{\tilde{\mathrm{A}}}^{*}\sigma_{\mathrm{B}})\right)^{-1}$$

The main bounds

$$B_{\epsilon}^{\mathbf{\Omega}}(\rho, \mathcal{E}) := \left(\max_{\sigma} \beta_{\epsilon}^{\mathbf{\Omega}}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B) \right)^{-1}$$

Defining $B_{\epsilon}^{\Omega}(\mathcal{E}) := \max_{\rho} B^{\Omega}(\rho, \mathcal{E})$ we have: For entanglement-assisted codes: $M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E}) \leq B_{\epsilon}(\rho, \mathcal{E})$, and

 $M_{\epsilon}^{\mathrm{E}}(\mathcal{E}) \leq B_{\epsilon}(\mathcal{E});$

For unassisted codes: Since these map to local tests, for any class Ω containing L, $M_{\epsilon}(\rho, \mathcal{E}) \leq B^{\Omega}_{\epsilon}(\rho, \mathcal{E})$, and

 $M_{\epsilon}(\mathcal{E}) \leq B_{\epsilon}^{\Omega}(\mathcal{E}).$

The main bounds

$$B_{\epsilon}^{\mathbf{\Omega}}(\rho, \mathcal{E}) := \left(\max_{\sigma} \beta_{\epsilon}^{\mathbf{\Omega}}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B) \right)^{-1}$$

Defining $B_{\epsilon}^{\Omega}(\mathcal{E}) := \max_{\rho} B^{\Omega}(\rho, \mathcal{E})$ we have: For entanglement-assisted codes: $M_{\epsilon}^{\mathrm{E}}(\rho, \mathcal{E}) \leq B_{\epsilon}(\rho, \mathcal{E})$, and

$$M_{\epsilon}^{\mathrm{E}}(\mathcal{E}) \leq B_{\epsilon}(\mathcal{E});$$

For unassisted codes: Since these map to local tests, for any class Ω containing L, $M_{\epsilon}(\rho, \mathcal{E}) \leq B_{\epsilon}^{\Omega}(\rho, \mathcal{E})$, and

 $M_{\epsilon}(\mathcal{E}) \leq B_{\epsilon}^{\Omega}(\mathcal{E}).$

 $1 - \epsilon = \mathrm{Tr}\{\rho; \mathcal{E}\}_{\tilde{A}B} T_{\tilde{A}B}$

 $1 - \epsilon = \text{Tr}\{\rho; \mathcal{E}\}_{\tilde{A}B} T_{\tilde{A}B}$ where, with $K(w)_{\text{GA}} := U(w)_{\text{GA}} \psi_{\text{GA}}^{\frac{1}{2}}$,

 $1 - \epsilon = \operatorname{Tr}\{\rho; \mathcal{E}\}_{\tilde{A}B} T_{\tilde{A}B} \text{ where, with } K(w)_{\mathrm{GA}} := U(w)_{\mathrm{GA}} \psi_{\tilde{G}A}^{\frac{1}{2}},$ $T_{\tilde{A}B} = \frac{1}{M} \sum_{w=1}^{M} \rho_{\tilde{A}}^{-\frac{1}{2}*} (\operatorname{Tr}_{\tilde{G}} K(w)_{\tilde{G}\tilde{A}}^* D(w)_{\tilde{G}\tilde{A}B} K(w)_{\tilde{G}\tilde{A}}^{\mathrm{T}}) \rho_{\tilde{A}}^{-\frac{1}{2}*}$

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
 - Can recover converse part of BSST.
 - ▶ B_ϵ(𝔅)⁻¹ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)
- Bounds for unassisted codes:
 - The upper bound for M_ε(ε) in Wang-Renner (arXiv:1007.5456) is equivalent to Ω = LC1 and fixing σ = ε[ρ], which is no stronger than B^{LC1}_ε(ε) and can be worse.
 - L bound can be stronger (but less nice in other ways).
 - ▶ B_ϵ^{LC1}(ε), and hence B_ϵ^L(ε) can recover Holevo bound (see WR).
 - ▶ $B_{\epsilon}^{\mathbf{PPT}}(\mathcal{E})^{-1}$ is given by a semidefinite program (SDP).

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
 - Can recover converse part of BSST.
 - ▶ B_ϵ(𝔅)⁻¹ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)
- Bounds for unassisted codes:
 - The upper bound for M_ε(E) in Wang-Renner (arXiv:1007.5456) is equivalent to Ω = LC1 and fixing σ = E[ρ], which is no stronger than B^{LC1}_ε(E) and can be worse.
 - L bound can be stronger (but less nice in other ways).
 - ▶ B_ϵ^{LC1}(ε), and hence B_ϵ^L(ε) can recover Holevo bound (see WR).
 - ▶ $B_{\epsilon}^{\mathbf{PPT}}(\mathcal{E})^{-1}$ is given by a semidefinite program (SDP).

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
 - Can recover converse part of BSST.
 - ▶ B_e(E)⁻¹ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)
- Bounds for unassisted codes:
 - The upper bound for M_ε(E) in Wang-Renner (arXiv:1007.5456) is equivalent to Ω = LC1 and fixing σ = E[ρ], which is no stronger than B^{LC1}_ε(E) and can be worse.
 - L bound can be stronger (but less nice in other ways).
 - ▶ B_ϵ^{LC1}(ε), and hence B_ϵ^L(ε) can recover Holevo bound (see WR).
 - ▶ $B_{\epsilon}^{\mathbf{PPT}}(\mathcal{E})^{-1}$ is given by a semidefinite program (SDP).

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
 - Can recover converse part of BSST.
 - ▶ B_e(E)⁻¹ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)
- Bounds for unassisted codes:
 - The upper bound for M_ε(E) in Wang-Renner (arXiv:1007.5456) is equivalent to Ω = LC1 and fixing σ = E[ρ], which is no stronger than B^{LC1}_ε(E) and can be worse.
 - L bound can be stronger (but less nice in other ways).
 - ▶ B_ϵ^{LC1}(ε), and hence B_ϵ^L(ε) can recover Holevo bound (see WR).
 - ▶ $B_{\epsilon}^{\mathbf{PPT}}(\mathcal{E})^{-1}$ is given by a semidefinite program (SDP).

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
 - Can recover converse part of BSST.
 - ► B_e(E)⁻¹ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)
- Bounds for unassisted codes:
 - The upper bound for M_ε(E) in Wang-Renner (arXiv:1007.5456) is equivalent to Ω = LC1 and fixing σ = E[ρ], which is no stronger than B^{LC1}_ε(E) and can be worse.
 - L bound can be stronger (but less nice in other ways).
 - ▶ B_ϵ^{LC1}(ε), and hence B_ϵ^L(ε) can recover Holevo bound (see WR).
 - ▶ $B_{\epsilon}^{\mathbf{PPT}}(\mathcal{E})^{-1}$ is given by a semidefinite program (SDP).

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
 - Can recover converse part of BSST.
 - ► B_e(E)⁻¹ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)
- Bounds for unassisted codes:
 - The upper bound for M_ε(E) in Wang-Renner (arXiv:1007.5456) is equivalent to Ω = LC1 and fixing σ = E[ρ], which is no stronger than B^{LC1}_ε(E) and can be worse.
 - L bound can be stronger (but less nice in other ways).
 - ▶ B_ϵ^{LC1}(ε), and hence B_ϵ^L(ε) can recover Holevo bound (see WR).
 - ▶ $B_{\epsilon}^{\mathbf{PPT}}(\mathcal{E})^{-1}$ is given by a semidefinite program (SDP).

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
 - Can recover converse part of BSST.
 - ▶ B_e(E)⁻¹ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)
- Bounds for unassisted codes:
 - The upper bound for M_ϵ(𝔅) in Wang-Renner (arXiv:1007.5456) is equivalent to Ω = LC1 and fixing σ = 𝔅[ρ], which is no stronger than B^{LC1}_ϵ(𝔅) and can be worse.
 - L bound can be stronger (but less nice in other ways).
 - ▶ $B_{\epsilon}^{\mathbf{LC1}}(\mathcal{E})$, and hence $B_{\epsilon}^{\mathbf{L}}(\mathcal{E})$ can recover Holevo bound (see WR).
 - ▶ $B_{\epsilon}^{\mathbf{PPT}}(\mathcal{E})^{-1}$ is given by a semidefinite program (SDP).

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
 - Can recover converse part of BSST.
 - ► B_e(E)⁻¹ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)
- Bounds for unassisted codes:
 - The upper bound for M_ϵ(𝔅) in Wang-Renner (arXiv:1007.5456) is equivalent to Ω = LC1 and fixing σ = 𝔅[ρ], which is no stronger than B^{LC1}_ϵ(𝔅) and can be worse.
 - ▶ L bound can be stronger (but less nice in other ways).
 - ▶ $B_{\epsilon}^{\mathbf{LC1}}(\mathcal{E})$, and hence $B_{\epsilon}^{\mathbf{L}}(\mathcal{E})$ can recover Holevo bound (see WR).
 - ▶ $B_{\epsilon}^{\mathbf{PPT}}(\mathcal{E})^{-1}$ is given by a semidefinite program (SDP).

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
 - Can recover converse part of BSST.
 - ► B_e(E)⁻¹ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)
- Bounds for unassisted codes:
 - The upper bound for M_ε(E) in Wang-Renner (arXiv:1007.5456) is equivalent to Ω = LC1 and fixing σ = E[ρ], which is no stronger than B^{LC1}_ε(E) and can be worse.
 - ▶ L bound can be stronger (but less nice in other ways).
 - ▶ $B_{\epsilon}^{\mathbf{LC1}}(\mathcal{E})$, and hence $B_{\epsilon}^{\mathbf{L}}(\mathcal{E})$ can recover Holevo bound (see WR).
 - ▶ $B_{\epsilon}^{\mathbf{PPT}}(\mathcal{E})^{-1}$ is given by a semidefinite program (SDP).

- They reduce to the PPV converse for classical channels.
- Entanglement-assisted bound:
 - Can recover converse part of BSST.
 - ► B_e(E)⁻¹ is given by an SDP which generalises the linear program formulation of the PPV converse (Matthews arXiv:1109.5417)
- Bounds for unassisted codes:
 - The upper bound for M_ϵ(𝔅) in Wang-Renner (arXiv:1007.5456) is equivalent to Ω = LC1 and fixing σ = 𝔅[ρ], which is no stronger than B^{LC1}_ϵ(𝔅) and can be worse.
 - ▶ L bound can be stronger (but less nice in other ways).
 - ▶ $B_{\epsilon}^{\mathbf{LC1}}(\mathcal{E})$, and hence $B_{\epsilon}^{\mathbf{L}}(\mathcal{E})$ can recover Holevo bound (see WR).
 - ▶ $B_{\epsilon}^{\mathbf{PPT}}(\mathcal{E})^{-1}$ is given by a semidefinite program (SDP).

$$B_{\epsilon}^{\mathbf{\Omega}}(\mathcal{E}) = \left(\min_{\rho} \max_{\sigma} \beta_{\epsilon}^{\mathbf{\Omega}}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^{*}\sigma_{B})\right)^{-1}$$

 $\blacktriangleright \ \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^*\sigma_B) \text{ is }$

- Concave in σ .
- Convex in ρ if $\mathbf{LC1} \subseteq \mathbf{\Omega}$.

 $\blacktriangleright \max_{\sigma} \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B) \text{ is also convex in } \rho.$

- For a group covariant map $\forall g \in G : \mathcal{E}[U_g \rho U_g^{\dagger}] = V_g \mathcal{E}[\rho] V_g^{\dagger}$, we can restrict to group *invariant* ρ and σ in the optimisations.
- For permutation covariant channels: Poly(n) size SDP for EA converse (Ω = ALL).

 $^{^2 {\}rm See}$ Y. Polyanskiy's study of classical bound on his website. To appear in IEEE Trans. Inf. T.

$$B_{\epsilon}^{\mathbf{\Omega}}(\mathcal{E}) = \left(\min_{\rho} \max_{\sigma} \beta_{\epsilon}^{\mathbf{\Omega}}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B)\right)^{-1}$$

$$\blacktriangleright \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B) \text{ is }$$

- Concave in σ.
- Convex in ρ if $\mathbf{LC1} \subseteq \mathbf{\Omega}$.

 $\blacktriangleright \max_{\sigma} \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B) \text{ is also convex in } \rho.$

- For a group covariant map $\forall g \in G : \mathcal{E}[U_g \rho U_g^{\dagger}] = V_g \mathcal{E}[\rho] V_g^{\dagger}$, we can restrict to group *invariant* ρ and σ in the optimisations.
- For permutation covariant channels: Poly(n) size SDP for EA converse (Ω = ALL).

 $^{^2 {\}rm See}$ Y. Polyanskiy's study of classical bound on his website. To appear in IEEE Trans. Inf. T.

$$B_{\epsilon}^{\mathbf{\Omega}}(\mathcal{E}) = \left(\min_{\rho} \max_{\sigma} \beta_{\epsilon}^{\mathbf{\Omega}}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B)\right)^{-1}$$

$$\blacktriangleright \ \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^*\sigma_B) \text{ is }$$

- Concave in σ.
- Convex in ρ if $LC1 \subseteq \Omega$.

 $\blacktriangleright \max_{\sigma} \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B) \text{ is also convex in } \rho.$

- For a group covariant map $\forall g \in G : \mathcal{E}[U_g \rho U_g^{\dagger}] = V_g \mathcal{E}[\rho] V_g^{\dagger}$, we can restrict to group *invariant* ρ and σ in the optimisations.
- For permutation covariant channels: Poly(n) size SDP for EA converse (Ω = ALL).

 $^{^2 {\}rm See}$ Y. Polyanskiy's study of classical bound on his website. To appear in IEEE Trans. Inf. T.

$$B_{\epsilon}^{\mathbf{\Omega}}(\mathcal{E}) = \left(\min_{\rho} \max_{\sigma} \beta_{\epsilon}^{\mathbf{\Omega}}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B)\right)^{-1}$$

$$\blacktriangleright \ \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^*\sigma_B) \text{ is }$$

- Concave in σ.
- Convex in ρ if $\mathbf{LC1} \subseteq \mathbf{\Omega}$.
- $\blacktriangleright \max_{\sigma} \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B) \text{ is also convex in } \rho.$

- For a group covariant map ∀g ∈ G : E[U_gρU[†]_g] = V_gE[ρ]V[†]_g, we can restrict to group *invariant* ρ and σ in the optimisations.
- For permutation covariant channels: Poly(n) size SDP for EA converse (Ω = ALL).

 $^{^2 {\}rm See}$ Y. Polyanskiy's study of classical bound on his website. To appear in IEEE Trans. Inf. T.

$$B_{\epsilon}^{\mathbf{\Omega}}(\mathcal{E}) = \left(\min_{\rho} \max_{\sigma} \beta_{\epsilon}^{\mathbf{\Omega}}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B)\right)^{-1}$$

$$\blacktriangleright \ \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^*\sigma_B) \text{ is }$$

- Concave in σ.
- Convex in ρ if $LC1 \subseteq \Omega$.

 $\blacktriangleright \max_{\sigma} \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B) \text{ is also convex in } \rho.$

- For a group covariant map $\forall g \in G : \mathcal{E}[U_g \rho U_g^{\dagger}] = V_g \mathcal{E}[\rho] V_g^{\dagger}$, we can restrict to group *invariant* ρ and σ in the optimisations.
- For permutation covariant channels: Poly(n) size SDP for EA converse (Ω = ALL).

 $^{^2 {\}rm See}$ Y. Polyanskiy's study of classical bound on his website. To appear in IEEE Trans. Inf. T.

$$B_{\epsilon}^{\mathbf{\Omega}}(\mathcal{E}) = \left(\min_{\rho} \max_{\sigma} \beta_{\epsilon}^{\mathbf{\Omega}}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B)\right)^{-1}$$

•
$$\beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^*\sigma_B)$$
 is

- Concave in σ.
- Convex in ρ if $\mathbf{LC1} \subseteq \mathbf{\Omega}$.

 $\blacktriangleright \max_{\sigma} \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B) \text{ is also convex in } \rho.$

- For a group covariant map $\forall g \in G : \mathcal{E}[U_g \rho U_g^{\dagger}] = V_g \mathcal{E}[\rho] V_g^{\dagger}$, we can restrict to group *invariant* ρ and σ in the optimisations.
- For permutation covariant channels: Poly(n) size SDP for EA converse (Ω = ALL).

²See Y. Polyanskiy's study of classical bound on his website. To appear in IEEE Trans. Inf. T.

$$B_{\epsilon}^{\mathbf{\Omega}}(\mathcal{E}) = \left(\min_{\rho} \max_{\sigma} \beta_{\epsilon}^{\mathbf{\Omega}}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B)\right)^{-1}$$

•
$$\beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^*\sigma_B)$$
 is

- Concave in σ.
- Convex in ρ if $\mathbf{LC1} \subseteq \mathbf{\Omega}$.

 $\blacktriangleright \max_{\sigma} \beta_{\epsilon}^{\Omega}(\{\rho; \mathcal{E}\}_{\tilde{A}B}, \rho_{\tilde{A}}^* \sigma_B) \text{ is also convex in } \rho.$

- For a group covariant map $\forall g \in G : \mathcal{E}[U_g \rho U_g^{\dagger}] = V_g \mathcal{E}[\rho] V_g^{\dagger}$, we can restrict to group *invariant* ρ and σ in the optimisations.
- For permutation covariant channels: Poly(n) size SDP for EA converse (Ω = ALL).

²See Y. Polyanskiy's study of classical bound on his website. To appear in IEEE Trans. Inf. T.

• d-dimensional depolarising channel: $\mathcal{D}[\tau] = (1-p)\tau + p \text{Tr}(\tau)\mu$, where $\mu = 1/d$ is the maximally mixed state.

- $lackslash \, \mathcal{D}^{\otimes n}$ has the covariance group $S_n \ltimes \mathrm{U}(d)^{ imes n}$
- Only G invariant ρ and σ are the maximally mixed states.
- ▶ { $\mu^{\otimes n}$; $\mathcal{D}^{\otimes n}$ } = $\phi(p)^{\otimes n}$ where $\phi(p) := (1 p)\phi_{\tilde{A}B} + p\mu_{\tilde{A}}\mu_B$, where ϕ is the $U \otimes U^*$ invariant maximally entangled state.
- $M_{\epsilon}^{\mathrm{E}}(\mathcal{D}^{\otimes n}) \leq B_{\epsilon}(\mathcal{E}) = \beta_{\epsilon}((\phi(p)^{\otimes n})_{\tilde{\mathrm{A}}^{n}\mathrm{B}^{n}} \| (\mu^{\otimes n})_{\tilde{\mathrm{A}}^{n}}(\mu^{\otimes n})_{\mathrm{B}^{n}})^{-1}$
- ► Since the arguments commute, and there are only two distinct eigenvalues (eigenprojectors φ and 1 − φ), the problem is equivalent to classical hypothesis testing between two differently biased coins, based on n tosses.

- d-dimensional depolarising channel: $\mathcal{D}[\tau] = (1-p)\tau + p \text{Tr}(\tau)\mu$, where $\mu = \mathbb{1}/d$ is the maximally mixed state.
- $\mathcal{D}^{\otimes n}$ has the covariance group $S_n \ltimes \mathrm{U}(d)^{ imes n}$
- Only G invariant ho and σ are the maximally mixed states.
- ▶ { $\mu^{\otimes n}$; $\mathcal{D}^{\otimes n}$ } = $\phi(p)^{\otimes n}$ where $\phi(p) := (1 p)\phi_{\tilde{A}B} + p\mu_{\tilde{A}}\mu_B$, where ϕ is the $U \otimes U^*$ invariant maximally entangled state.
- Since the arguments commute, and there are only two distinct eigenvalues (eigenprojectors φ and 1 − φ), the problem is equivalent to classical hypothesis testing between two differently biased coins, based on n tosses.

- d-dimensional depolarising channel: $\mathcal{D}[\tau] = (1-p)\tau + p \text{Tr}(\tau)\mu$, where $\mu = 1/d$ is the maximally mixed state.
- $\mathcal{D}^{\otimes n}$ has the covariance group $S_n \ltimes \mathrm{U}(d)^{ imes n}$
- Only G invariant ρ and σ are the maximally mixed states.
- ▶ { $\mu^{\otimes n}$; $\mathcal{D}^{\otimes n}$ } = $\phi(p)^{\otimes n}$ where $\phi(p) := (1-p)\phi_{\tilde{A}B} + p\mu_{\tilde{A}}\mu_B$, where ϕ is the $U \otimes U^*$ invariant maximally entangled state.
- Since the arguments commute, and there are only two distinct eigenvalues (eigenprojectors φ and 1 − φ), the problem is equivalent to classical hypothesis testing between two differently biased coins, based on n tosses.

- d-dimensional depolarising channel: $\mathcal{D}[\tau] = (1-p)\tau + p \text{Tr}(\tau)\mu$, where $\mu = \mathbb{1}/d$ is the maximally mixed state.
- $\mathcal{D}^{\otimes n}$ has the covariance group $S_n \ltimes \mathrm{U}(d)^{ imes n}$
- Only G invariant ρ and σ are the maximally mixed states.
- ► { $\mu^{\otimes n}$; $\mathcal{D}^{\otimes n}$ } = $\phi(p)^{\otimes n}$ where $\phi(p) := (1 p)\phi_{\tilde{A}B} + p\mu_{\tilde{A}}\mu_B$, where ϕ is the $U \otimes U^*$ invariant maximally entangled state.
- Since the arguments commute, and there are only two distinct eigenvalues (eigenprojectors φ and 1 − φ), the problem is equivalent to classical hypothesis testing between two differently biased coins, based on n tosses.

- d-dimensional depolarising channel: $\mathcal{D}[\tau] = (1-p)\tau + p \text{Tr}(\tau)\mu$, where $\mu = \mathbb{1}/d$ is the maximally mixed state.
- $\mathcal{D}^{\otimes n}$ has the covariance group $S_n \ltimes \mathrm{U}(d)^{ imes n}$
- Only G invariant ρ and σ are the maximally mixed states.
- ► { $\mu^{\otimes n}$; $\mathcal{D}^{\otimes n}$ } = $\phi(p)^{\otimes n}$ where $\phi(p) := (1 p)\phi_{\tilde{A}B} + p\mu_{\tilde{A}}\mu_B$, where ϕ is the $U \otimes U^*$ invariant maximally entangled state.
- $\blacktriangleright \ M^{\rm E}_{\epsilon}(\mathcal{D}^{\otimes n}) \leq B_{\epsilon}(\mathcal{E}) = \beta_{\epsilon}((\phi(p)^{\otimes n})_{\tilde{\rm A}^n {\rm B}^n} \| (\mu^{\otimes n})_{\tilde{\rm A}^n} (\mu^{\otimes n})_{{\rm B}^n})^{-1}$

► Since the arguments commute, and there are only two distinct eigenvalues (eigenprojectors φ and 1 - φ), the problem is equivalent to classical hypothesis testing between two differently biased coins, based on n tosses.

- d-dimensional depolarising channel: $\mathcal{D}[\tau] = (1-p)\tau + p \text{Tr}(\tau)\mu$, where $\mu = \mathbb{1}/d$ is the maximally mixed state.
- $\mathcal{D}^{\otimes n}$ has the covariance group $S_n \ltimes \mathrm{U}(d)^{ imes n}$
- Only G invariant ρ and σ are the maximally mixed states.
- ▶ $\{\mu^{\otimes n}; \mathcal{D}^{\otimes n}\} = \phi(p)^{\otimes n}$ where $\phi(p) := (1-p)\phi_{\tilde{A}B} + p\mu_{\tilde{A}}\mu_{B}$, where ϕ is the $U \otimes U^{*}$ invariant maximally entangled state.
- $\blacktriangleright M_{\epsilon}^{\mathrm{E}}(\mathcal{D}^{\otimes n}) \leq B_{\epsilon}(\mathcal{E}) = \beta_{\epsilon}((\phi(p)^{\otimes n})_{\tilde{\mathrm{A}}^{n}\mathrm{B}^{n}} \| (\mu^{\otimes n})_{\tilde{\mathrm{A}}^{n}}(\mu^{\otimes n})_{\mathrm{B}^{n}})^{-1}$
- Since the arguments commute, and there are only two distinct eigenvalues (eigenprojectors φ and 1 − φ), the problem is equivalent to classical hypothesis testing between two differently biased coins, based on n tosses.
Example: EA coding over the depolarising channel

Figure: The upper bound on the rate for entanglement assisted codes over the p=0.15 depolarising channel for three different error probabilities.

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.
- Application to proving security in the noisy-storage model of quantum cryptography (see paper).
- Almost closed form expressions for other simple channels?
- Relationship to Datta-Hsieh bound?
- Investigate PPT bound for unassisted codes.
- "Matching" achievability bounds?
- Second order asymptotics for EA coding over i.i.d. channels (converse part of Strassen-like result) using results of next talk?

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.
- Application to proving security in the noisy-storage model of quantum cryptography (see paper).
- Almost closed form expressions for other simple channels?
- Relationship to Datta-Hsieh bound?
- Investigate PPT bound for unassisted codes.
- "Matching" achievability bounds?
- Second order asymptotics for EA coding over i.i.d. channels (converse part of Strassen-like result) using results of next talk?

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.
- Application to proving security in the noisy-storage model of quantum cryptography (see paper).
- Almost closed form expressions for other simple channels?
- Relationship to Datta-Hsieh bound?
- Investigate PPT bound for unassisted codes.
- "Matching" achievability bounds?
- Second order asymptotics for EA coding over i.i.d. channels (converse part of Strassen-like result) using results of next talk?

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.
- Application to proving security in the noisy-storage model of quantum cryptography (see paper).
- Almost closed form expressions for other simple channels?
- Relationship to Datta-Hsieh bound?
- Investigate PPT bound for unassisted codes.
- "Matching" achievability bounds?
- Second order asymptotics for EA coding over i.i.d. channels (converse part of Strassen-like result) using results of next talk?

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.
- Application to proving security in the noisy-storage model of quantum cryptography (see paper).
- Almost closed form expressions for other simple channels?
- Relationship to Datta-Hsieh bound?
- Investigate PPT bound for unassisted codes.
- "Matching" achievability bounds?
- Second order asymptotics for EA coding over i.i.d. channels (converse part of Strassen-like result) using results of next talk?

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.
- Application to proving security in the noisy-storage model of quantum cryptography (see paper).
- Almost closed form expressions for other simple channels?
- Relationship to Datta-Hsieh bound?
- Investigate PPT bound for unassisted codes.
- "Matching" achievability bounds?
- Second order asymptotics for EA coding over i.i.d. channels (converse part of Strassen-like result) using results of next talk?

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.
- Application to proving security in the noisy-storage model of quantum cryptography (see paper).
- Almost closed form expressions for other simple channels?
- Relationship to Datta-Hsieh bound?
- Investigate PPT bound for unassisted codes.
- "Matching" achievability bounds?
- Second order asymptotics for EA coding over i.i.d. channels (converse part of Strassen-like result) using results of next talk?

- We have generalised a powerful converse for classical channel coding to a hierarchy of bounds for quantum channel coding based on hypothesis testing with restricted measurements.
- Application to proving security in the noisy-storage model of quantum cryptography (see paper).
- Almost closed form expressions for other simple channels?
- Relationship to Datta-Hsieh bound?
- Investigate PPT bound for unassisted codes.
- "Matching" achievability bounds?
- Second order asymptotics for EA coding over i.i.d. channels (converse part of Strassen-like result) using results of next talk?