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Motivation Results Applications and outlook

Setting

Setting

• We consider only finite dimensional state spaces.

• We consider an open quantum system described by a
Markovian master equation

d

dt
ρt = L(ρ) = i [H, ρ] +

∑
k

LkρL
†
k −

1

2
{L†kLk , ρ} (1)

• We assume that the Liouvillian is primitive, meaning that L
has a unique full-rank stationary state σ > 0

• If ΓσL = L∗Γσ, where σ is the stationary state of L and
Γσ(X ) =

√
σX
√
σ, the L is reversible.

Note: we do not yet make any assumptions about locality or
geometry at this point.
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Motivation Results Applications and outlook

Convergence rates

The question

Let L be the generator of a primitive reversible quantum dynamical
semigroup. Given ε > 0, for what τ ≥ t > 0 do we have

||ρt − σ||1 ≤ ε? (2)

The answer: general convergence theorem

Let λ > 0 be the spectral gap of L, then for any b ≤ λ, there
exists a finite A such that

||ρt − σ||1 ≤ Ae−bt . (3)

What are good choices for A and b? We will argue that the Log
Sobolev machinery is the finest available to answer this question.
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Convergence rates

Applications

1 Unital quantum channels and random unitary maps (the fast
scrambling conjecture).

2 Quantum memories: Davies generators of stabilizer
Hamiltonians. Rigorous no-go theorems.

3 Liouvillian complexity: what can we say about systems whose
Log Sobolev constant is independent of the system size?

4 Dissipative algorithms?

5 Concentration of measure?
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Motivation Results Applications and outlook

A few definitions to start with...

non-commutative Lp spaces

• The Lp inner product. For two hermitian operators f , g :

〈f , g〉σ = tr[Γσ(f )g ] ≡ tr[σ1/2f σ1/2g ]. (4)

• The Lp norm. For any hermitian operator f :

||f ||p,σ = tr[ |Γ1/p
σ (f )|p]

1/p
(5)
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A few more definitions...

Variance and Entropy functionals

• The variance

Varσ(g) = tr[Γσ(g)g]− tr[Γσ(g)]2. (6)

• The Lp relative entropies. For any hermitian operator f :

Ent1(f) = tr[Γσ(f )(log(Γσ(f ))− log(σ))] (7)

−tr[Γσ(f )] log(tr[Γσ(f )]) (8)

Ent2(f) = tr[
(

Γ1/2
σ (f )

)2
log
(

Γ1/2
σ (f )

)
] (9)

−1

2
tr[
(

Γ1/2
σ (f )

)2
log (σ)]

−1

2
‖f ‖22,σ log

(
‖f ‖22,σ

)
.
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Yet more... (sorry!)

Dirichlet Forms

E1(f ) = −1

2
tr[Γσ(L(f ))(log(Γσ(f ))− log(σ))] (10)

E2(f ) = −〈f ,L(f )〉σ . (11)

Useful identities:

Var(Γ−1σ (ρ)) = χ2(ρ, σ), Ent2(Γ−1σ (ρ)) = S(ρ||σ) (12)
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Spectral Gap and Log-Sobolev constant

• The spectral gap of L:

λ = inf
f 6=0

E2(f )

Varσ(f)
(13)

• The (1, 2)- logarithmic Sobolev constant

α1,2 = inf
f>0

E1,2(f )

Ent1,2(f)
(14)

Note: one can in fact define a whole family of Log Sobolev
constants αp, with p ≥ 0.
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Mixing times

Theorem

Let L denote the generator of a primitive reversible semigroup with
fixed point σ. Then,

1 χ2 bound:

||ρt − σ||1 ≤
√
χ2(ρt , σ) (15)

≤
√
χ2(ρ, σ)e−λt ≤

√
1/σmine

−λt .

2 Log-Sobolev bound:

||ρt − σ||1 ≤
√

2S(ρt ||σ) (16)

≤
√

2S(ρ||σ)e−α1t ≤
√

2 log (1/σmin)e−α1t .

Where σmin denotes the smallest eigenvalue of the fixed point σ.
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Mixing times

Interpretation

Davies generators describe the dissipative dynamics resulting as the
weak (or singular) coupling limit of a system coupled to a large
heat bath. For these thermal maps, the Log-Sobolev constant is
the minimal normalized rate of change of the free energy of the
system:

α1 = inf
ρ
∂t log [F (ρt)− F (ρβ)]|t=0 , (17)

where F (ρ) = tr[ρH]− 1
βS(ρ) is the free energy of the system, and

ρβ is the Gibbs state.
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Mathematical results

Mathematical results

Theorem (Partial ordering)

Let L be a primitive reversible Liouvillian with stationary state σ.
The Log-Sobolev constants α1, α2 and the spectral gap λ of L are
related as:

α2 ≤ α1 ≤ λ. (18)
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Mathematical results

Theorem (Hypercontractivity)

Let L be a primitive Liouvillian with stationary state σ, and let
Tt = etL be its associated semigroup. Then

1 If there exists a α > 0 such that ||Tt ||(2,σ)→(p(t),σ) ≤ 1 for all
t > 0 and 2 ≤ p(t) ≤ 1 + e2αt . Then L satisfies LS2 with
α2 ≥ α.

2 If L is weakly Lp-regular, and has an LS2 constant α2, then
||Tt ||(2,σ)→(p(t),σ) ≤ 1 for all t > 0 when
2 ≤ p(t) ≤ 1 + e2α2t . If, furthermore, L is strongly Lp regular,
then the above holds for all t > 0 when 2 ≤ p(t) ≤ 1 + e4α2t .

Quantum LogSobolev Michael Kastoryano and Kristan Temme



Motivation Results Applications and outlook

Quantum Expanders

Quantum expanders

Quantum Expander: (sequence of) quantum channel with i) a
fixed number of Kraus operators (D), and ii) the spectral gap λ of
the channel is asymptotically independent of dimension d . Then,

(1− 2/d)λ

log (d − 1)
≤ α2 ≤ logD

4 + log log d

2 log 3d/4
(19)

The mixing time is of order log d
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Liouvillian Complexity

Suppose that L describes the open system dynamics on a lattice of
qudits. Assume furthermore that L is: i) primitive and
reversible, ii) local, and iii) has a Log Sobolev constant α1 which
is system size independent. Then we get

(strong) clustering of correlations

〈OAOB〉σ − 〈OA〉σ〈OB〉σ ≤ K log

(
1

σmin

)
e−α1d(A,B)/v (20)

where K is volume like.
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Liouvillian Complexity

Suppose that L describes the open system dynamics on a lattice of
qudits. Assume furthermore that L is: i) primitive and
reversible, ii) local, and iii) has a Log Sobolev constant α1 with is
system size independent. Then we get

Stability of Liouvillians

Let Q be a local perturbation of L, and L′ = L+Q with
stationary state σ′, then

||σ − σ′||1 ≤
||Q||1−1
α1

(
log

(
log

(
1

σmin

))
+ 1

)
(21)
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Liouvillian Complexity

Thank you for your attention!
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Liouvillian Complexity
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