Improved learning graph based quantum algorithms for Triangle and Associativity

Miklos Santha
CNRS, Université Paris Diderot
and
Centre for Quantum Technologies, NUS, Singapore
Joint work with
T. Lee CQT, Singapore and
F. Magniez CNRS, Paris

Query complexity

Let $f: \mathcal{D} \rightarrow E$ with $\mathcal{D} \subseteq[d]^{n}$. Often $d=2$ and $E=\{0,1\}$.
Query complexity: Number of input queries needed to evaluate f.
Computational models: Deterministic, randomized, quantum
The gap between the deterministic and quantum complexities

- can be exponential [Simon'97, Shor'97]: Period finding, [EHK'99]: Hidden Subgroup Problem
- [BBCMW'01]: is at most polynomial for total functions

Quantum query complexity

Theorem [HLS'07, R'11, LMRSSz'11]: Let $f: \mathcal{D} \rightarrow\{0,1\}$ with $\mathcal{D} \subseteq[d]^{n}$. Then

$$
\begin{aligned}
Q(f)=\underset{u_{x, i}}{\operatorname{minimize}} & \max _{x \in \mathcal{D}} \sum_{i \in[n]}\left\|u_{x, i}\right\|^{2} \\
\text { subject to } & \sum_{\substack{i \in[n] \\
x_{i} \neq y_{i}}}\left\langle u_{x, i} \mid u_{y, i}\right\rangle=1 \text { for all } f(x) \neq f(y),
\end{aligned}
$$

where $u_{x, i} \in \mathbb{R}^{m}$, for $x \in \mathcal{D}$ and $i \in[n]$.

Learning graphs [Belovs'11]

A learning graph \mathcal{G} for $f: \mathcal{D} \rightarrow\{0,1\}$ with $\mathcal{D} \subseteq[d]^{n}$ is

- rooted, weighted and directed acyclic graph
- vertices labeled by $S \subseteq[n]$, the root is labeled by \emptyset
- An edge is $e=(S, S \cup\{i\})$ for $S \subseteq[n]$ and $i \notin S$

We must specify

- For every edge e its weight $w(e) \in \mathbb{R}^{+}$
- For every input $y \in f^{-1}(1)$ a unit flow from the root \emptyset, where all sinks are labeled by sets S containing a 1-certificate for y. The flow through edge e on y is denoted $p_{y}(e)$

We can also authorize edges $e=\left(S, S \cup S^{\prime}\right)$ for $S \cap S^{\prime}=\emptyset$
Then by definition the length $\ell(e)$ of the edge e is $\left|S^{\prime}\right|$

Learning graph for the OR function

Unit flow for the positive input $x=0 \ldots 010 \ldots 0$, where $x_{i}=1$.

LEARNing GRAPhS

Learning graph complexity $\mathcal{L G}(f)$ of f

- Negative complexity of \mathcal{G} :

$$
C_{0}(\mathcal{G})=\sum_{e \in \mathcal{G}} \ell(e) w(e)
$$

- Positive complexity of \mathcal{G} :

$$
C_{1}(\mathcal{G})=\max _{y \in f^{-1}(1)}\left(\sum_{e \in \mathcal{G}} \ell(e) \frac{p_{y}(e)^{2}}{w(e)}\right) .
$$

- Complexity of $\mathcal{G}: C(\mathcal{G})=\sqrt{C_{0}(\mathcal{G}) C_{1}(\mathcal{G})}$.
- $\mathcal{L G}(f)=\min C(\mathcal{G})$ where \mathcal{G} is a learning graph for f

Learning graph for the OR function

$$
C_{0}(\mathcal{G})=n \quad C_{1}(\mathcal{G})=1 \quad C(\mathcal{G})=\sqrt{n} \quad \mathcal{L G}(\mathrm{OR})=O(\sqrt{n})
$$

Learning graph is a Relaxation

Theorem[Belovs'11]: $Q(f) \leq \mathcal{L G}(f)$.
Proof Let $E_{i}=\{e=(S, S \cup\{i\}): i \notin S\}$;

$$
\begin{aligned}
& u_{x, i}=\sum_{e \in E_{i}} \sqrt{w(e)}|S\rangle\left|x_{S}\right\rangle \text { for } f(x)=0 \\
& u_{y, i}=\sum_{e \in E_{i}} \frac{p_{y}(e)}{\sqrt{w(e)}}|S\rangle\left|y_{S}\right\rangle \quad \text { for } \quad f(y)=1
\end{aligned}
$$

Then $\sum_{i: x_{i} \neq y_{i}}\left\langle u_{x, i} \mid u_{y, i}\right\rangle$ is the flow through the cut

$$
(\{S: S \subseteq I\},\{S: I \subsetneq S\})
$$

where $\quad I=\left\{i: x_{i}=y_{i}\right\}$

LEARNING GRAPH IN STAGES

Fact: Complexity of constant stages $=$ sum of the complexities

Complexity of a stage

$$
\begin{gathered}
\ell(e)=\ell \\
w(e)=1
\end{gathered}
$$

Complexity $=\ell \sqrt{\frac{|V|}{|W|}} \sqrt{\frac{d^{+}}{g^{+}}}$

$$
\frac{|V|}{|W|}=\text { vertex ratio }
$$

$\frac{d+}{g+}=$ out-degree ratio
$W \subseteq V$

SEVERAL STAGES

$$
C_{i}=\ell_{i} \sqrt{\frac{\left|V_{i}\right|}{\left|W_{i}\right|}} \sqrt{\frac{d_{i}^{+}}{g_{i}^{+}}}
$$

The out-degre ratio is local to the stage, but the vertex ratio depends on the past

Evolution of the vertex ratio with constant in-degrees d^{-}and g^{-}:

$$
\begin{gathered}
\left|V_{i}\right|=\left|V_{i-1}\right| \frac{d_{i-1}^{+}}{d_{i}^{-}} ; \quad\left|W_{i}\right|=\left|W_{i-1}\right| \frac{g_{i-1}^{+}}{g_{i}^{-}} \\
\frac{\left|V_{i}\right|}{\left|W_{i}\right|}=\left(\frac{\left|V_{i-1}\right|}{\left|W_{i-1}\right|} \times \frac{d_{i-1}^{+}}{g_{i-1}^{+}}\right): \frac{d_{i}^{-}}{g_{i}^{-}}
\end{gathered}
$$

The in-degree ratio $\frac{d_{i}^{-}}{g_{i}^{-}}$decreases the complexity
It depends on some well chosen database

Example: Element distinctness

Element Distinctness
Oracle Input: A function $f:[n] \rightarrow[n]$.
Question: Is there a pair of distinct elements $i, j \in[n]$ such that $f(i)=f(j)$?

For every positive instance f we fix $a \neq b$ such that $f(a)=f(b)$.

Complexity of ED

$$
V_{i}=\left\{U_{i} \subseteq[n]: \ldots\right\}
$$

$$
U_{1}=\emptyset \quad\left|U_{2}\right|=r \quad\left|U_{3}\right|=r+1 \quad\left|U_{4}\right|=r+2
$$

Vertex ratio at stage 3: $\frac{\left|V_{2}\right|}{\left|W_{2}\right|}=1 ; \quad \frac{\left|V_{3}\right|}{\left|W_{3}\right|}=\frac{d_{2}^{+}}{g_{2}^{+}}: \frac{d_{3}^{-}}{g_{3}^{-}}=\frac{n}{1}: \frac{r}{1}=\frac{n}{r}$
Complexity: $\quad C(\mathcal{G})=C_{1}+C_{3}=r+n / \sqrt{r}=n^{2 / 3}$

Triangle and Subgraph H_{H}

Triangle
Oracle Input: The adjacency matrix $A:\binom{n}{2} \rightarrow\{0,1\}$ of a graph G on vertex set [n].
Question: Is there a triangle in G ?

Let $H=([k], E(H))$ be some fixed k-vertex graph.
Subgraph $_{H}$
Oracle Input: The adjacency matrix $A:\binom{n}{2} \rightarrow\{0,1\}$ of a graph G on vertex set [n].
Question: Is there a copy of H in G ?

Learning graph based algorithms

[Magniez-Santha-Szegedy'03]: $Q($ TRIANGLE $)=O\left(n^{1.3}\right)$
Database is the complete graph
[Belovs'11]: $Q($ TRIANGLE $)=O\left(n^{35 / 27}\right)=O\left(n^{1.296}\right)$ Sparsification: maintain just a random database where edge slots are chosen with probability $0 \leq s \leq 1$.
[Zhu'11, Lee-Magniez-Santha'11]: $Q\left(\right.$ SuBGRAPH $\left._{H}\right)=O\left(n^{2-2 / k-t}\right)$, where $t=t(k, m, d)>0$. Random database is the union of regular bipartite graphs reflecting the structure of the subgraph
[Belovs'12]: $Q(k$-Distinctness $)=O\left(n^{1-\frac{2^{k-2}}{2^{k}-1}}\right)$
More general learning graph: It depends also on the value of the queried variables

Our algorithms

- $Q($ TRIANGLE $)=O\left(n^{9 / 7}\right)=O\left(n^{1.285}\right)$
- Generalized algorithm for Subgraph H_{H}
- $Q($ Associativity $)=O\left(n^{10 / 7}\right)=O\left(n^{1.428}\right)$

Triangle: The algorithm

For every positive instance A we fix three vertices a_{1}, a_{2}, a_{3} such that they form a triangle
(1) Setup: Load a complete bipartite graph between A_{1} and A_{2} of respective cardinality $r_{1}=n^{4 / 7}$ and $r_{2}=n^{5 / 7}$
(2) Load a_{1} : Add a_{1} to A_{1} and connect it to all A_{2}
(3) Load a_{2} : Add a_{2} to A_{2} and connect it to all A_{1}
(4) Load a_{3} : Pick a_{3} and connect it with $\lambda=n^{3 / 7}$ edges to A_{2}
(5) Load $\left\{a_{2}, a_{3}\right\}$
(6) Load $\left\{a_{1}, a_{3}\right\}$

Vertex sets in the bipartite graphs database can be unbalanced

Triangle: The algorithm

Abstract language for detecting subgraphs

Let $H=([k], E(H))$ be some fixed k-vertex graph
Example: 4-PATH

Loading schedule: sequence $S=s_{1} s_{2} \ldots s_{k+m}$ which enumerates all vertices and edges of H.
Example: $S=[1,2,4,3,(2,1),(2,3),(3,4), 5,(5,4)]$.
L-graph vertices: regular k-partite graphs with classes A_{1}, \ldots, A_{k}, and bipartite graphs $E_{i j}$ between A_{i} and A_{j} for $\{i, j\} \in E(H)$.

Parameters: Set sizes $\left\{r_{i}\right\}$ and vertex degrees $\left\{d_{i j}\right\}$
Example: $r_{1}=n, r_{2}=n^{4 / 7}, r_{3}=n^{6 / 7}, r_{4}=n^{5 / 7}, r_{5}=1$; $d_{21}=n^{6 / 7}, d_{23}=n^{6 / 7}, d_{34}=n^{5 / 7}, d_{54}=1$.

Abstract language for detecting subgraphs

Theorem: There is an explicit function ϕ such that

$$
\mathcal{L G}\left(\operatorname{SUBGRAPH}_{H}\right) \leq \phi\left(S,\left\{r_{i}\right\},\left\{d_{i j}\right\}\right)
$$

Example: $\mathcal{L G}(4$-РATH $)=O\left(n^{10 / 7}\right)$
Best parameters can be found by linear programming: https://github.com/troyjlee/learning_graph_lp

Theorem is extendable to:

- H is directed with possible self-loops
- Constant number of 1-certificates instead of just one
- Functions on labeled graphs:

Let $f:[n]^{n \times n} \rightarrow\{0,1\}$ be such that all minimal 1-certificate graphs are isomorphic to a fixed graph H. Then

$$
\mathcal{L G}(f) \leq \mathcal{L G}\left(\text { SUBGRAPH }_{H}\right)
$$

Associativity

Oracle Input: Operation $\circ:[n] \times[n] \rightarrow[n]$
Question: \exists a triple (a, b, c) such that $(a \circ b) \circ c \neq a \circ(b \circ c)$?
Grover search: Q (Associativity) $=O\left(n^{3 / 2}\right)$
Theorem: $Q($ Assoc $)=O\left(n^{10 / 7}\right)=O\left(n^{1.428}\right)$

$$
\text { Certificate } \Longleftrightarrow a \circ(b \circ c) \neq(a \circ b) \circ c
$$

Certificate $\Longleftrightarrow\left(a_{2} \circ a_{3}=a_{5}, a_{3} \circ a_{4}=a_{1}\right.$ and $\left.a_{2} \circ a_{1} \neq a_{5} \circ a_{4}\right)$
Certificate graph:

$Q($ Assoc $) \leq \mathcal{L G}($ Assoc $\left.) \leq \mathcal{L G}(4-\mathrm{PATH})=O\left(n^{10 / 7}\right)\right)$

Conclusion

Recent results:

- [Jeffery, Kothari, Magniez'12]: Can simulate our algorithms by quantum walks
- [Belovs, Rosmanis'12]: Our triangle algorithm is the best non-adaptive learning graph algorithm
Open problems: Complexity of
- Triangle
- Graph Collision
- k-Distinctness
- Associativity
- Matrix Product Verification

