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Local (topological) stabilizer codes

Z
X X
Z

ξ

L

D-dimensional array of qubits
of size L

local stabilizer generators:
support of any generator
has diameter ξ = O(1)

code distance d� ξ

examples:

• toric code/surface codes [Kitaev’97, Bravyi, Kitaev’98]
• color codes [Bombin, Martin-Delgado’06]
• 3D self-correcting memories [Haah 12] and [Michnickis 12]
• surface code with twists [Bombin’10]
• ...

# of encoded qubits k



Protected gates?

U

fault-tolerance properties
depend structure of U

UL = Lpreserving codespace L:logical gate: unitary U
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Protected gates?

UL = Lpreserving codespace L:logical gate: unitary U

?

• preexisting errors do not spread

• faulty unitaries only introduce local errors

when applying a transversal gate.

?? ?

??

fault-tolerance properties
depend structure of U

example of a
protected gate:

transversal gate

}? error locations



Limitations on transversal encoded gates

General (non-stabilizer) codes:

Theorem: Transversal encoded gates
generate a finite group.

[Eastin, Knill ’09]

Proof uses theory of Lie groups.

2D surface codes:

Theorem: Suppose the stabilizer group has no
generators of weight 2. Then all
transversal gates are in the Clifford group.

[Sarvepalli, Raussendorf ’09]

Proof uses theory of matroids.

?

?? ?

??

? error locations



A more general notion of protected gates?

? error locations

• preexisting errors do not spread

• faulty unitaries only introduce local errors

when applying a transversal gate.

}
depth-1 quantum
circuit

transversal gate

≡

?

?? ?

??



A definition of protected gates

• preexisting errors only spread to a constant-width causal cone

• faulty unitaries introduce errors restricted to causal cone

when applying a gate realized by a constant-depth circuit

}
constant-depth
quantum circuit

protected gate

≡
implementable by
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A definition of protected gates

• preexisting errors only spread to a constant-width causal cone

• faulty unitaries introduce errors restricted to causal cone

when applying a gate realized by a constant-depth circuit
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constant-depth
quantum circuit
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The Clifford hierarchy and local stabilizer codes

Level 1: Pauli group

Level 2: Clifford group

Level 3: π/8-gate, Toffoli gate, Λ(S), etc.

Level j + 1: Cj+1 = {Ū ∈ U(2k) | ŪC1Ū † ⊆ Cj}
Pauli group Level j

[Gottesman, Chuang ’99]

Clifford group: Hadamard, (X +Z)/
√

2, CNOT , π/4
rotation
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The Clifford hierarchy and local stabilizer codes

Level 1: Pauli group

Level 2: Clifford group

Level 3: π/8-gate, Toffoli gate, Λ(S), etc.

Level j + 1: Cj+1 = {Ū ∈ U(2k) | ŪC1Ū † ⊆ Cj}
Pauli group Level j

[Gottesman, Chuang ’99]

Theorem: For a D-dimensional local stabilizer code:

encoded gates implementable by a constant-depth circuit

belong to the level D of the Clifford hierarchy.

Clifford group: Hadamard, (X +Z)/
√

2, CNOT , π/4
rotation

(D ≥ 2)

Clifford group C2 C3



Proof tool I: the union lemma

Def: R correctable region :⇔
any logical Pauli operator
supported on R
acts as identity on code space

R

Example: number of qubits |R| < d



Proof tool I: the union lemma

Def: R correctable region :⇔
any logical Pauli operator
supported on R
acts as identity on code space

Union lemma:

R1,R2 correctable regions,

distance(R1,R2) > ξ
⇒ R1 ∪R2 correctable

R1

R2> ξ

[Bravyi, Poulin, Terhal ’10]

[Haah, Preskill’10]

=diameter of stabilizers



Application of union Lemma: partition of lattice

B C A B C A B C A B

A B C A B C A B C A

B C A B C A B C A B

A B C A B C A B C A

in D = 2: 3 disjoint correctable regions A,B,C

(in D: D + 1 disjoint correctable regions)

by application of the union Lemma



Proof tool II: the cleaning lemma

Def: R correctable region :⇔
any logical Pauli operator
supported on R
acts as identity on code space

⇒R

P

Cleaning lemma:

R correctable region,
P logical Pauli operator

⇒
∃ stabilizer S
such that PS is
supported outside R

[Bravyi, Terhal ’08]

support of S: contained
in ξ-neighborhood of R

R

PS



Application of cleaning lemma

P =

(arbitrary)
logical Pauli operators
after cleaning

B C A B C
A B C A

B C A B C
A B C A

Q = B C A B C
A B C A

B C A B C
A B C A



Application of cleaning lemma

P =

(arbitrary)
logical Pauli operators
after cleaning

QU =
UQU† =

application of
a transversal gate U

B C A B C
A B C A

B C A B C
A B C A

Q =

B C A B C
A B C A

B C A B C
A B C A

B C A B C
A B C A

B C A B C
A B C A

(QU is also transversal!)

(constant-depth: similar)



Application of cleaning lemma

P =

(arbitrary)
logical Pauli operators
after cleaning

application of
a transversal gate U

B C A B C
A B C A

B C A B C
A B C A

Q = B C A B C
A B C A

B C A B C
A B C A

(constant-depth: similar)

A CB

U {

Q {

U† {

≡ A CB ≡ A CB ≡ UQU†



Transversal gate U & support of ‘group commutator’
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QU =
UQU† =

transversalPauli

Claim: U
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L is an encoded Clifford group element
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Transversal gate U & support of ‘group commutator’

P = B C A B C
A B C A

B C A B C
A B C A

B C A B C
A B C A

B C A B C
A B C A

PQUP
†Q†U =

B C A B C
A B C A

B C A B C
A B C A

supported on
correctable
region A

⇒ PQUP
†Q†U

∣∣
L ∝ IL by definition of correctable regions

QU =
UQU† =

transversalPauli

⇒ QUP
∣∣
L = ±PQU

∣∣
L for all logical Pauli op P,Q

Claim: U
∣∣
L is an encoded Clifford group element⇒



Generalizing to higher dimensions

in D = 2
3 disjoint correctable regions A,B,C

1-chain 2-chain
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Generalizing to higher dimensions

in D = 2
3 disjoint correctable regions A,B,C

in D: D + 1 disjoint correctable regions

in D = 3
4 disjoint correctable regions A,B,C,D

1-chain 2-chain



The Clifford hierarchy and local stabilizer codes

Level j + 1: Cj+1 = {Ū ∈ U(2k) | ŪC1Ū † ⊆ Cj}
Pauli group Level j

Clifford group C2 C3

Theorem: For a D-dimensional local stabilizer code:

protected gates belong to CD.

(D ≥ 2)

application of
a constant-depth
circuit U



Code deformation?

Theorem: For a D-dimensional local stabilizer code:

protected gates belong to CD.

(D ≥ 2)

(Code deformation version) sequence of codes L(1), . . . ,L(t)

L(1) → L(2) → · · · → L(t)

constant-
depth
circuit

constant-
depth
circuit

constant-
depth
circuit

overall logical operation belongs to CD

• Braiding of anyons?

Raussendorf, Harrington, PRL 98, 190504 (2007)
Fowler, Stephens Groszkowski, PRA 80, 052312 (2009)

no additional gates!



Consequences for universality?

Level j + 1: Cj+1 = {Ū ∈ U(2k) | ŪC1Ū † ⊆ Cj}

Pauli group Level j

Theorem: For a D-dimensional local stabilizer code:

protected gates belong to CD.

2-dimensional local stabilizer code

{LL}L family of D-dimensional local
stabilizer codes such that
k = k(L) independent of L

Corollary:

}

Corollary:

}
set of protected
gates not
computationally
universal

(D ≥ 2)



Proof of Corollary

{LL}L family of D-dimensional local
stabilizer codes such that
k = k(L) independent of L

}
Claim: set of gates Ph

implementable by
depth-h circuit
generates group
〈Ph〉 ⊂ CD

CD
Ph

h = const.

finite
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Alternatives to getting universality?

• 3D stabilizer codes with universal gate sets

• magic state distillation

• non-stabilizer codes

H. Bombin, M. A. Martin-Delgado: Topological Computation
without braiding, PRL 98, 160502 (2007)

Bravyi, Kitaev, Phys. Rev. A 71, 022316 (2005)
Raussendorf, Harrington, Goyal NJP 9, 199 (2007)

Mochon, Phys. Rev. A 69, 032306 (2004)
G. Brennen, M. Aguado, I. Cirac, New J. Phys. 11 053009 (2009)
K, Kuperberg & Reichardt, Ann. Phys. 325, 2707 (2010)

k = k(L)



Thank you for your attention!

arXiv:1206.1609
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