Classification of topologically protected gates for local stabilizer codes

Robert König

joint work with

Sergey Bravyi

T-W JCQC

T-W JCQC

Quantum

T-W JCQC

Tsinghua-Waterloo Joint Center for Quantum Computing

Classification of topologically protected gates for local stabilizer codes

Robert König

joint work with

Sergey Bravyi

Local (topological) stabilizer codes

D-dimensional array of qubits of size L

local stabilizer generators: support of any generator has diameter $\xi = O(1)$

code distance $d \gg \xi$

of encoded qubits k

- toric code/surface codes [Kitaev'97, Bravyi, Kitaev'98]
 - color codes [Bombin, Martin-Delgado'06]
- 3D self-correcting memories [Haah 12] and [Michnickis 12]
 - surface code with twists [Bombin'10]
- examples:
- ...

Protected gates?

logical gate: unitary U preserving codespace \mathcal{L} : $U\mathcal{L} = \mathcal{L}$

fault-tolerance properties depend structure of ${\ensuremath{U}}$

Protected gates?

logical gate: unitary U preserving codespace \mathcal{L} : $U\mathcal{L} = \mathcal{L}$

Protected gates?

logical gate: unitary U preserving codespace \mathcal{L} : $U\mathcal{L} = \mathcal{L}$

★ error locations

fault-tolerance properties depend structure of U

example of a protected gate: transversal gate

- preexisting errors do not spread
- faulty unitaries only introduce local errors

when applying a transversal gate.

Limitations on transversal encoded gates

General (non-stabilizer) codes:

Theorem: Suppose the stabilizer group has no generators of weight 2. Then all transversal gates are in the **Clifford group**. [Sarvepalli, Raussendorf '09]

Proof uses theory of matroids.

A more general notion of protected gates?

- preexisting errors do not spread
- faulty unitaries only introduce local errors

when applying a transversal gate.

A definition of protected gates

protected gate

- preexisting errors only spread to a *constant-width causal cone*
- faulty unitaries introduce errors restricted to *causal cone*

when applying a gate realized by a constant-depth circuit

A definition of protected gates

- preexisting errors only spread to a *constant-width causal cone*
- faulty unitaries introduce errors restricted to *causal cone*

when applying a gate realized by a constant-depth circuit

A definition of protected gates

- preexisting errors only spread to a *constant-width causal cone*
- faulty unitaries introduce errors restricted to *causal cone*

when applying a gate realized by a constant-depth circuit

The Clifford hierarchy and local stabilizer codes

Level 1: Pauli group

[Gottesman, Chuang '99]

- Level 2: Clifford group
- Level 3: $\pi/8$ -gate, Toffoli gate, $\Lambda(S)$, etc.

The Clifford hierarchy and local stabilizer codes

Level 1: Pauli group

[Gottesman, Chuang '99]

- Level 2: Clifford group
- Level 3: $\pi/8$ -gate, Toffoli gate, $\Lambda(S)$, etc.

Properties: • $C_1 \subset C_2 \subset \cdots \subset C_j \subset C_{j+1} \subset \cdots$

$$\begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^j} \end{pmatrix} \in \mathcal{C}_j \backslash \mathcal{C}_{j-1}$$

The Clifford hierarchy and local stabilizer codes

- Level 1: Pauli group [Gottesman, Chuang '99]
- Level 2: Clifford group
- Level 3: $\pi/8$ -gate, Toffoli gate, $\Lambda(S)$, etc.

$$\begin{array}{lll} \text{Level } j+1 \text{:} & \mathcal{C}_{j+1} = \{ \bar{U} \in \mathsf{U}(2^k) \mid \bar{U}\mathcal{C}_1 \bar{U}^\dagger \subseteq \mathcal{C}_j \} \\ & \swarrow & \swarrow & \swarrow \\ & \text{Pauli group} & \text{Level } j \end{array}$$

Theorem: For a D-dimensional local stabilizer code: $(D \ge 2)$ encoded gates implementable by a constant-depth circuit

 \mathcal{C}_3

belong to the level D of the Clifford hierarchy.

Proof tool I: the union lemma

any logical Pauli operator

Def: \mathcal{R} correctable region : \Leftrightarrow supported on \mathcal{R}

acts as identity on code space

Example: number of qubits $|\mathcal{R}| < d$

Application of union Lemma: partition of lattice

in D = 2: 3 disjoint correctable regions A, B, Cby application of the union Lemma

(in D: D + 1 disjoint correctable regions)

Claim: $U|_{\mathcal{L}}$ is an encoded Clifford group element

Claim: $U_{\mathcal{L}}$ is an encoded Clifford group element

 U_{c} is an encoded Clifford group element

Claim:

 $\Rightarrow PQ_U P^{\dagger} Q_U^{\dagger} |_{\mathcal{L}} \propto I_{\mathcal{L}} \quad \text{by definition of correctable regions}$

Claim: U_{c} is an encoded Clifford group element

 $\Rightarrow PQ_U P^{\dagger} Q_U^{\dagger} |_{\mathcal{L}} \propto I_{\mathcal{L}} \quad \text{by definition of correctable regions}$ $\Rightarrow Q_U P |_{\mathcal{L}} = \pm PQ_U |_{\mathcal{L}} \quad \text{for all logical Pauli op } P, Q$

Claim: U_{c} is an encoded Clifford group element

Generalizing to higher dimensions

in D = 23 disjoint correctable regions A, B, C

Generalizing to higher dimensions

in D = 23 disjoint correctable regions A, B, C

Generalizing to higher dimensions

in D = 23 disjoint correctable regions A, B, C

in D = 34 disjoint correctable regions A, B, C, D

in D: D + 1 disjoint correctable regions

The Clifford hierarchy and local stabilizer codes Level j + 1: $C_{j+1} = \{ \overline{U} \in U(2^k) \mid \overline{U} C_1 \overline{U}^{\dagger} \subseteq C_j \}$ Pauli group Level j

Theorem: For a *D*-dimensional local stabilizer code: $(D \ge 2)$ protected gates belong to C_D .

Code deformation? no additional gates!

• Braiding of anyons?

Raussendorf, Harrington, PRL 98, 190504 (2007) Fowler, Stephens Groszkowski, PRA 80, 052312 (2009)

Theorem: For a *D*-dimensional local stabilizer code: $(D \ge 2)$ protected gates belong to C_D .

(Code deformation version) sequence of codes $\mathcal{L}^{(1)}, \ldots, \mathcal{L}^{(t)}$

Theorem: For a *D*-dimensional local stabilizer code: $(D \ge 2)$ protected gates belong to C_D .

Corollary:

2-dimensional local stabilizer code

Corollary:

 $\{\mathcal{L}_L\}_L$ family of *D*-dimensional local stabilizer codes such that k = k(L) independent of *L* set of protected gates **not computationally universal**

h = const.

set of gates \mathcal{P}_h implementable by depth-*h* circuit generates group $\langle \mathcal{P}_h \rangle \subset \mathcal{C}_D$ finite

Claim:

 $\{\mathcal{L}_L\}_L$ family of *D*-dimensional local stabilizer codes such that k = k(L) independent of *L*

h = const.

set of gates \mathcal{P}_h implementable by depth-*h* circuit generates group $\langle \mathcal{P}_h \rangle \subset \mathcal{C}_D$ finite

Proof by contradiction:

Claim:

(i) Suppose $\exists U_1, \ldots, U_m \in \mathcal{P}_h$ such that

 $U = U_1 U_2 \cdots U_m \notin \mathcal{C}_D$

 $\{\mathcal{L}_L\}_L$ family of *D*-dimensional local

stabilizer codes such that

k = k(L) independent of L

h = const.

set of gates \mathcal{P}_h implementable by depth-*h* circuit generates group $\langle \mathcal{P}_h \rangle \subset \mathcal{C}_D$ finite

Proof by contradiction:

Claim:

(i) Suppose $\exists U_1, \ldots, U_m \in \mathcal{P}_h$ such that

 $U = U_1 U_2 \cdots U_m \notin \mathcal{C}_D$

 $\{\mathcal{L}_L\}_L$ family of *D*-dimensional local

stabilizer codes such that

k = k(L) independent of L

(ii) wlog:
$$m=m({m k})$$
 is constant independent of ${m L}$

h = const.

set of gates \mathcal{P}_h implementable by depth-*h* circuit generates group $\langle \mathcal{P}_h \rangle \subset \mathcal{C}_D$ finite

Proof by contradiction:

Claim:

(i) Suppose $\exists U_1, \ldots, U_m \in \mathcal{P}_h$ such that

 $U = U_1 U_2 \cdots U_m \notin \mathcal{C}_D$

 $\{\mathcal{L}_L\}_L$ family of *D*-dimensional local

stabilizer codes such that

k = k(L) independent of L

(ii) wlog: m = m(k) is constant independent of L

(iii) U implementable by depth- $(m \cdot h)$ circuit $\stackrel{\mathsf{Thm}}{\Rightarrow} U \in \mathcal{C}_D$

h = const.

set of gates \mathcal{P}_h implementable by depth-*h* circuit generates group $\langle \mathcal{P}_h \rangle \subset \mathcal{C}_D$ finite

Proof by contradiction:

Claim:

(i) Suppose $\exists U_1, \ldots, U_m \in \mathcal{P}_h$ such that

$$U = U_1 U_2 \cdots U_m \notin \mathcal{C}_D$$

 $\{\mathcal{L}_L\}_L$ family of *D*-dimensional local

stabilizer codes such that

k = k(L) independent of L

(ii) wlog: m = m(k) is constant independent of L

(iii) U implementable by depth- $(m \cdot h)$ circuit $\stackrel{\mathsf{Thm}}{\Rightarrow} U \in \mathcal{C}_D$

Alternatives to getting universality?

• 3D stabilizer codes with universal gate sets k = k(L)

H. Bombin, M. A. Martin-Delgado: Topological Computation without braiding, PRL 98, 160502 (2007)

• magic state distillation

Bravyi, Kitaev, Phys. Rev. A 71, 022316 (2005) Raussendorf, Harrington, Goyal NJP 9, 199 (2007)

non-stabilizer codes

Mochon, Phys. Rev. A 69, 032306 (2004) G. Brennen, M. Aguado, I. Cirac, New J. Phys. 11 053009 (2009) K, Kuperberg & Reichardt, Ann. Phys. 325, 2707 (2010) Thank you for your attention!

arXiv:1206.1609