Lower bounds for combinatorial polytopes, inspired by quantum communication complexity

Ronald de Wolf

Universiteit van Amsterdam

Joint with Samuel Fiorini (ULB), Serge Massar (ULB),
Sebastian Pokutta (Erlangen), Hans Raj Tiwary (ULB)

Background: solving NP by LP?

Background: solving NP by LP?

- Famous P-problem: linear programming (Khachian'79)

Background: solving NP by LP?

- Famous P-problem: linear programming (Khachian'79)
- Famous NP-hard problem: traveling salesman problem

Background: solving NP by LP?

- Famous P-problem: linear programming (Khachian'79)
- Famous NP-hard problem: traveling salesman problem
- A polynomial-size LP for TSP would show $\mathbf{P}=\mathbf{N P}$

Background: solving NP by LP?

- Famous P-problem: linear programming (Khachian'79)
- Famous NP-hard problem: traveling salesman problem
- A polynomial-size LP for TSP would show $\mathbf{P}=\mathbf{N P}$
- Swart'86-87 claimed to have found such LPs

Background: solving NP by LP?

- Famous P-problem: linear programming (Khachian'79)
- Famous NP-hard problem: traveling salesman problem
- A polynomial-size LP for TSP would show $\mathbf{P}=\mathbf{N P}$
- Swart'86-87 claimed to have found such LPs
- Yannakakis'88: symmetric LPs for TSP are exponential

Background: solving NP by LP?

- Famous P-problem: linear programming (Khachian'79)
- Famous NP-hard problem: traveling salesman problem
- A polynomial-size LP for TSP would show $\mathbf{P}=\mathbf{N P}$
- Swart'86-87 claimed to have found such LPs
- Yannakakis'88: symmetric LPs for TSP are exponential
- Swart's LPs were symmetric, so they couldn't work

Background: solving NP by LP?

- Famous P-problem: linear programming (Khachian'79)
- Famous NP-hard problem: traveling salesman problem
- A polynomial-size LP for TSP would show $\mathbf{P}=\mathbf{N P}$
- Swart'86-87 claimed to have found such LPs
- Yannakakis'88: symmetric LPs for TSP are exponential
- Swart's LPs were symmetric, so they couldn't work
- 20-year open problem: what about non-symmetric LP?

Background: solving NP by LP?

- Famous P-problem: linear programming (Khachian'79)
- Famous NP-hard problem: traveling salesman problem
- A polynomial-size LP for TSP would show $\mathbf{P}=\mathbf{N P}$
- Swart'86-87 claimed to have found such LPs
- Yannakakis'88: symmetric LPs for TSP are exponential
- Swart's LPs were symmetric, so they couldn't work
- 20-year open problem: what about non-symmetric LP?
- Sometimes non-symmetry helps a lot! (Kaibel et al'10)

Background: solving NP by LP?

- Famous P-problem: linear programming (Khachian'79)
- Famous NP-hard problem: traveling salesman problem
- A polynomial-size LP for TSP would show $\mathbf{P}=\mathbf{N P}$
- Swart'86-87 claimed to have found such LPs
- Yannakakis'88: symmetric LPs for TSP are exponential
- Swart's LPs were symmetric, so they couldn't work
- 20-year open problem: what about non-symmetric LP?
- Sometimes non-symmetry helps a lot! (Kaibel et al'10)
- Yannakakis, May 2011: "I believe in fact that it should be possible to prove that there is no polynomial-size formulation for the TSP polytope or any other NP-hard problem, although of course showing this remains a challenging task"

Basics of polytopes

Basics of polytopes

- Polytope P : convex hull of finite set of points in \mathbb{R}^{d}

Basics of polytopes

- Polytope P : convex hull of finite set of points in \mathbb{R}^{d}
\Leftrightarrow bounded intersection of finitely many halfspaces

Basics of polytopes

- Polytope P : convex hull of finite set of points in \mathbb{R}^{d}
\Leftrightarrow bounded intersection of finitely many halfspaces
- Can be written as system of linear inequalities:
$P=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\}$

Basics of polytopes

- Polytope P : convex hull of finite set of points in \mathbb{R}^{d}
\Leftrightarrow bounded intersection of finitely many halfspaces
- Can be written as system of linear inequalities:
$P=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\}$
Different systems " $A x \leq b$ " can define the same P

Basics of polytopes

- Polytope P : convex hull of finite set of points in \mathbb{R}^{d}
\Leftrightarrow bounded intersection of finitely many halfspaces
- Can be written as system of linear inequalities:
$P=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\}$
Different systems " $A x \leq b$ " can define the same P The size of P is the minimal number of inequalities

Basics of polytopes

- Polytope P : convex hull of finite set of points in \mathbb{R}^{d}
\Leftrightarrow bounded intersection of finitely many halfspaces
- Can be written as system of linear inequalities:
$P=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\}$
Different systems " $A x \leq b$ " can define the same P The size of P is the minimal number of inequalities
- TSP polytope: convex hull of Hamiltonian cycles in K_{n} $P_{\text {TSP }}=\operatorname{conv}\left\{\left.\chi^{F} \in\{0,1\}^{\binom{n}{2}} \right\rvert\, F \subseteq E_{n}\right.$ is a tour of $\left.K_{n}\right\}$

Basics of polytopes

- Polytope P : convex hull of finite set of points in \mathbb{R}^{d}
\Leftrightarrow bounded intersection of finitely many halfspaces
- Can be written as system of linear inequalities:
$P=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\}$
Different systems " $A x \leq b$ " can define the same P The size of P is the minimal number of inequalities
- TSP polytope: convex hull of Hamiltonian cycles in K_{n} $P_{\text {TSP }}=\operatorname{conv}\left\{\left.\chi^{F} \in\{0,1\}^{\binom{n}{2}} \right\rvert\, F \subseteq E_{n}\right.$ is a tour of $\left.K_{n}\right\}$
- Solving TSP w.r.t. weight function $w_{i j}$: minimize the linear function $\sum_{i, j} w_{i j} x_{i j}$ over $x \in P_{\mathrm{TSP}}$

Basics of polytopes

- Polytope P : convex hull of finite set of points in \mathbb{R}^{d}
\Leftrightarrow bounded intersection of finitely many halfspaces
- Can be written as system of linear inequalities:
$P=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\}$
Different systems " $A x \leq b$ " can define the same P The size of P is the minimal number of inequalities
- TSP polytope: convex hull of Hamiltonian cycles in K_{n} $P_{\text {TSP }}=\operatorname{conv}\left\{\left.\chi^{F} \in\{0,1\}^{\binom{n}{2}} \right\rvert\, F \subseteq E_{n}\right.$ is a tour of $\left.K_{n}\right\}$
- Solving TSP w.r.t. weight function $w_{i j}$: minimize the linear function $\sum_{i, j} w_{i j} x_{i j}$ over $x \in P_{\text {TSP }}$
- P_{TSP} has exponential size, so corresponding LP is huge

Extended formulations of polytopes

Extended formulations of polytopes

- Sometimes extra variables/dimensions can reduce size very much.

Extended formulations of polytopes

- Sometimes extra variables/dimensions can reduce size very much.

Regular n-gon in \mathbb{R}^{2} has size n, but is the projection of polytope in higher dimension, of size $O(\log n)$

Extended formulations of polytopes

- Sometimes extra variables/dimensions can reduce size very much.

Regular n-gon in \mathbb{R}^{2} has size n, but is the projection of polytope in higher dimension, of size $O(\log n)$

- Extended formulation of P : polytope $Q \subseteq \mathbb{R}^{d+k}$ s.t. $P=\{x \mid \exists y$ s.t. $(x, y) \in Q\}$

Extended formulations of polytopes

- Sometimes extra variables/dimensions can reduce size very much.

Regular n-gon in \mathbb{R}^{2} has size n, but is the projection of polytope in higher dimension, of size $O(\log n)$

- Extended formulation of P : polytope $Q \subseteq \mathbb{R}^{d+k}$ s.t. $P=\{x \mid \exists y$ s.t. $(x, y) \in Q\}$
- Optimizing over P reduces to optimizing over Q. If Q has small size, this can be done efficiently!

Extended formulations of polytopes

- Sometimes extra variables/dimensions can reduce size very much.

Regular n-gon in \mathbb{R}^{2} has size n, but is the projection of polytope in higher dimension, of size $O(\log n)$

- Extended formulation of P : polytope $Q \subseteq \mathbb{R}^{d+k}$ s.t. $P=\{x \mid \exists y$ s.t. $(x, y) \in Q\}$
- Optimizing over P reduces to optimizing over Q. If Q has small size, this can be done efficiently!
- How small can size (Q) be? Extension complexity: $x c(P)=\min \{\operatorname{size}(Q) \mid Q$ is an EF of $P\}$

Extended formulations of polytopes

- Sometimes extra variables/dimensions can reduce size very much.

Regular n-gon in \mathbb{R}^{2} has size n, but is the projection of polytope in higher dimension, of size $O(\log n)$

- Extended formulation of P : polytope $Q \subseteq \mathbb{R}^{d+k}$ s.t. $P=\{x \mid \exists y$ s.t. $(x, y) \in Q\}$
- Optimizing over P reduces to optimizing over Q. If Q has small size, this can be done efficiently!
- How small can size (Q) be? Extension complexity: $x c(P)=\min \{\operatorname{size}(Q) \mid Q$ is an EF of $P\}$
- Our goal: strong lower bounds on $x c(P)$ for interesting P

The TSP polytope: main result

The TSP polytope: main result

- $P_{\mathrm{TSP}}=\operatorname{conv}\left\{\left.\chi^{F} \in\{0,1\} \begin{array}{c}\binom{n}{2} \\ \end{array} \right\rvert\, \subseteq E_{n}\right.$ is a tour of $\left.K_{n}\right\}$

The TSP polytope: main result

- $P_{\mathrm{TSP}}=\operatorname{conv}\left\{\left.\chi^{F} \in\{0,1\}^{\binom{n}{2}} \right\rvert\, F \subseteq E_{n}\right.$ is a tour of $\left.K_{n}\right\}$
- Our main result: $x c\left(P_{\mathrm{TSP}}\right) \geq 2^{\Omega(\sqrt{n})}$

The TSP polytope: main result

- $P_{\mathrm{TSP}}=\operatorname{conv}\left\{\left.\chi^{F} \in\{0,1\}^{\binom{n}{2}} \right\rvert\, F \subseteq E_{n}\right.$ is a tour of $\left.K_{n}\right\}$
- Our main result: $x c\left(P_{\mathrm{TSP}}\right) \geq 2^{\Omega(\sqrt{n})}$
- Hence every LP for TSP based on extended formulation of TSP-polytope needs exponential time

The TSP polytope: main result

- $P_{\mathrm{TSP}}=\operatorname{conv}\left\{\left.\chi^{F} \in\{0,1\}^{\binom{n}{2}} \right\rvert\, F \subseteq E_{n}\right.$ is a tour of $\left.K_{n}\right\}$
- Our main result: $x c\left(P_{\mathrm{TSP}}\right) \geq 2^{\Omega(\sqrt{n})}$
- Hence every LP for TSP based on extended formulation of TSP-polytope needs exponential time
- This rules out a lot of potential algorithms

The TSP polytope: main result

- $P_{\text {TSP }}=\operatorname{conv}\left\{\left.\chi^{F} \in\{0,1\}^{\binom{n}{2}} \right\rvert\, F \subseteq E_{n}\right.$ is a tour of $\left.K_{n}\right\}$
- Our main result: $x c\left(P_{\mathrm{TSP}}\right) \geq 2^{\Omega(\sqrt{n})}$
- Hence every LP for TSP based on extended formulation of TSP-polytope needs exponential time
- This rules out a lot of potential algorithms
- Roadmap for the proof:
2^{n} lower bound on $x c$ of correlation polytope

The TSP polytope: main result

- $P_{\text {TSP }}=\operatorname{conv}\left\{\left.\chi^{F} \in\{0,1\}^{\binom{n}{2}} \right\rvert\, F \subseteq E_{n}\right.$ is a tour of $\left.K_{n}\right\}$
- Our main result: $x c\left(P_{\mathrm{TSP}}\right) \geq 2^{\Omega(\sqrt{n})}$
- Hence every LP for TSP based on extended formulation of TSP-polytope needs exponential time
- This rules out a lot of potential algorithms
- Roadmap for the proof:
2^{n} lower bound on $x c$ of correlation polytope [inspired by quantum communication complexity!]

The TSP polytope: main result

- $P_{\mathrm{TSP}}=\operatorname{conv}\left\{\chi^{F} \in\{0,1\}\left(\left.\begin{array}{c}\binom{n}{2} \\ \end{array} \right\rvert\, \subseteq E_{n}\right.\right.$ is a tour of $\left.K_{n}\right\}$
- Our main result: $x c\left(P_{\mathrm{TSP}}\right) \geq 2^{\Omega(\sqrt{n})}$
- Hence every LP for TSP based on extended formulation of TSP-polytope needs exponential time
- This rules out a lot of potential algorithms
- Roadmap for the proof:
2^{n} lower bound on $x c$ of correlation polytope [inspired by quantum communication complexity!]
\Downarrow gadget-based reduction
$2^{\sqrt{n}}$ lower bound for TSP-polytope

How to lower bound extension compl?

How to lower bound extension compl?

- Slack matrix S of a polytope $P=\operatorname{conv}(V)$ with inequalities $\left\{A_{i} x \leq b_{i}\right\}$ and points $V=\left\{v_{j}\right\}$:

$$
S_{i j}=b_{i}-A_{i} v_{j}
$$

How to lower bound extension compl?

- Slack matrix S of a polytope $P=\operatorname{conv}(V)$ with inequalities $\left\{A_{i} x \leq b_{i}\right\}$ and points $V=\left\{v_{j}\right\}$:

$$
S_{i j}=b_{i}-A_{i} v_{j}
$$

NB: every entry is nonnegative; S is not unique

How to lower bound extension compl?

- Slack matrix S of a polytope $P=\operatorname{conv}(V)$ with inequalities $\left\{A_{i} x \leq b_{i}\right\}$ and points $V=\left\{v_{j}\right\}$:

$$
S_{i j}=b_{i}-A_{i} v_{j}
$$

NB: every entry is nonnegative; S is not unique

- Positive factorization $S=\sum_{i=1}^{r} u_{i} v_{i}^{T}$, vectors $u_{i}, v_{i} \geq 0$

How to lower bound extension compl?

- Slack matrix S of a polytope $P=\operatorname{conv}(V)$ with inequalities $\left\{A_{i} x \leq b_{i}\right\}$ and points $V=\left\{v_{j}\right\}$:

$$
S_{i j}=b_{i}-A_{i} v_{j}
$$

NB: every entry is nonnegative; S is not unique

- Positive factorization $S=\sum_{i=1}^{r} u_{i} v_{i}^{T}$, vectors $u_{i}, v_{i} \geq 0$
- Nonnegative rank: $\operatorname{rank}_{+}(S)=\min$ such r

How to lower bound extension compl?

- Slack matrix S of a polytope $P=\operatorname{conv}(V)$ with inequalities $\left\{A_{i} x \leq b_{i}\right\}$ and points $V=\left\{v_{j}\right\}$:

$$
S_{i j}=b_{i}-A_{i} v_{j}
$$

NB: every entry is nonnegative; S is not unique

- Positive factorization $S=\sum_{i=1}^{r} u_{i} v_{i}^{T}$, vectors $u_{i}, v_{i} \geq 0$
- Nonnegative rank: $\operatorname{rank}_{+}(S)=\min$ such r
- Yannakakis'88: $x c(P)=$ rank $_{+}(S)$

How to lower bound extension compl?

- Slack matrix S of a polytope $P=\operatorname{conv}(V)$ with inequalities $\left\{A_{i} x \leq b_{i}\right\}$ and points $V=\left\{v_{j}\right\}$:

$$
S_{i j}=b_{i}-A_{i} v_{j}
$$

NB: every entry is nonnegative; S is not unique

- Positive factorization $S=\sum_{i=1}^{r} u_{i} v_{i}^{T}$, vectors $u_{i}, v_{i} \geq 0$
- Nonnegative rank: $\operatorname{rank}_{+}(S)=\min$ such r
- Yannakakis'88: $x c(P)=$ rank $_{+}(S)$
- rank ${ }_{+}(S)$ has many connections with communication complexity

Communication compl. in expectation

Communication compl. in expectation

- "Computing a matrix M in expectation"

Communication compl. in expectation

- "Computing a matrix M in expectation": Alice gets input $a \in\{0,1\}^{n}$, Bob gets input $b \in\{0,1\}^{n}$, Bob should output a nonnegative z such that $\mathbb{E}[z]=M_{a b}$

Communication compl. in expectation

- "Computing a matrix M in expectation": Alice gets input $a \in\{0,1\}^{n}$, Bob gets input $b \in\{0,1\}^{n}$, Bob should output a nonnegative z such that $\mathbb{E}[z]=M_{a b}$

- Faenza et al.'11: classical communication required $=\log$ rank $_{+}(M)$ bits

Communication compl. in expectation

- "Computing a matrix M in expectation": Alice gets input $a \in\{0,1\}^{n}$, Bob gets input $b \in\{0,1\}^{n}$, Bob should output a nonnegative z such that $\mathbb{E}[z]=M_{a b}$

- Faenza et al.'11: classical communication required $=\log$ rank $_{+}(M)$ bits
- Can we find a matrix M where quantum communication is exponentially smaller?

Quantum-classical separation

Quantum-classical separation

- $2^{n} \times 2^{n}$ matrix M, indexed by $a, b \in\{0,1\}^{n}$ (de Wolf'00)

$$
M_{a b}=\left(1-a^{T} b\right)^{2}
$$

Quantum-classical separation

- $2^{n} \times 2^{n}$ matrix M, indexed by $a, b \in\{0,1\}^{n}$ (de Wolf'00)

$$
M_{a b}=\left(1-a^{T} b\right)^{2} \quad \text { NB: } M_{a b}=0 \text { iff } a^{T} b=1
$$

Quantum-classical separation

- $2^{n} \times 2^{n}$ matrix M, indexed by $a, b \in\{0,1\}^{n}$ (de Wolf'00)

$$
M_{a b}=\left(1-a^{T} b\right)^{2} \quad \text { NB: } M_{a b}=0 \text { iff } a^{T} b=1
$$

- Claim: $2^{\Omega(n)}$ rectangles needed to cover support of M

Quantum-classical separation

- $2^{n} \times 2^{n}$ matrix M, indexed by $a, b \in\{0,1\}^{n}$ (de Wolf'00)

$$
M_{a b}=\left(1-a^{T} b\right)^{2} \quad \text { NB: } M_{a b}=0 \text { iff } a^{T} b=1
$$

- Claim: $2^{\Omega(n)}$ rectangles needed to cover support of M Proof (informally): Razborov showed that a rectangle that doesn't contain (a, b)-pairs with $a^{T} b=1$, can cover only an exponentially small fraction of disjoint (a, b).

Quantum-classical separation

- $2^{n} \times 2^{n}$ matrix M, indexed by $a, b \in\{0,1\}^{n}$ (de Wolf'00)

$$
M_{a b}=\left(1-a^{T} b\right)^{2} \quad \text { NB: } M_{a b}=0 \text { iff } a^{T} b=1
$$

- Claim: $2^{\Omega(n)}$ rectangles needed to cover support of M Proof (informally): Razborov showed that a rectangle that doesn't contain (a, b)-pairs with $a^{T} b=1$, can cover only an exponentially small fraction of disjoint (a, b). $\Rightarrow 2^{\Omega(n)}$ rectangles needed to cover all disjoint (a, b)

Quantum-classical separation

- $2^{n} \times 2^{n}$ matrix M, indexed by $a, b \in\{0,1\}^{n}$ (de Wolf'00)

$$
M_{a b}=\left(1-a^{T} b\right)^{2} \quad \text { NB: } M_{a b}=0 \text { iff } a^{T} b=1
$$

- Claim: $2^{\Omega(n)}$ rectangles needed to cover support of M Proof (informally): Razborov showed that a rectangle that doesn't contain (a, b)-pairs with $a^{T} b=1$, can cover only an exponentially small fraction of disjoint (a, b). $\Rightarrow 2^{\Omega(n)}$ rectangles needed to cover all disjoint (a, b)
- If $M=\sum_{i=1}^{r} u_{i} v_{i}^{T}, u_{i}, v_{i} \geq 0$, each $u_{i} v_{i}^{T}$ gives a non-zero rectangle

Quantum-classical separation

- $2^{n} \times 2^{n}$ matrix M, indexed by $a, b \in\{0,1\}^{n}$ (de Wolf'00)

$$
M_{a b}=\left(1-a^{T} b\right)^{2} \quad \text { NB: } M_{a b}=0 \text { iff } a^{T} b=1
$$

- Claim: $2^{\Omega(n)}$ rectangles needed to cover support of M Proof (informally): Razborov showed that a rectangle that doesn't contain (a, b)-pairs with $a^{T} b=1$, can cover only an exponentially small fraction of disjoint (a, b). $\Rightarrow 2^{\Omega(n)}$ rectangles needed to cover all disjoint (a, b)
- If $M=\sum_{i=1}^{r} u_{i} v_{i}^{T}, u_{i}, v_{i} \geq 0$, each $u_{i} v_{i}^{T}$ gives a non-zero rectangle $\Rightarrow r \geq 2^{\Omega(n)}$

Quantum-classical separation

- $2^{n} \times 2^{n}$ matrix M, indexed by $a, b \in\{0,1\}^{n}$ (de Wolf'00)

$$
M_{a b}=\left(1-a^{T} b\right)^{2} \quad \text { NB: } M_{a b}=0 \text { iff } a^{T} b=1
$$

- Claim: $2^{\Omega(n)}$ rectangles needed to cover support of M Proof (informally): Razborov showed that a rectangle that doesn't contain (a, b)-pairs with $a^{T} b=1$, can cover only an exponentially small fraction of disjoint (a, b). $\Rightarrow 2^{\Omega(n)}$ rectangles needed to cover all disjoint (a, b)
- If $M=\sum_{i=1}^{r} u_{i} v_{i}^{T}, u_{i}, v_{i} \geq 0$, each $u_{i} v_{i}^{T}$ gives a non-zero rectangle $\Rightarrow r \geq 2^{\Omega(n)} \Rightarrow \Omega(n)$ classical communication

Quantum-classical separation

- $2^{n} \times 2^{n}$ matrix M, indexed by $a, b \in\{0,1\}^{n}$ (de Wolf'00)

$$
M_{a b}=\left(1-a^{T} b\right)^{2} \quad \text { NB: } M_{a b}=0 \text { iff } a^{T} b=1
$$

- Claim: $2^{\Omega(n)}$ rectangles needed to cover support of M Proof (informally): Razborov showed that a rectangle that doesn't contain (a, b)-pairs with $a^{T} b=1$, can cover only an exponentially small fraction of disjoint (a, b). $\Rightarrow 2^{\Omega(n)}$ rectangles needed to cover all disjoint (a, b)
- If $M=\sum_{i=1}^{r} u_{i} v_{i}^{T}, u_{i}, v_{i} \geq 0$, each $u_{i} v_{i}^{T}$ gives a non-zero rectangle $\Rightarrow r \geq 2^{\Omega(n)} \Rightarrow \Omega(n)$ classical communication
- There is a $O(\log n)$-qubit protocol: Alice sends $(a, 1)$, Bob measures $(b,-1)$ (ignoring normalization)

Lower bound for correlation polytope

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(n)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{n}\right\}$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(n)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{n}\right\}$
- The following constraints hold (one for each $a \in\{0,1\}^{n}$):

$$
\forall x \in \operatorname{COR}(n): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(n)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{n}\right\}$
- The following constraints hold (one for each $a \in\{0,1\}^{n}$):

$$
\forall x \in \operatorname{COR}(n): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this a-constraint w.r.t. vertex $b b^{T}$:

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(n)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{n}\right\}$
- The following constraints hold (one for each $a \in\{0,1\}^{n}$):

$$
\forall x \in \operatorname{COR}(n): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this a-constraint w.r.t. vertex $b b^{T}$:
$S_{a b}=1-\operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) b b^{T}\right]$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(n)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{n}\right\}$
- The following constraints hold (one for each $a \in\{0,1\}^{n}$):

$$
\forall x \in \operatorname{COR}(n): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this a-constraint w.r.t. vertex $b b^{T}$: $S_{a b}=1-\operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) b b^{T}\right]=\left(1-a^{T} b\right)^{2}$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(n)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{n}\right\}$
- The following constraints hold (one for each $a \in\{0,1\}^{n}$):

$$
\forall x \in \operatorname{COR}(n): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this a-constraint w.r.t. vertex $b b^{T}$: $S_{a b}=1-\operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) b b^{T}\right]=\left(1-a^{T} b\right)^{2}=M_{a b}$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(n)=\operatorname{Conv}\left\{b b^{T} \mid b \in\{0,1\}^{n}\right\}$
- The following constraints hold (one for each $a \in\{0,1\}^{n}$):

$$
\forall x \in \operatorname{COR}(n): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this a-constraint w.r.t. vertex $b b^{T}$: $S_{a b}=1-\operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) b b^{T}\right]=\left(1-a^{T} b\right)^{2}=M_{a b}$

- Take slack matrix S for COR, with 2^{n} vertices $b b^{T}$ for columns, 2^{n} a-constraints for first 2^{n} rows, remaining facets for other rows

$$
S=\left[\begin{array}{ccc}
& \vdots & \\
\cdots & M_{a b} & \cdots \\
& \vdots & \\
\hline & \vdots &
\end{array}\right]
$$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(n)=\operatorname{Conv}\left\{b b^{T} \mid b \in\{0,1\}^{n}\right\}$
- The following constraints hold (one for each $a \in\{0,1\}^{n}$):

$$
\forall x \in \operatorname{COR}(n): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this a-constraint w.r.t. vertex $b b^{T}$: $S_{a b}=1-\operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) b b^{T}\right]=\left(1-a^{T} b\right)^{2}=M_{a b}$

- Take slack matrix S for COR, with 2^{n} vertices $b b^{T}$ for columns, 2^{n} a-constraints for first 2^{n} rows, remaining facets for other rows

- $x c(\operatorname{COR}(n))$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(n)=\operatorname{Conv}\left\{b b^{T} \mid b \in\{0,1\}^{n}\right\}$
- The following constraints hold (one for each $a \in\{0,1\}^{n}$):

$$
\forall x \in \operatorname{COR}(n): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this a-constraint w.r.t. vertex $b b^{T}$: $S_{a b}=1-\operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) b b^{T}\right]=\left(1-a^{T} b\right)^{2}=M_{a b}$

- Take slack matrix S for COR, with 2^{n} vertices $b b^{T}$ for columns, 2^{n} a-constraints for first 2^{n} rows, remaining facets for other rows

- $x c(\operatorname{COR}(n))=\operatorname{rank}_{+}(S)$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(n)=\operatorname{Conv}\left\{b b^{T} \mid b \in\{0,1\}^{n}\right\}$
- The following constraints hold (one for each $a \in\{0,1\}^{n}$):

$$
\forall x \in \operatorname{COR}(n): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this a-constraint w.r.t. vertex $b b^{T}$: $S_{a b}=1-\operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) b b^{T}\right]=\left(1-a^{T} b\right)^{2}=M_{a b}$

- Take slack matrix S for COR, with 2^{n} vertices $b b^{T}$ for columns, $2^{n} a$-constraints for first 2^{n} rows, remaining facets for other rows

$$
S=\left[\begin{array}{ccc}
& \vdots & \\
\cdots & M_{a b} & \cdots \\
& \vdots & \\
\hline & \vdots &
\end{array}\right]
$$

- $x c(\operatorname{COR}(n))=\operatorname{rank}_{+}(S) \geq \operatorname{rank}_{+}(M)$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(n)=\operatorname{Conv}\left\{b b^{T} \mid b \in\{0,1\}^{n}\right\}$
- The following constraints hold (one for each $a \in\{0,1\}^{n}$):

$$
\forall x \in \operatorname{COR}(n): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this a-constraint w.r.t. vertex $b b^{T}$: $S_{a b}=1-\operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) b b^{T}\right]=\left(1-a^{T} b\right)^{2}=M_{a b}$

- Take slack matrix S for COR, with 2^{n} vertices $b b^{T}$ for columns, 2^{n} a-constraints for first 2^{n} rows, remaining facets for other rows

$$
S=\left[\begin{array}{ccc}
& \vdots & \\
\cdots & M_{a b} & \cdots \\
& \vdots & \\
\hline & \vdots &
\end{array}\right]
$$

- $x c(\operatorname{COR}(n))=\operatorname{rank}_{+}(S) \geq \operatorname{rank}_{+}(M) \geq 2^{\Omega(n)}$

Consequences for other polytopes

Consequences for other polytopes

- Via classical reductions we can prove lower bounds on the extension complexity of other polytopes:

Consequences for other polytopes

- Via classical reductions we can prove lower bounds on the extension complexity of other polytopes:
- $\geq 2^{n}$ for the CUT polytope

Consequences for other polytopes

- Via classical reductions we can prove lower bounds on the extension complexity of other polytopes:
- $\geq 2^{n}$ for the CUT polytope
- $\geq 2^{\sqrt{n}}$ for TSP polytope

Consequences for other polytopes

- Via classical reductions we can prove lower bounds on the extension complexity of other polytopes:
- $\geq 2^{n}$ for the CUT polytope
- $\geq 2^{\sqrt{n}}$ for TSP polytope
- $\geq 2^{\sqrt{n}}$ for Stable Set polytope for specific graph

Consequences for other polytopes

- Via classical reductions we can prove lower bounds on the extension complexity of other polytopes:
- $\geq 2^{n}$ for the CUT polytope
- $\geq 2^{\sqrt{n}}$ for TSP polytope
- $\geq 2^{\sqrt{n}}$ for Stable Set polytope for specific graph
- This refutes all $\mathrm{P}=\mathrm{NP}$ "proofs" à la Swart

Cartoon by Pavel Pudlak

P『이

[^0]
Quantum techniques as a proof-tool

Quantum techniques as a proof-tool

- Did we really need quantum for this proof?

Quantum techniques as a proof-tool

- Did we really need quantum for this proof?
- No - but we wouldn't have found this proof without our interest in quantum communication complexity

Quantum techniques as a proof-tool

- Did we really need quantum for this proof?
- No - but we wouldn't have found this proof without our interest in quantum communication complexity
- Wittgenstein: climb the ladder, and then throw it away

Quantum techniques as a proof-tool

- Did we really need quantum for this proof?
- No - but we wouldn't have found this proof without our interest in quantum communication complexity
- Wittgenstein: climb the ladder, and then throw it away
- This is yet another (albeit weak) example of "quantum proofs for classical theorems"

Quantum techniques as a proof-tool

- Did we really need quantum for this proof?
- No - but we wouldn't have found this proof without our interest in quantum communication complexity
- Wittgenstein: climb the ladder, and then throw it away
- This is yet another (albeit weak) example of "quantum proofs for classical theorems". Also:
- Lower bounds for locally decodable codes (K \& dW)

Quantum techniques as a proof-tool

- Did we really need quantum for this proof?
- No - but we wouldn't have found this proof without our interest in quantum communication complexity
- Wittgenstein: climb the ladder, and then throw it away
- This is yet another (albeit weak) example of "quantum proofs for classical theorems". Also:
- Lower bounds for locally decodable codes (K \& dW)
- New proofs of classical complexity results:

PP is closed under intersection, Permanent is \#P-complete (Aaronson)

Quantum techniques as a proof-tool

- Did we really need quantum for this proof?
- No - but we wouldn't have found this proof without our interest in quantum communication complexity
- Wittgenstein: climb the ladder, and then throw it away
- This is yet another (albeit weak) example of "quantum proofs for classical theorems". Also:
- Lower bounds for locally decodable codes (K \& dW)
- New proofs of classical complexity results:

PP is closed under intersection, Permanent is \#P-complete (Aaronson)

- Proof systems for lattice-problems (Aharonov,Regev)

Quantum techniques as a proof-tool

- Did we really need quantum for this proof?
- No - but we wouldn't have found this proof without our interest in quantum communication complexity
- Wittgenstein: climb the ladder, and then throw it away
- This is yet another (albeit weak) example of "quantum proofs for classical theorems". Also:
- Lower bounds for locally decodable codes (K \& dW)
- New proofs of classical complexity results:

PP is closed under intersection, Permanent is \#P-complete (Aaronson)

- Proof systems for lattice-problems (Aharonov,Regev)
- Proof of Varopoulos conjecture (BBLV)

Quantum techniques as a proof-tool

- Did we really need quantum for this proof?
- No - but we wouldn't have found this proof without our interest in quantum communication complexity
- Wittgenstein: climb the ladder, and then throw it away
- This is yet another (albeit weak) example of "quantum proofs for classical theorems". Also:
- Lower bounds for locally decodable codes (K \& dW)
- New proofs of classical complexity results:

PP is closed under intersection, Permanent is \#P-complete (Aaronson)

- Proof systems for lattice-problems (Aharonov,Regev)
- Proof of Varopoulos conjecture (BBLV)
- Efficient algorithms \Rightarrow low-degree polynomials

Summary

Summary

- We studied the extension complexity of polytopes

Summary

- We studied the extension complexity of polytopes
- Showed exponential lower bounds on the extension complexities of the correlation, cut, stable set, and TSP polytopes, even for non-symmetric extensions. This solves a 20-year old problem of Yannakakis, inspired by quantum communication complexity

Summary

- We studied the extension complexity of polytopes
- Showed exponential lower bounds on the extension complexities of the correlation, cut, stable set, and TSP polytopes, even for non-symmetric extensions. This solves a 20-year old problem of Yannakakis, inspired by quantum communication complexity
- Further research:
- Lower bound for the matching polytope? (Yannakakis: exponential LB for symmetric)

Summary

- We studied the extension complexity of polytopes
- Showed exponential lower bounds on the extension complexities of the correlation, cut, stable set, and TSP polytopes, even for non-symmetric extensions. This solves a 20-year old problem of Yannakakis, inspired by quantum communication complexity
- Further research:
- Lower bound for the matching polytope? (Yannakakis: exponential LB for symmetric)
- Lower bounds on positive semidefinite extensions?
[Not shown here: this is closely connected to quantum communication complexity]

Summary

- We studied the extension complexity of polytopes
- Showed exponential lower bounds on the extension complexities of the correlation, cut, stable set, and TSP polytopes, even for non-symmetric extensions. This solves a 20-year old problem of Yannakakis, inspired by quantum communication complexity
- Further research:
- Lower bound for the matching polytope? (Yannakakis: exponential LB for symmetric)
- Lower bounds on positive semidefinite extensions?
[Not shown here: this is closely connected to quantum communication complexity]
- Lower bounds for approximation? [BFPS'12,BM'12]

[^0]: TOO SMALL TO CONTAIN THE PROOF

