
Rank-one and Quantum XOR Games

T. Cooney1 M. Junge2 C. Palazuelos3 D. Pérez Garćıa1
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Classical XOR Games
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I Classical XOR games: {a, b} ∈ {0, 1}
I V (a, b, x , y) = V (a⊕ b, x , y).



Biases of (Classical) XOR Games

I Bias = 2× Maximum Success Probability −1

I Unentangled bias ω(G ) (with classical resources)

I Maximally entangled bias ωme(G )
(Players can share maximally entangled state of arbitrary
dimension)

I Entangled bias ω∗(G )
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Classical XOR Games versus Quantum XOR
I For all classical XOR games G , we have

ω(G ) ≤ ω∗(G ) ≤ Kω(G ),

where 1.67 ≤ K ≤ 1.783, [CHTW04]. X

I Quantum XOR: Unbounded advantage provided by
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Classical XOR Games versus Quantum XOR

I For Classical XOR games G , ω∗(G ) can be efficiently

computed using SDP. [CHTW04]X

I For Quantum XOR games G , ω∗(G ) can be approximated up

to a constant multiplicative factor using SDP. X
I [CSUU08] Classical XOR games satisfy Perfect Parallel

Repetition: X
ω∗(G⊗n) = ω∗(G )n

I Quantum XOR: Unbounded Violation of Perfect Parallel
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Quantum XOR Games

Alice Bob

Referee

Referee prepares (known) state |ψ〉 ∈ HA ⊗HB ⊗HR and sends
register A to Alice, B to Bob.
Referee has private register HR .
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Quantum XOR Games

Alice Bob

Referee

a b

Alice and Bob share an entangled state |ξ〉 ∈ HA′ ⊗HB′ .
Alice and Bob apply ±1-observables XAA′ = X 0 − X 1,
YBB′ = Y 0 − Y 1.
Return outcomes a, b ∈ {0, 1} to Referee.



Quantum XOR Games

Alice Bob

Referee

Referee measures private register, depending on parity of Alice and
Bob’s responses.



Example: Tn

Let |ψn〉 be the maximally entangled state in n dimensions.

Tn: Alice and Bob sent one of

|φ0〉 =
1√
2

(|0〉|0〉+ |ψn〉)

|φ1〉 =
1√
2

(|0〉|0〉 − |ψn〉)

with equal probability.
If |φ0〉, respond with answers of even parity.
If |φ1〉, respond with answers of odd parity.

OrthogonalX Locally distinguishable ?



Unbounded advantage of ω∗(G ) over ωme(G ) and ω(G )

ω(Tn) = ωme(Tn) =
1√
n

ω∗(Tn) = 1

ω∗(Tn) = 1 can only be achieved in limit of infinite
entanglement.
(T2 ←→ LTW’s coherent state exchange game.)

Classical XOR games: maximally entangled states are optimal
resource.
Entanglement provides advantage of at most small constant
multiplicative factor: Grothendieck/Tsirelson.
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Example: Cn

Referee chooses k ∈ {1, . . . , n} randomly.
Sends one of the two states

|φ0k〉 =
1√
2

(|0〉|k〉+ |k〉|0〉)

|φ1k〉 =
1√
2

(|0〉|k〉 − |k〉|0〉)

each chosen with probability 1
2 to Alice and Bob.

If |φ0k〉, respond with answers of even parity.
If |φ1k〉, respond with answers of odd parity.



Large Violation of Perfect Parallel Repetition

I Suppose Alice and Bob play two games simultaneously and
must win both “sub-games” in order to win.

For classical XOR games, we have

ω∗(G ⊗ G ) = ω∗(G )2.

I However for Rank-one Quantum & Quantum XOR games:
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1
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Algorithms

Theorem
There exists a polynomial-time algorithm which, given as input an
explicit description of a quantum XOR game G, outputs two
numbers ωnc(G ) and ωos(G ) such that

ω(G ) ≤ ωme(G ) ≤ ωnc(G ) ≤ 2
√

2ω(G ),

ω∗(G ) ≤ ωos(G ) ≤ 2ω∗(G ).



Techniques

Theorem (Grothendieck’s Inequality)

Suppose that si and tj are real numbers such that |si |, |tj | ≤ 1.

Suppose that aij are real numbers such that

∣∣∣∣∣∣
∑
i ,j

aijsi tj

∣∣∣∣∣∣ ≤ 1. Then∣∣∣∣∣∣
∑
ij

aij〈ξi | ηj〉

∣∣∣∣∣∣ ≤ k , for all vectors ξi , ηj in the unit ball of a real

Hilbert space H. It is known that 1.67 ≤ k ≤ 1.782.

From this it follows that for a classical XOR game,

ω∗(G ) ≤ kω(G ).

Noncommutative and Operator-space extensions of Grothendieck’s
inequality allow us to relate biases of Quantum XOR games to
SDP’s.
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Quantum Games

Alice Bob

Referee

Referee prepares (known) state |ψ〉 ∈ HA ⊗HB ⊗HR and sends
register A to Alice, B to Bob.



Quantum Games

Alice Bob

Referee

Alice and Bob share an entangled state |ξ〉 ∈ HA′ ⊗HB′ .
Alice and Bob apply arbitrary local unitaries UAA′ , VBB′ and then
send registers A and B back to referee.



Quantum Games

Alice Bob

Referee

Referee performs measurement with projective measurements:

{PACCEPT ,PREJECT = Id − PACCEPT}



Rank-one Quantum Games

Alice Bob

Referee

Referee performs measurement with projective measurements:

{PACCEPT = |γ〉〈γ|,PREJECT = Id − PACCEPT}

Maximum Success Probability = ω∗1(G )



Rank-one Quantum Games ←→ Quantum XOR Games

To each Quantum XOR Game G , one can associate a Rank-one
Quantum Game G ′ such that

(ω∗(G ))2 = ω∗1(G )

To each Rank-one Quantum Game G ′, one can associate a
Quantum XOR Game G ′′ such that

(ω∗(G ′′))2 = ω∗1(G ′)

Thus the previous results about SDP’s and Parallel repetition can
be phrased in terms of either Rank-one Quantum Games or
Quantum XOR games.



Summary 1

I Classical: ω∗(G ) ≤ Kω(G ) X
Quantum: Unbounded advantage ω∗(Tn) =

√
nω(Tn) 7

I Classical: Maximally entangled state is optimal resource. X
Quantum: Unbounded advantage ω∗(Tn) =

√
nωme(Tn) 7

I Classical: ω∗(G ) can be computed using SDP X
Quantum: ω∗(G ) can be approximated up to constant factor

using SDP X
I Classical: Satisfies Perfect Parallel Repetition: X

ω∗(G⊗2) = ω∗(G )2

Quantum: Unbounded Violation of Perfect Parallel Repetition

ω∗(C⊗2
n ) ≥ n

2
ω∗(Cn)2 7



Summary 2

I Generalization of classical XOR games using quantum
messages.

I Rich class of games that displays properties of entanglement
not seen in classical case.

I Remain tractable with efficient approximation algorithms for
biases.

I Application of deep generalizations of Grothendieck’s
Inequality to problems in quantum information theory.

I Operator space theory provides both examples and techniques
for studying these quantum games.
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Thank You!
I Rank-one Quantum Games, arXiv: 1112.3563

I Quantum XOR Games, arXiv: 1207.4939
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