Negative Quasi-Probability as a Resource for Quantum Computation

V. Veitch¹ C. Ferrie¹ D. Gross² J. Emerson¹

¹Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada ²Institute for Physics, University of Freiburg, Freiburg, Germany

QIP 2013

Big Picture

Big Picture Question

What resources are necessary and sufficient for quantum computational speedup?

Resources for Quantum Computation?

Some Candidates

- Entanglement?
- Purity?
- Coherence?
- Discord? (probably not)

Quantum Resources

Resources arise from operational restrictions on the quantum formalism.

Resources for Quantum Computation?

Some Candidates

- Entanglement?
- Purity?
- Coherence?
- Discord? (probably not)

Quantum Resources

Resources arise from operational restrictions on the quantum formalism.

Resources for Fault Tolerance

Goal

The goal is to characterize resources for fault tolerant quantum computation.

Fault Tolerance

- Stabilizer operations are a typical fault tolerant set.
- This defines a natural restriction on the set of quantum operations.
- This set is efficiently simulatable by the Gottesman-Knill protocol.
- Thus we need injection of resource states.

Resources for Fault Tolerance

Goal

The goal is to characterize resources for fault tolerant quantum computation.

Fault Tolerance

- Stabilizer operations are a typical fault tolerant set.
- This defines a natural restriction on the set of quantum operations.
- This set is efficiently simulatable by the Gottesman-Knill protocol.
- Thus we need injection of resource states.

Magic State Computing (Bravyi, Kitaev 2005)

Magic State Model

- Operational restriction: perfect stabilizer operations (states, gates and projective measurement)
- ullet Additional resource: preparation of non-stabilizer state ho_R

Magic State Distillation

- ullet Consume many resource states ho_R to produce a few very pure resource states $ilde
 ho_R$
- Inject $\tilde{\rho}_R$ to perform non-stabilizer unitary gates (using only fault tolerant stabilizer operations)

A Sharper Question

Do all non-stabilizer states promote stabilizer computation to quantum computation?

Magic State Computing (Bravyi, Kitaev 2005)

Magic State Model

- Operational restriction: perfect stabilizer operations (states, gates and projective measurement)
- ullet Additional resource: preparation of non-stabilizer state ho_R

Magic State Distillation

- ullet Consume many resource states ho_R to produce a few very pure resource states $ilde
 ho_R$
- Inject $\tilde{\rho}_R$ to perform non-stabilizer unitary gates (using only fault tolerant stabilizer operations)

A Sharper Question

Do all non-stabilizer states promote stabilizer computation to quantum computation?

Main Result

Main Result: Bound Magic States for Odd Dimension

- There is a large class of non-stabilizer quantum states (bound magic states) that are not useful for magic state distillation.
- Quantum circuits composed of stabilizer operations composed of stabilizer operations and bound magic states are efficiently classically simulatable. This is an extension of Gottesman-Knill to non-stabilizer inputs.

Quasi-Probability Representation

Quasi-Prob. Representation

A linear map from Hermitian operators to real numbers,

 $W: L(\mathscr{H}_{d^n}) \to \mathbb{R}^{d^{2n}}$. In particular:

- ullet quantum states o quasi-probability distributions
- ullet POVM elements o conditional quasi-probability distributions.

Negativity

Some states/measurements must be *negatively represented*. (Emerson, Ferrie 2009).

Subtheory

Choice of positively represented subtheory is largely arbitrary.

Discrete Wigner Representation for Odd Dimension

<u>Insight</u>

Choice of quasi-probability representation can reflect operational restriction.

Wigner Representation

Stabilizer operations have positive representation. (Gross 2006)

Negative Probabilities

Ancilla preparation may be negatively represented.

1/3	1/3	1/3
0	0	0
0	0	0

Figure: Wigner representation of qutrit $|0\rangle$ state

1/6	1/6	1/6
1/6	-1/3	1/6
1/6	1/6	1/6

Figure: Wigner representation of qutrit $|0\rangle - |1\rangle$ state

Stabilizer Operations Preserve Positive Representation

Observation

Negative Wigner representation is a resource that can not be created by stabilizer operations.

Proof

Let $\rho \in L(\mathbb{C}_{d^n})$ be an n qudit quantum state with positive Wigner representation. Observe the following:

- $U\rho U^{\dagger}$ is positively represented for any Clifford (stabilizer) unitary U.
- \circ $\rho \otimes S$ is positively represented for any stabilizer state S.
- **3** $M\rho M/\text{Tr}(M\rho M)$ is positively represented for any stabilizer projector M.

So What?

Discrete Hudson's Theorem (Gross 2006)

Pure states have positive representation if and only if they are stabilizer states.

Positive Representation \equiv Stabilizer State?

Do all non-stabilizer states have negative Wigner representation?

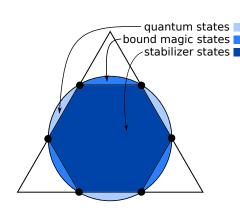
Stabilizer Polytope

Stabilizer Polytope

- Define convex polytope with stabilizer states as its vertices
- Can be equivalently defined by set of halfspaces - "facets"

Non-Negativity Specifies Facets

The Wigner simplex has d^2 facets, shared with the stabilizer polytope



Slice of the Stabilizer Polytope

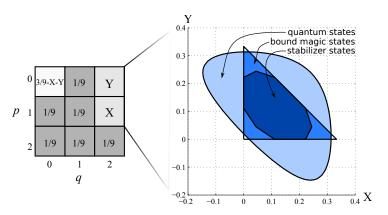


Figure: Slice defined by fixing six entries of the Wigner function and varying the remaining through their possible values to create the plot.

Extended Gottesman-Knill Theorem

Scope

- ullet Prepare ho with positive representation
- Act on input with Clifford U_F (corresponding to linear size F)
- Perform measurement $\{E_k\}$ with positive representation

Simulation Protocol

- Sample phase space point (u, v) according to distribution $W_{\rho}(u, v)$
- Evolve phase space point according to $(u, v) \rightarrow F^{-1}(u, v)$
- ullet Sample from measurement outcome according to $ilde{W}_{\{E_k\}}(u,v)$

See also Positive Wigner functions render classical simulation of quantum computation efficient, A. Mari and J. Eisert

Linear Optics

Odd Dimension	Infinite Dimension
Stabilizer Operations	Linear Optics
Stabilizer States	Gaussian States
Discrete Wigner Function	Wigner Function

Table: Comparison of Odd and Infinite Dimensional Formalisms

Results

- There exist mixed states with positive Wigner representation that are not convex combinations of gaussian states (Bröcker and Werner 1995)
- Computations using linear optical transformations and measurements as well as preparations with positive Wigner function can be efficiently classically simulated.^a

^aVeitch, Wiebe, Ferrie and Emerson (2012)

Summary and Open Problems

Summary

- Negative Wigner representation resource for stabilizer restriction
- Extended Gottesman-Knill
- Bound states for magic state distillation

Future Work

- Does this extend to other operational restrictions?
- Is negativity sufficient for distillability?
- Resource theory for stabilizer formalism?

Paper Reference

New J. Phys. 14 113011