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Classical and quantum Markov chains

Markov chain: Description of time-homogenous probabilistic
evolution.

X T−→ X T−→ X T−→ X · · · T−→ X
ρ 7→ T (ρ) 7→ T 2(ρ) 7→ T 3(ρ) · · · 7→ T∞(ρ)

X : state space, ρ : state of system,
T : transition map, T∞ : asymptotic evolution

Classical: Quantum:

I X = Rd

I ρ: vector with non-negative
components, sum to 1

I T : stochastic matrix

I X = {X ∈ Cd×d |X = X †}
I ρ: positive semi-definite

trace-one matrix

I T : trace-preserving and
completely positive map
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Approaching Asymptotic behavior

In many cases one is interested, when asymptotic behavior sets in:
Classical: Quantum:

I Algorithms close to correct?

I Shuffling random?

I Dissipative state preparation
and computation

I Stability of fixed point of evolution

I Cut-off phenomena

In this talk we consider convergence properties of classical and
quantum Markov chains.
How is the spectrum of T related to ||T n − T n

∞||?
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Mathematical primer

Linear maps M:

I σ(M) = {λ1, ..., λd} spectrum ofM with spectral radius µM,

I mM(z) =
∏

i (z − λi )ki minimal polynomial of M: smallest
degree non-zero poly. with mM(M) = 0

Quantum/classical transition maps T :

I Spectral radius µ = 1

I Define
T∞ :=

∑
|λi |=1

λiPi

via Jordan decomposition: T =
∑

i (λiPi +Ni ), Pi spectral
projector, Ni nilpotent.

I T n − T n
∞ = (T − T∞)n
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Linear algebraic bounds

Use ||T n − T n
∞|| = ||(T − T∞)n|| and Jordan/ Schur

decompositions of T − T∞.

Jordan:
Let µ = µT −T∞ and dµ largest Jordan block for µ. There are
n-independent C1,C2 > 0 such that

C1µ
n−dµ+1ndµ−1 ≤ ||T n − T n

∞|| ≤ C2µ
n−dµ+1ndµ−1,

Schur: (for quantum channels)

||T n − T n
∞||� ≤ 2d3/2(µ+ 2d1/2)d

2−1nd
2−1µn−d

2+1.

Both bounds are not satisfactory: Jordan only qualitative, Schur
too bad.
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Mathematical primer II

Certain spaces of analytic functions:

I Hol(D): space of analytic functions on complex unit disc.

I Hp ⊂ Hol(D) with p > 0: Hardy spaces

Hp = {f ∈ Hol(D)| ||f ||pHp := sup
0≤r<1

1

2π

∫ 2π

0
|f (re iφ)|pdφ <∞}

I W ⊂ Hol(D): Wiener algebra of absolutely convergent Taylor
series

W = {f =
∑
k≥0

f̂ (k)zk |
∑
k≥0

|f̂ (k)| <∞}.
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Bounding functions of an operator
Main result: spectrum and convergence

Power-bounded operators obey Wiener functional calculus

M power-bounded iff ||Mn|| ≤ C ∀n ∈ N. Examples:

I T quantum channel: ||T n||� = 1

I T classical stochastic matrix: ||T n||1→1 = 1

I T − T∞: ||(T − T∞)n||� = ||T n − T n
∞||� ≤ ||T n||� + ||T n

∞||� = 2

Suppose want to bound ||f (M)||,
f ∈W = {f =

∑
k≥0 f̂ (k)zk |

∑
k≥0 |f̂ (k)| <∞}:

Observation I:

||f (M)|| = ||
∑
k≥0

f̂ (k)Mk || ≤
∑
k≥0

|f̂ (k)| ||Mk || ≤ C
∑
k≥0

|f̂ (k)| = C ||f ||W

Observation II:

||f (M)|| = ||(f + mMg)(M)|| ≤ C ||f + mMg ||W ∀g ∈W

Oleg Szehr, David Reeb, Michael M. Wolf TU Muenchen Spectral convergence bounds for classical and quantum Markov processes



Introduction
Spectral bounds from a function space based approach

Conclusions and References

Bounding functions of an operator
Main result: spectrum and convergence

Power-bounded operators obey Wiener functional calculus

M power-bounded iff ||Mn|| ≤ C ∀n ∈ N. Examples:

I T quantum channel: ||T n||� = 1

I T classical stochastic matrix: ||T n||1→1 = 1

I T − T∞: ||(T − T∞)n||� = ||T n − T n
∞||� ≤ ||T n||� + ||T n

∞||� = 2

Suppose want to bound ||f (M)||,
f ∈W = {f =

∑
k≥0 f̂ (k)zk |

∑
k≥0 |f̂ (k)| <∞}:

Observation I:

||f (M)|| = ||
∑
k≥0

f̂ (k)Mk || ≤
∑
k≥0

|f̂ (k)| ||Mk || ≤ C
∑
k≥0

|f̂ (k)| = C ||f ||W

Observation II:

||f (M)|| = ||(f + mMg)(M)|| ≤ C ||f + mMg ||W ∀g ∈W

Oleg Szehr, David Reeb, Michael M. Wolf TU Muenchen Spectral convergence bounds for classical and quantum Markov processes



Introduction
Spectral bounds from a function space based approach

Conclusions and References

Bounding functions of an operator
Main result: spectrum and convergence

Power-bounded operators obey Wiener functional calculus

M power-bounded iff ||Mn|| ≤ C ∀n ∈ N. Examples:

I T quantum channel: ||T n||� = 1

I T classical stochastic matrix: ||T n||1→1 = 1

I T − T∞: ||(T − T∞)n||� = ||T n − T n
∞||� ≤ ||T n||� + ||T n

∞||� = 2

Suppose want to bound ||f (M)||,
f ∈W = {f =

∑
k≥0 f̂ (k)zk |

∑
k≥0 |f̂ (k)| <∞}:

Observation I:

||f (M)|| = ||
∑
k≥0

f̂ (k)Mk || ≤
∑
k≥0

|f̂ (k)| ||Mk || ≤ C
∑
k≥0

|f̂ (k)| = C ||f ||W

Observation II:

||f (M)|| = ||(f + mMg)(M)|| ≤ C ||f + mMg ||W ∀g ∈W

Oleg Szehr, David Reeb, Michael M. Wolf TU Muenchen Spectral convergence bounds for classical and quantum Markov processes



Introduction
Spectral bounds from a function space based approach

Conclusions and References

Bounding functions of an operator
Main result: spectrum and convergence

Power-bounded operators obey Wiener functional calculus

M power-bounded iff ||Mn|| ≤ C ∀n ∈ N. Examples:

I T quantum channel: ||T n||� = 1

I T classical stochastic matrix: ||T n||1→1 = 1

I T − T∞: ||(T − T∞)n||� = ||T n − T n
∞||� ≤ ||T n||� + ||T n

∞||� = 2

Suppose want to bound ||f (M)||,
f ∈W = {f =

∑
k≥0 f̂ (k)zk |

∑
k≥0 |f̂ (k)| <∞}:

Observation I:

||f (M)|| = ||
∑
k≥0

f̂ (k)Mk || ≤
∑
k≥0

|f̂ (k)| ||Mk || ≤ C
∑
k≥0

|f̂ (k)| = C ||f ||W

Observation II:

||f (M)|| = ||(f + mMg)(M)|| ≤ C ||f + mMg ||W ∀g ∈W

Oleg Szehr, David Reeb, Michael M. Wolf TU Muenchen Spectral convergence bounds for classical and quantum Markov processes



Introduction
Spectral bounds from a function space based approach

Conclusions and References

Bounding functions of an operator
Main result: spectrum and convergence

Bounding functions of operators

Thus, ||f (M)|| ≤ C infg∈W ||f + mMg ||W
↪→ framework for spectral bounds on norm of function of operator:

I Find “good’’ function space for given class of operators

I Use above to shift problem to function space

I Find bound in function space e.g choose “good’’ h with
infg∈S ||f + mMg ||S ≤ ||h||S

Examples:

I M Hilbert space contraction, then
||f (M)|| ≤ infg∈H∞ ||f + mMg ||H∞ ∀f ∈ H∞

I T quantum channel, then [Nik06]
∣∣∣∣T −1

∣∣∣∣
� ≤
√

2ed/(
∏

i |λi |)
I T quantum channel, then

||T n − T n
∞||� = ||(T − T∞)n||� ≤ 2 inf

g∈W

∣∣∣∣zn + g m(T −T∞)

∣∣∣∣
W
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Main result: spectrum and convergence

Main result: Spectrum and convergence

Theorem (Szehr, Reeb, Wolf [SRW13])

Suppose ||T n|| ≤ C ∀n ∈ N. Let m = mT −T∞ be minimal
polynomial and µ spectral radius of T − T∞. Then, for n > µ

1−µ
we have

||T n − T n
∞|| ≤ µn R(µ,m, n)

∏
m/(z−λD)

1− (1 + 1
n )µ|λi |

µ− |λi |+ µ
n

,

where R(µ,m, n) =
4Ce2
√
|m|(|m|+1)

(1−(1+ 1
n

)µ)
3/2 .
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Bounding functions of an operator
Main result: spectrum and convergence

Comparison to Schur and Jordan

To compare, note that

1− (1 + 1
n )µ|λi |

µ− |λi |+ µ
n

≤ n

µ
(1− µ2).

i) Jordan:
I If |λi | = µ then catch factor n

µ . Hence, Jordan bound is direct
corollary.

I Advantage: Found quantitative bound since specified constants

ii) Schur:
I In case of worst spectrum find Schur bound as corollary.
I Advantage: Exponential improvement in dimension prefactor

even for worst spectrum

Conclude: New bound outperforms Jordan and Schur
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Bounding functions of an operator
Main result: spectrum and convergence

Some words about proof

Sufficient to bound infg∈W
∣∣∣∣zn + g m(T −T∞)

∣∣∣∣
W

.

1. Interpolation problem [Nik09]:
infg∈W

∣∣∣∣zn + g m(T −T∞)

∣∣∣∣
W

= infh∈W {||h||W | h(λi ) = λni }

2. Choose good representative: r ∈ (0, 1) and

hr (z) =
∑

k λ
n
k

B̃(rz)
rz−rλk (1− r2|λk |2)

∏
j 6=k

1−r2λ̄jλk
rλk−rλj

3. Bound in terms of Hardy norm:

||hr ||W ≤
√∑

k≥0 |ĥ(k)|2
√

1
1−r2 = ||h||H2

√
1

1−r2 ≤ ||h||H∞

√
1

1−r2

4. Express h as contour integral and s ∈ (µ, 1)

||h||H∞ ≤ sn+1

2π(n+1) sup|z|=1

∫
γ
|
[

1
B̃r (λ)(z−rλ)

]′
||dλ|

5. Use Spijker Inequality. Let |λ| = (1 + 1/n)µ

||T n − T n
∞|| ≤

√
1

1−r2
µn+1(|m|+1)e

nr |m|(1−r(1+1/n)µ)
supλ

∣∣∣∏i
1−λ̄i r

2λ
λ−λi

∣∣∣
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